TR2022009102A2 - PRODUCTION OF POLYMERIC ADSORBANS FOR PASSIVE SAMPLERS - Google Patents

PRODUCTION OF POLYMERIC ADSORBANS FOR PASSIVE SAMPLERS

Info

Publication number
TR2022009102A2
TR2022009102A2 TR2022/009102A TR2022009102A TR2022009102A2 TR 2022009102 A2 TR2022009102 A2 TR 2022009102A2 TR 2022/009102 A TR2022/009102 A TR 2022/009102A TR 2022009102 A TR2022009102 A TR 2022009102A TR 2022009102 A2 TR2022009102 A2 TR 2022009102A2
Authority
TR
Turkey
Prior art keywords
adsorbent
mpppo
tenax
vocs
bnnt
Prior art date
Application number
TR2022/009102A
Other languages
Turkish (tr)
Inventor
Erdoğan Bedri̇ Tuba
Sarioğlan Şeri̇fe
Ünveren Eli̇f
Bayir Sümeyra
Ceylan Özcan
Original Assignee
Tuerkiye Bilimsel Veteknolojik Arastirma Kurumu
Türki̇ye Bi̇li̇msel Veteknoloji̇k Araştirma Kurumu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tuerkiye Bilimsel Veteknolojik Arastirma Kurumu, Türki̇ye Bi̇li̇msel Veteknoloji̇k Araştirma Kurumu filed Critical Tuerkiye Bilimsel Veteknolojik Arastirma Kurumu
Priority to TR2022/009102A priority Critical patent/TR2022009102A2/en
Publication of TR2022009102A2 publication Critical patent/TR2022009102A2/en

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Mevcut buluşun amacı, UOB adsorbanının kimyasal olarak sentezlenmesinin yanı sıra nanotabakalı bor nitrür (BNNT) (13) katkı maddesi ekleyerek yeni özellikler kazandırmaktır. Tenax ticari markasıyla bilinen Poli(2,6-difenil-p-fenilen oksit) (PPPO),BNNT ile katkılandırılarak polimerik adsorban olarak granül formda ve yüksek kapasitede üretilmiş ve MPPPO-BN adsorbanı (21) olarak adlandırılmıştır. MPPPO-BN adsorbanının (21) UOB?leri tutucu adsorban malzemesi olarak kullanılması, UOB?lere bağlı olarak ortam sıcaklığından 340°C'ye kadar olan sıcaklıklarda desorpsiyon testleri ile ispatlanmıştır. BNNT bağlayıcısı ile geliştirilen ürün, polimerik adsorban olarak kullanılması, polimer parçacıklarının aglomerasyonunu önlemesi, yoğunluğunun Tenax TA ve Tenax GR?den daha yüksek olması ile daha fazla UOB adsorbe edebilme kapasitesine sahiptir.The aim of the present invention is to provide new properties by adding nanolayered boron nitride (BNNT) (13) additive as well as chemically synthesizing the VOC adsorbent. Poly(2,6-diphenyl-p-phenylene oxide) (PPPO), known under the trademark Tenax, was produced as polymeric adsorbent in granule form and high capacity by doping with BNNT, and it was named MPPPO-BN adsorbent (21). The use of MPPPO-BN adsorbent (21) as a scavenging adsorbent material for VOCs has been proven by desorption tests at temperatures ranging from ambient temperature to 340°C depending on VOCs. The product developed with BNNT binder has the capacity to adsorb more VOCs because it is used as a polymeric adsorbent, prevents agglomeration of polymer particles, and has a higher density than Tenax TA and Tenax GR.

Description

TARIFNAME PASIF ÖRNEKLEYICILER içiN POLIMERIK ADSORBAN ÜRETIMI Bulusun Ilgili Oldugu Teknik Saha Mevcut bulus, iç ve dis ortam hava örneklerindeki Uçucu Organik Bilesikler'i (UOB) tutucu polimerik bir adsorbanin üretimi ile ilgilidir. Teknigin Bilinen Durumu Birçok zararli hava kirleticisini içeren uçucu organik bilesikler (UOB'Ier), endüstriyel olmayan iç ve dis ortam hava örnekleri ile endüstriyel isyerlerinde ve ayrica günlük hayatta kullanilan çesitli malzemelerde ortaya çikabilir. UOB'Ier günes isiginda azot oksitleri ile reaksiyona girerek fotokimyasal oksidanlar olusturabilen, antropojenik ve biyojenik kaynaklardan olusan metan disindaki tüm organik bilesikleri kapsamaktadir. Uçucu organik bilesiklerin çogu, fotokimyasal oksidan kirliliginin öncüleridir ve bazilari, ozon tabakasinin delinmesine neden olarak küresel isinmaya neden olmaktadir. Çesitli endüstriyel ve çevresel faaliyetler sonucunda ortaya çikan UOB'Ier toksik, kanserojen ve biyobirikim özelliklerine sahip olan organik kimyasallardir. ABD Çevre Koruma Kurumu (United States Environmental Protection Agency-EPA); uçucu organik bilesiklere maruziyetin insan sagligina etkileri arasinda akut ve kronik solunum yolu etkileri, göz, burun ve bogaz tahrisi, bas agrisi, koordinasyon bozuklugu, karaciger, böbrek ve merkezi sinir sistemi hasarlarini saymaktadirlar. Bu sebeple, insan sagliginin korunmasi ve çevre üzerindeki kisa ve uzun vadeli olumsuz etkilerin önlenmesi için atmosferdeki hava kirleticilerin, bir arada bulunduklarinda degisen zararli etkileri de göz önüne alinarak, maksimum bulunabilme miktarlari ulusal ve uluslararasi çevre ve saglik örgütleri tarafindan belirlenen bu maddelerin analiz edilmesi ve izlenmesi büyük önem tasimaktadir. UOB'Ierin atmosferik derisimleri, UOB kaynagini belirlemek, saglik etkileri üzerine çalismalar yapmak ve düzenleyici sinir degerlerle uyumunu kontrol etmek gibi çesitli nedenlerle ölçülmektedir. Havadaki UOB derisimleri zamana ve yere göre farklilik gösterebilmektedir. Ölçüm teknikleri bu degisimler ve farkli ortamlar için uygun olarak tasarlanmalidir. UOB'Ier önemli bir hava kirletici sinifini olusturur ve bir kismi kanserojen etkilere sahiptir. En yaygin olanlari BTEX olarak adlandirilan Benzen, Toluen, Etilbenzen ve Ksilen'dir. UOB'lerin kati adsorbanlara aktif veya pasif baglanmasi, hava numunelerinin toplanmasinda yaygin olarak kullanilan yöntemdir. Adsorban maddelere, Carbosieve, CarboxenTM, CarbotrapTM, TenaXTM TA, TenaXTM GR ve Carbograph ticari isimleri altindaki maddeler ve cam boncuklar örnek verilebilir. CarboxenTM ve CarbotrapTM, Sigma-Aldrich Co., St. Louis Mo'nun tescilli ticari markalaridir. TenaX, Buchem B.V Hollanda menseli firmanin tescilli bir markasidir. TenaX hidrofobik, termal kararliligi iyi, kolon dolgu malzemesi ve UOB'ler için tutucu adsorban olarak kullanilmaktadir. TenaX, 2,6-difenil-p-fenilen oksit bazli gözenekli bir polimerdir. Poli( kolon dolgu malzemesi olarak gelistirilmistir [Wijk, 1970]. US numarali Amerika Birlesik Devletleri patent dokümaninda PPPO'nun kimyasal olarak sentezinde oksidatif polimerizasyonun yaygin olarak kullanilan bir yöntem oldugu belirtilmistir. TenaX adsorbaninin, TenaX TA ve %23 grafitize karbon içeren TenaX GR gibi farkli versiyonlari bulunmaktadir [Cao vd., 1993]. TenaX katki maddeleri ile birlikte adsorban olarak birçok çalismada kullanilmis ve yüksek performans göstermistir. US numarali Amerika Birlesik Devletleri patent dokümaninda TenaX uçucu organik bilesikler için adsorban olarak önerilmistir. PPPO polimeri ilk olarak Ulusal Havacilik ve Uzay Dairesi (NASA) tarafindan UOB'lerin zenginlestirilmesi için adsorban olarak kullanilmistir [Bertsch vd, 1974]. PPPO'nun granüler formu, hava kalitesini ve endüstriyel emisyonlari izlemek için ABD Çevre Koruma Kurumu'nun (United States Environmental Protection Agency-EPA) standart yöntemlerinde adsorban malzeme olarak kullanilmaktadir. TenaX TA ve TenaX GR ile Kisa Yol Termal Desorpsiyon Sistemi ile birlikte S.l.S. (Scientific lnstrument Services) Purge ve Trap sistemi gibi termal desorpsiyon tekniklerini kullanarak, ppb (milyarda bir-parts per billion) ve ppt (trilyonda bir-parts per trillion) seviyesindeki uçucu organiklerin tespiti yapilabilmektedir. CN102451668A numarali Çin patent dokümaninda belirtilen TenaX- TA adsorbaninin isleme tekniginde, dis ortam havasindaki BTEX ölçümünde yüksek adsorpsiyon verimliligi ve tekrarlanabilirlik elde edilmistir. CN102288455A numarali Çin patent dokümaninda, TenaX-TA ve aktif karbon adsorbaninin birlikte kullanildigi teknikte iç ortam havasindaki benzen ve toplam uçucu organik bilesikler (TUOB) ayni zamanda örneklenerek tekrarlanabilirlikleri ve geri kazanim oranlari iyilestirilmistir. Bulusun Çözümünü Amaçladigi Teknik Problem Mevcut bulusun çözmeye çalistigi teknik problem, teknigin bilinen durumunda var olan PPPO polimerinin adsorpsiyon kapasitesini azaltan topaklanma (aglomerasyon) egiliminin bulunmasidir. Aglomerasyon, numune yükleme ve analitlerin elüsyonu sirasinda zayif tekrarlanabilirlik olusturmaktadir. Bu problem, adsorbana en az %1 oraninda BNNT (Bor nitrür nanotabaka- Boron nitride nanosheet (BNNS)) eklenmesi yöntemiyle çözülmüstür. BNNT (Bor nitrür nanotabaka), hekzagonal bor nitrürün mekanik eksfoliasyon yöntemine tabi tutularak tabakalar arasinin açilmasiyla olusturulmaktadir. PPPO polimeri ve BNNT'nin (13) yapisi Sekil 2'de gösterilmistir. BNNT (13), polimer parçaciklarinin aglomerasyonunu (topaklasmasini) önlemekte ve yaglayici özellik saglamaktadir. Bu sayede mevcut bulusta gelistirilen polimer ile topaklasmayan ve yogunlugu ticari TenaX TA'ya göre daha yüksek bir polimerik adsorban (21) gelistirilmistir. Mevcut bulusun çözmeye çalistigi teknik problem, düsük molekül agirlikli UOB'Ierin güvenilir sekilde adsorbe edilememesidir. Bu problem, daha fazla UOB adsorbe edilebilmesi için, PPPO'ya düsük oranli BNNT eklenmesi ile elde edilen MPPPO-BN (bor nitrür katkili modifiye PPPO)'nin yogunlugunun TenaX TA ve TenaX GR'ye göre arttirilmasi yöntemiyle çözülmüstür. Sekillerin Açiklamasi Sekil 1. MPPPO-BN adsorbaninin (21) üretim prosesinin akim semasi Sekil 2. MPPPO-BN'nin (18) reaksiyon mekanizmasi Sekillerdeki Referanslarin Açiklamalari A: MgSO4 (susuz) (1) ve o-diklorobenzenin (2) reaktöre alinarak reaksiyon karisiminin olusturulmasi B: A islem basamaginda olusturulan reaksion karisimina TMEDA (3) ve CuCI (4) eklenerek 10 dk kuru hava (5), (6) atmosferinde karistirilmasi C: 2,6 difenilfenolün (7) o-diklorobenzen (8) içinde çözdürülmesi D: C islem basamaginda olusturulan çözeltinin, B islem basamaginda olusturulan reaksiyon karisimina damla damla ilave edilmesi E: Polimerizasyon F: Belirlenen polimerizasyon süresi sonunda polimer karisimina hidrazin (11) eklenmesi G: Polimer karisiminin Al203 kolondan geçirilerek PPPO polimerinin elde edilmesi H: G islem basamaginda kolondan geçirilerek elde edilen PPPO polimerinin tetrahidrofuran (THF) (12) içinde çözdürülmesi l: BNNT (13) ile metanolün (14) ultrasonifikasyon ile karistirilarak bir karisim elde edilmesi J: H islem basamaginda çözdürülen PPPO polimerinin l islem basamaginda elde edilen karisim içerisine çöktürülerek saflastirilmasi K: J islem basamaginda saflastirilan polimerin süzülmesi (Filtrasyon) L: Kurutma M: Kalsinasyon N: Elekten geçirme 1: MgSO4 (susuz) 2: o-diklorobenzen 3: N,N,N',N'-Tetramethyl ethylenediamine (TMEDA) 4: CuCl : Kuru hava 6: Kuru hava 7: 2,6-difenilfenol 8: o-diklorobenzen 9: Kuru hava : Kuru hava 11: Hidrazin 12: Tetrahidrofuran (THF) 13: BNNT 14: Metanol : Metanolün (14) izole edilmesi 16: Çözücü 17: Nem 18: MPPPO-BN polimeri 19: N2 : N2 21: MPPPO-BN adsorban Bulusun Açiklanmasi Hava örneklerinden alinan UOB'ler, bazli gözenekli bir polimer üzerine adsorbe edilmektedir ve UOB'lere bagli olarak ortam sicakligindan 340°C`ye kadar olan sicakliklarda desorbe edilmektedir. PPPO gözenekli polimeri, etkili adsorpsiyon ve desorptiviteye sahiptir ve bu özelligi nispeten yüksek sicakliklarda sürdürebilmektedir. Mevcut bulusta PPPO polimeri BNNT ile katkilandirilarak polimerik adsorban olarak granül formda üretilmistir. Bu bölümden sonra, mevcut bulusa özgü MPPPO-BN polimerik adsorbanin (21) sentezi ve analizleri detayli olarak tarif edilecektir. Poli(, 2,6-difenilfenolün oksidatif polimerizasyonu ile hazirlanmaktadir. Mevcut bulus, daha ayrintili ve spesifik olarak bir örnege atifta bulunularak tarif edilecektir. Istemler, bulusun kapsamini daraltacak sekilde örneklerle sinirli olarak yorumlanamaz. Örnek Uygulama: BNNT katkili Poli( M9804 (susuz) (1) ve oda sicakliginda 1 L'lik reaktöre ilave edilerek reaksiyon karisimi olusturulur (A). A islem basamagindan sonra elde edilen reaksiyon karisimina sirasiyla 0,5449 (4,68 mmol) N,N,N',N'-Tetramethyl sicakliginda kuru hava (5), (6) atmosferi altinda 10 dakika karistirilir (B) . Ardindan (C). C islem basamaginda elde edilen çözelti, B islem basamaginda elde edilen reaksiyon karisimina damla damla ilave edilir (D). Reaksiyon, damlatma islemi tamamlandiktan sonra kuru hava atmosferi (9), (10) altinda 24 saat boyunca 85 °C'de 9erçeklestirilir (polimerizasyon) (E). Kuru hava sürekli akis halindedir. Belirlenen 24 saatlik süre sonunda oda sicakliginda yaklasik 15-20 dakika sogutulan polimer karisimina, difenokinon yan ürünlerinden kaynaklanan koyu kirmizi renk kaybolana kadar, difenokinon yan ürünlerini azaltmak için eklenir (F). F islem basamagindan sonra polimer karisimi, nötral alümina ile doldurulmus Al203 (alüminyum oksit) kolondan 9eçirilerek (G) PPPO polimeri elde edilir. G islem basamagindan sonra sentezlenen PPPO polimeri, tetrahidrofuran (THF) (12) içinde çözdürülür (H). Hekzagonal bor nitrürü ögütme islemi sonrasinda elde edilen Bor nitrür nanotabaka (BNNT) (ögütme sonrasi parçacik boyutu 30-65 nm) (13), PPPO polimerini çöktürmek için kullanilan metanol (14) çözücüsü içerisine en az % 1 en çok %5 oraninda eklenerek ultrasonifikasyon ile 1-20 dakika boyunca karistirilir (l). H islem basamaginda çözülen polimer, l islem basamagindan elde edilen %1 BNNT içeren metanol (14) karisimi içerisinde çöktürülerek saflastirilir (J). Sonrasinda J islem basamaginda saflastirilan polimer, süzülerek (K) metanol izole edilir (15) ve K islem basamaginda süzülerek metanolden (14) ayristirilan polimer(filtrede toplanan)2 gün boyunca vakum etüvünde 50°C'de nem (16) ve çözücü (17) uzaklastirilarak kurutulur (L) ve MPPPO-BN polimeri (18) elde edilir (sentezlenir). MPPPO-BN polimeri (18), bor nitrür katkili modifiye PPPO'yu ifade etmektedir (Sekil 2). L islem basamagindan sonra sentezlenen BNNT katkili MPPPO-BN polimerinin (18) kalsinasyonu ve adsorban eldesi için, 25 °C'den ve ardindan 1 saat . Kalsine edilmis polimer, 60-80 mesh araligindaki parçacik boyutu eldesi için bir elekten geçirilerek (N) MPPPO-BN adsorbani (21) elde edilir. MPPPO-BN adsorban (21) analizi: Sartlandirma: Adsorban içeren pasif örnekleyiciler saha çalismalarinda kullanilmadan sartlandirilmasi gerekmektedir. Bu sekilde örnekleyicide tutulmus olan organik kirleticiler adsorban yüzeyinden temizlenmis olur. Tablo 1. MPPPO-BN polimerik adsorbaninin (21) ölçüm parametreleri Maksimum sicaklik 400 °C Sartlandirma Sicakligi 340 °C Analiz Sicakligi 320 °C Örnekleme: EN standartina uygun olarak hava kalitesi izlenecek sahada farkli yerlere kurulan pasif örnekleyici tüpler yardimi ile organik gazlar zamana bagli olarak, difüzyona dayali adsorplama ile ortam havasindan toplanir. Örnekleme süresi 1, 2 veya 4 hafta olarak belirlenebilir. Analiz: Adsorban yüzeyinde toplanmis olan organik gazlarin, ilgili standarta uygun olarak birbirlerine bagli Termal Desorber-Gaz Kromatografi Kütle Spektrometresi (TD- GC-MS) cihazi kullanilarak analizi yapilir. Sahadan toplanmis olan pasif örnekleyicilerde tutulmus (adsorpsiyon) olan organik gazlar, helyum (He) tasiyici gaz yardimi ile sicaklikla adsorban yüzeyinden ayrilarak (desorpsiyon), Termal Desorber cihazinda bulan ve -20 °C de sogutulmus olan trap içerisindeki adsorban yüzeyinde tutulur. Analiz asamasinda ise trapte tutulan organik bilesikler GC-MS cihazina gönderilerek miktarlari tespit edilmis olur. Organik gazlardan BTEX (Benzen, Toluen, Etil benzen ve Ksilen) için geri kazanim ve saha çalismasi sonuçlari asagida Tablo 3 ve Tablo 4'te verilmistir. Tablo 3 'te verilen oranlar adsorbe etme orani degildir. Spike edilmis adsorban üzerinde yapilan geri kazanim oranini (analiz asamasi) göstermektedir. Pasif örnekleyicilerle yapilan bu tür çalismalarda her bir örnekleyici farkli bir numune gibi davranacagindan belirsizlik oranlari yüksek olmaktadir. Farkli bir çalismada bu oranlar MPPPO-BN için daha iyi olabilmektedir. Tablo 3. MPPPO-BN polimerik adsorbanin (21) geri kazanim çalismalarinin ticari TenaX ile karsilastirilmasi 0,500 ug spike geri kazanim miktar (ug) ve oranlari (%) EtiI mp- 0- Benzen Toluen Benzen Ksilen Ksilen Tablo 4. MPPPO-BN polimerik adsorbanin (21) dört haftalik saha çalismasi sonunda ticari TenaX ile karsilastirilmasi. Sonuç (iig) Benzen Toluen BeEntzlen KrsîiilJe-n Ks(i)I-en Sahit numune, toplanan örnekler ile es zamanli olarak sahadan toplanmistir. Diger sonuçlar; sahitten farkli olarak, sahadan toplanmis olan ticari ve sentez ürünü adsorban içeren pasif örnekleyicilerden elde edilen ölçümlerin sonuçlarini kapsamaktadir. Her bir sahit numune ayri bir örnekleyici, her bir numune de ayri bir örnekleyicidir. Tüm bu örnekleyiciler ayni sartlarda 340 °C de sartlandirilip, sahada kullanilmis ve 320°C de analiz edilmislerdir. Her bir örnekleyici bagimsiz bir numune gibi davranacagindan elde edilen sonuçlar belirli bir tolerans araliginda kabul edilebilir degerlerdir. Tablo 3 verilerine göre, sentezlenen adsorban (MPPPO-BN (21)) ile piyasadan temin edilen adsorban, desorpsiyon performansi yönünden degerlendirildiginde esdeger bir performans göstermistir. Ayrica, sentezlenen adsorban ile ticari olarak mevcut olan adsorban saha çalismalarinda eszamanli kullanilmis olup, degerlendirildiginde esdeger sonuçlar vermektedir (Tablo 4). Esdeger adsorbe etme kapasitesi gösteren iki adsorban karsilastirildiginda, BN katkili MPPPO'nun (21) yogunlugu yüksek oldugu için ticari TenaX'a göre pasif örnekleyiciye daha az adsorban yükleme olanagi sunmaktadir. Maliyet etkinligi kapsaminda avantaj saglamaktadir. Tablo 5. MPPPO-BN polimerik adsorbanin (21) performans degerleri 2 Termal Döngü 20 Termal Döngü 50 Termal Döngü Spike Ölçülen Geri Ölçülen Geri Ölçülen Geri UOB'ler Conc. [19 [19 Kazanim pg Kazanim pg Kazanim Seçilen UOB parametreleri için örnekleyicide kullanilan adsorbanin maruz kaldigi termal döngü sayisinin artmasi ile adsorbanin (MPPPO-BN (21)) performansinda asamasindan gelen ölçüm belirsizligi ile alakali bir durumdur. Yaklasik 50 termal döngü önemli degisiklik olmamaktadir. Tablo 5'te görünen degisiklikler, analiz sonunda geri kazanim oranlarinin analiz belirsizligi dâhilinde kabul edilebilir oldugu ve adsorbanin (MPPPO-BN (21)) kullanim ömrünün devam ettigi görülmektedir. Adsorban içeren pasif örnekleyiciler hazirlandiktan sonra sartlandirma ve analiz asamalarinda (. Termal döngü sayisinin çok olmasi yani adsorbanin çok kullanilmis olmasi adsorbanin Tablo 5'te MPPPO-BN'nin uzun süreli kullaniminda elde edilen performans degisikligini göstermektedir. performans karakterini etkilemektedir. Yapilan analizler sonucunda ticari ürünlerle karsilastirmali olarak MPPPO-BN adsorban (21), Tablo 6'da gösterilen özelliklere sahiptir. Tablo 6. Mevcut bulustaki polimerik adsorbanin (MPPPO-BN (21)) karakteristik özelliklerinin ticari ürünle karsilastirilmasi Sicaklik Parçacik Yüzey v . Limiti Afinite Boyutu Alani msn?" UOB araligi Çgmgsa' (°C) (mesh) (mzig) 9 '° Tenax . . PPPO + arasindadir. Adsorban malzemenin termal stabilitesi termogravimetrik analiz (TGA) ile belirlenmistir. TGA sonuçlari MPPPO-BN'de 400 °C'ye kadar agirlik kaybi olmadigini göstermistir. kararlidir. Granüler formdaki polimer, yüksek molekül agirligina ve termal olarak kararliga sahiptir. MPPPO-BN polimerik adsorbaninin (21) yogunlugu 1,16 - 1,18 g/mL araligindadir. Adsorban, n-C4 - n-Cso araligindaki UOB'leri ug seviyesinde tutma özelligine sahiptir. Bulusun Sanayiye Uygulanma Biçimi Mevcut bulustaki yöntem ile elde edilen MPPPO-BN polimerik adsorban (21), iç ve dis ortam havasindaki UOB'lerin tayininde kullanilabilecek bir üründür. TR TR TR DESCRIPTION PRODUCTION OF POLYMERIC ADSORBAN FOR PASSIVE SAMPLERS Technical Field to which the Invention Relates The present invention is related to the production of a polymeric adsorbent that traps Volatile Organic Compounds (VOCs) in indoor and outdoor air samples. State of the Art Volatile organic compounds (VOCs), which contain many harmful air pollutants, can occur in non-industrial indoor and outdoor air samples, industrial workplaces, and also in various materials used in daily life. VOCs include all organic compounds except methane from anthropogenic and biogenic sources, which can react with nitrogen oxides in sunlight and form photochemical oxidants. Many volatile organic compounds are precursors of photochemical oxidant pollution, and some cause global warming by causing depletion of the ozone layer. VOCs, which emerge as a result of various industrial and environmental activities, are organic chemicals that have toxic, carcinogenic and bioaccumulating properties. United States Environmental Protection Agency (EPA); They list acute and chronic respiratory tract effects, eye, nose and throat irritation, headache, coordination disorder, liver, kidney and central nervous system damage among the effects of exposure to volatile organic compounds on human health. For this reason, in order to protect human health and prevent short and long-term negative effects on the environment, air pollutants in the atmosphere should be analyzed and monitored, taking into account the changing harmful effects when they are together, and these substances, the maximum availability of which is determined by national and international environmental and health organizations. is of great importance. Atmospheric concentrations of VOCs are measured for various reasons, such as identifying the source of VOCs, studying their health effects, and checking compliance with regulatory limits. VOC concentrations in air may vary depending on time and place. Measurement techniques must be designed appropriately for these changes and different environments. VOCs constitute an important class of air pollutants and some of them have carcinogenic effects. The most common ones are Benzene, Toluene, Ethylbenzene and Xylene, called BTEX. Active or passive binding of VOCs to solid adsorbents is a widely used method for collecting air samples. Examples of adsorbent substances include glass beads and substances under the trade names Carbosieve, CarboxenTM, CarbotrapTM, TenaXTM TA, TenaXTM GR and Carbograph. CarboxenTM and CarbotrapTM, Sigma-Aldrich Co., St. are registered trademarks of Louis Mo. TenaX is a registered trademark of Buchem B.V., a Dutch company. TenaX is hydrophobic, has good thermal stability, and is used as a column packing material and a retaining adsorbent for VOCs. TenaX is a porous polymer based on 2,6-diphenyl-p-phenylene oxide. Poly( was developed as a column filling material [Wijk, 1970]. In the United States patent document numbered US, it is stated that oxidative polymerization is a widely used method in the chemical synthesis of PPPO. TenaX adsorbent is used such as TenaX TA and TenaX GR containing 23% graphitized carbon. There are different versions [Cao et al., 1993]. TenaX has been used in many studies as an adsorbent with additives and has shown high performance. In the United States patent document numbered US, TenaX was proposed as an adsorbent for volatile organic compounds. PPPO polymer was first used by the National Aeronautics and Space Administration It was used by NASA as an adsorbent for the enrichment of VOCs [Bertsch et al., 1974]. The granular form of PPPO is used in the standard methods of the United States Environmental Protection Agency (EPA) to monitor air quality and industrial emissions. It is used as adsorbent material.S.l.S. with TenaX TA and TenaX GR together with Short Path Thermal Desorption System. By using thermal desorption techniques such as (Scientific Instrument Services) Purge and Trap system, volatile organics at ppb (parts per billion) and ppt (parts per trillion) levels can be detected. In the processing technique of the TenaX-TA adsorbent specified in the Chinese patent document numbered CN102451668A, high adsorption efficiency and repeatability were achieved in BTEX measurement in outdoor air. In the Chinese patent document numbered CN102288455A, in the technique where TenaX-TA and activated carbon adsorbent are used together, benzene and total volatile organic compounds (TUOB) in the indoor air are sampled at the same time, improving their repeatability and recovery rates. The Technical Problem That the Invention Aims to Solve The technical problem that the present invention tries to solve is the tendency of PPPO polymer, which exists in the state of the art, to agglomerate, which reduces its adsorption capacity. Agglomeration creates poor reproducibility during sample loading and elution of analytes. This problem was solved by adding at least 1% BNNT (Boron nitride nanosheet (BNNS)) to the adsorbent. BNNT (Boron nitride nanolayer) is formed by opening the layers between hexagonal boron nitride by subjecting it to mechanical exfoliation method. The structure of PPPO polymer and BNNT (13) is shown in Figure 2. BNNT (13) prevents the agglomeration of polymer particles and provides lubricating properties. In this way, a polymeric adsorbent (21) that does not clump with the polymer developed in the present invention and has a higher density than the commercial TenaX TA has been developed. The technical problem that the present invention attempts to solve is that low molecular weight VOCs cannot be reliably adsorbed. This problem was solved by increasing the density of MPPPO-BN (boron nitride-doped modified PPPO), obtained by adding low-rate BNNT to PPPO, compared to TenaX TA and TenaX GR, in order to adsorb more VOCs. Explanation of Figures Figure 1. Flow diagram of the production process of MPPPO-BN adsorbent (21) Figure 2. Reaction mechanism of MPPPO-BN (18) Explanations of References in Figures A: MgSO4 (anhydrous) (1) and o-dichlorobenzene (2) are taken into the reactor. Creating the reaction mixture B: Adding TMEDA (3) and CuCl (4) to the reaction mixture created in the A process step and mixing in the atmosphere of dry air (5), (6) for 10 minutes. C: Adding 2,6 diphenylphenol (7) in o-dichlorobenzene (8) D: Adding the solution created in the C process step, drop by drop, to the reaction mixture created in the B process step. E: Polymerization F: Adding hydrazine (11) to the polymer mixture at the end of the determined polymerization time. G: Passing the polymer mixture through the Al2O3 column to obtain PPPO polymer. H: G process Dissolving the PPPO polymer obtained by passing it through the column in step H in tetrahydrofuran (THF) (12) l: Obtaining a mixture by mixing BNNT (13) and methanol (14) with ultrasonication. purification K: Filtering of the polymer purified in the J process step (Filtration) L: Drying M: Calcination N: Sieving 1: MgSO4 (anhydrous) 2: o-dichlorobenzene 3: N,N,N',N'-Tetramethyl ethylenediamine (TMEDA) 4: CuCl : Dry air 6: Dry air 7: 2,6-diphenylphenol 8: o-dichlorobenzene 9: Dry air : Dry air 11: Hydrazine 12: Tetrahydrofuran (THF) 13: BNNT 14: Methanol : Isolate of methanol (14) 16: Solvent 17: Humidity 18: MPPPO-BN polymer 19: N2 : N2 21: MPPPO-BN adsorbent Disclosure of the Invention VOCs taken from air samples are adsorbed on a based porous polymer and depending on the VOCs, 340° from the ambient temperature It is desorbed at temperatures up to C. PPPO porous polymer has effective adsorption and desorptivity and can maintain this property at relatively high temperatures. In the present invention, PPPO polymer was produced in granule form as a polymeric adsorbent by doping it with BNNT. After this section, the synthesis and analysis of the MPPPO-BN polymeric adsorbent (21) specific to the present invention will be described in detail. Poly( is prepared by oxidative polymerization of 2,6-diphenylphenol. The present invention will be described in more detail and specifically by referring to an example. The claims cannot be interpreted as limited to examples, which will narrow the scope of the invention. Example Application: BNNT-doped Poly( M9804 (anhydrous) (1) and added to a 1 L reactor at room temperature to form the reaction mixture (A). It is mixed under the atmosphere of dry air (5), (6) for 10 minutes (B).Then, the solution obtained in the process step (C).C is added drop by drop to the reaction mixture obtained in the process step B (D).The reaction begins after the dripping process is completed. It is then carried out (polymerization) (E) at 85 °C for 24 hours under a dry air atmosphere (9), (10). The dry air is in continuous flow. At the end of the specified 24 hour period, the polymer mixture is cooled at room temperature for approximately 15-20 minutes, (F) is added to reduce diphenoquinone by-products until the dark red color resulting from diphenoquinone by-products disappears. After the F process step, the polymer mixture is passed through the Al2O3 (aluminum oxide) column filled with neutral alumina to obtain (G) PPPO polymer. The PPPO polymer synthesized after the G process step is dissolved (H) in tetrahydrofuran (THF) (12). Boron nitride nanolayer (BNNT) (particle size after grinding is 30-65 nm) (13), obtained after hexagonal boron nitride grinding process, is added at least 1% and at most 5% into the methanol (14) solvent used to precipitate the PPPO polymer and ultrasonicated. and mixed for 1-20 minutes (l). The polymer dissolved in the H process step is purified by precipitation in a mixture of methanol (14) containing 1% BNNT obtained from the I process step (J). Afterwards, the polymer purified in the J process step is isolated from methanol (15) by filtration (K), and the polymer (collected in the filter), which is separated from the methanol (14) by filtration in the K process step, is kept in a vacuum oven at 50°C for 2 days with moisture (16) and solvent (17). ) is removed and dried (L) and MPPPO-BN polymer (18) is obtained (synthesized). MPPPO-BN polymer (18) refers to modified PPPO with boron nitride addition (Figure 2). For the calcination of the BNNT-doped MPPPO-BN polymer (18) synthesized after the L process step and to obtain adsorbent, 25 °C and then 1 hour. The calcined polymer is passed through a sieve to obtain particle sizes in the range of 60-80 mesh to obtain (N) MPPPO-BN adsorbent (21). MPPPO-BN adsorbent (21) analysis: Conditioning: Passive samplers containing adsorbents must be conditioned before being used in field studies. In this way, organic contaminants retained in the sampler are cleaned from the adsorbent surface. Table 1. Measurement parameters of MPPPO-BN polymeric adsorbent (21) Maximum temperature 400 °C Conditioning Temperature 340 °C Analysis Temperature 320 °C Sampling: Organic gases are measured over time with the help of passive sampler tubes installed in different places in the field where the air quality will be monitored in accordance with the EN standard. It is collected from the ambient air by diffusion-based adsorption. The sampling period can be determined as 1, 2 or 4 weeks. Analysis: Organic gases collected on the adsorbent surface are analyzed using a Thermal Desorber-Gas Chromatography Mass Spectrometry (TD-GC-MS) device connected to each other in accordance with the relevant standard. The organic gases retained (adsorption) in the passive samplers collected from the field are separated from the adsorbent surface (desorption) with the help of helium (He) carrier gas and kept on the adsorbent surface in the trap, which is found in the Thermal Desorber device and cooled at -20 °C. During the analysis phase, the organic compounds held in the trap are sent to the GC-MS device and their quantities are determined. Recovery and field study results for BTEX (Benzene, Toluene, Ethyl benzene and Xylene) from organic gases are given in Table 3 and Table 4 below. The rates given in Table 3 are not adsorption rates. It shows the recovery rate (analysis stage) performed on the spiked adsorbent. In such studies conducted with passive samplers, uncertainty rates are high since each sampler will behave as a different sample. In a different study, these rates may be better for MPPPO-BN. Table 3. Comparison of recovery studies of MPPPO-BN polymeric adsorbent (21) with commercial TenaX. 0.500 µg spike recovery amount (µg) and rates (%) EtiI mp- 0- Benzene Toluene Benzene Xylene Xylene Table 4. MPPPO-BN polymeric adsorbent (21) comparison with commercial TenaX after a four-week field study. Result (iig) Benzene Toluene BeEntzlen KrsîiilJe-n Ks(i)I-en The witness sample was collected from the field simultaneously with the collected samples. Other results; Unlike the witness, it includes the results of measurements obtained from passive samplers containing commercial and synthetic adsorbents collected from the field. Each witness sample is a separate sampler, and each sample is a separate sampler. All these samplers were conditioned under the same conditions at 340 °C, used in the field and analyzed at 320 °C. Since each sampler acts as an independent sample, the results obtained are acceptable within a certain tolerance range. According to the data in Table 3, the synthesized adsorbent (MPPPO-BN (21)) and the commercially available adsorbent showed an equivalent performance when evaluated in terms of desorption performance. In addition, the synthesized adsorbent and the commercially available adsorbent were used simultaneously in field studies, and when evaluated, they gave equivalent results (Table 4). When two adsorbents showing equivalent adsorbing capacity are compared, since the density of BN-doped MPPPO (21) is higher, it offers the opportunity to load less adsorbent into the passive sampler than the commercial TenaX. It provides an advantage in terms of cost effectiveness. Table 5. Performance values of MPPPO-BN polymeric adsorbent (21) 2 Thermal Cycle 20 Thermal Cycle 50 Thermal Cycle Spike Measured Back Measured Back Measured Back VOCs Conc. [19 [19 Gain pg Gain pg Gain It is related to the measurement uncertainty arising from the stage of performance of the adsorbent (MPPPO-BN (21)) as the number of thermal cycles to which the adsorbent used in the sampler is exposed increases for the selected VOC parameters. Approximately 50 thermal cycles show no significant changes. The changes seen in Table 5 show that, at the end of the analysis, the recovery rates are acceptable within the uncertainty of the analysis and the useful life of the adsorbent (MPPPO-BN (21)) continues. After the passive samplers containing the adsorbent are prepared, they are used in the conditioning and analysis stages (. The high number of thermal cycles, that is, the adsorbent is used a lot, affects the performance character of the adsorbent. Table 5 shows the performance change obtained in the long-term use of MPPPO-BN. As a result of the analyses, it is compared to commercial products. Comparatively, MPPPO-BN adsorbent (21) has the properties shown in Table 6. Table 6. Comparison of the characteristic features of the polymeric adsorbent (MPPPO-BN (21)) in the present invention with the commercial product Temperature Particle Surface v. Limit Affinity Size Area msec? The VOC range is between Çgmgsa' (°C) (mesh) (mzig) 9 '° Tenax ... PPPO +. Thermal stability of the adsorbent material was determined by thermogravimetric analysis (TGA). TGA results showed weight up to 400 °C in MPPPO-BN He has shown that he has no losses. He is determined. The polymer in granular form has high molecular weight and thermal stability. The density of MPPPO-BN polymeric adsorbent (21) is between 1.16 - 1.18 g/mL. The adsorbent has the ability to retain VOCs in the range of n-C4 - n-Cso at the µg level. Application of the Invention to Industry MPPPO-BN polymeric adsorbent (21), obtained by the method of the present invention, is a product that can be used in the determination of VOCs in indoor and outdoor air.TR TR TR

TR2022/009102A 2022-06-03 2022-06-03 PRODUCTION OF POLYMERIC ADSORBANS FOR PASSIVE SAMPLERS TR2022009102A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TR2022/009102A TR2022009102A2 (en) 2022-06-03 2022-06-03 PRODUCTION OF POLYMERIC ADSORBANS FOR PASSIVE SAMPLERS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2022/009102A TR2022009102A2 (en) 2022-06-03 2022-06-03 PRODUCTION OF POLYMERIC ADSORBANS FOR PASSIVE SAMPLERS

Publications (1)

Publication Number Publication Date
TR2022009102A2 true TR2022009102A2 (en) 2022-06-21

Family

ID=84046657

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2022/009102A TR2022009102A2 (en) 2022-06-03 2022-06-03 PRODUCTION OF POLYMERIC ADSORBANS FOR PASSIVE SAMPLERS

Country Status (1)

Country Link
TR (1) TR2022009102A2 (en)

Similar Documents

Publication Publication Date Title
Woellner et al. Adsorption and detection of hazardous trace gases by metal–organic frameworks
Vellingiri et al. Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions
Dettmer et al. Ambient air analysis of volatile organic compounds using adsorptive enrichment
ES2873886T3 (en) Carbon sorbents for nitrogen dioxide removal
JP2018512581A (en) Methods for active or passive sampling of particles and gas phase organic and non-organic components in a fluid stream
JP2017166947A (en) Gas detection device
US4249904A (en) Method and apparatus for extraction of airborne N-nitroso compounds without artifact formation
Jahangiri et al. Preparation of activated carbon from walnut shell and its utilization for manufacturing organic-vapour respirator cartridge
Westerholm et al. Some aspects of the distribution of polycyclic aromatic hydrocarbons (PAH) between particles and gas phase from diluted gasoline exhausts generated with the use of a dilution tunnel, and its validity for measurement in ambient air
US9308517B1 (en) Composite filtration media for removing broad spectrum toxic chemicals
TR2022009102A2 (en) PRODUCTION OF POLYMERIC ADSORBANS FOR PASSIVE SAMPLERS
CN112934180B (en) Glycine derivative-graphene oxide composite material and preparation method and application thereof
Mercury et al. Selective adsorption of 2, 3-DCDD and 1, 2, 3, 4-TCDD on* BEA, EMT, FAU and MFI-type zeolites as alternative adsorbents for on-line dioxin monitoring
Ghosh et al. Some insights into analytical bias involved in the application of grab sampling for volatile organic compounds: A case study against used Tedlar bags
EP4286045A1 (en) Synthesis of polymer adsorbent for passive air sampling
Harrison et al. Organolead compounds adsorbed upon atmospheric particulates: A minor component of urban air
Khan et al. Volatile organic compound analysis by sorbent tube-thermal desorption-gas chromatography: A review
Gui et al. Amine‐functionalization of multi‐walled carbon nanotubes for adsorption of carbon dioxide
KR101634653B1 (en) Adsorbent for concentration of gas analytes and manufacture method of the adsorbent, detecting method of gas analytes
KR20190131221A (en) Adsorbents for removing radioactive iodine compounds
KR101305963B1 (en) Method for manufacturing of harmful gas purifying filter
JP2005508496A (en) Selective filtration and concentration of neurotoxic gases
Azari et al. A new sampler and analysis method for BTEX in ambient air
TWI234654B (en) Filler containing active carbon for analysis of dioxin and the like
US20200129900A1 (en) Hybrid filter for high performance particle, vapor and molecular collection