TR2022005676A2 - Gas Flow Mechanics for Metal Printer with Direct Metal Laser Sintering Method - Google Patents

Gas Flow Mechanics for Metal Printer with Direct Metal Laser Sintering Method

Info

Publication number
TR2022005676A2
TR2022005676A2 TR2022/005676A TR2022005676A TR2022005676A2 TR 2022005676 A2 TR2022005676 A2 TR 2022005676A2 TR 2022/005676 A TR2022/005676 A TR 2022/005676A TR 2022005676 A TR2022005676 A TR 2022005676A TR 2022005676 A2 TR2022005676 A2 TR 2022005676A2
Authority
TR
Turkey
Prior art keywords
sintering machine
laser sintering
metal laser
feature
gas
Prior art date
Application number
TR2022/005676A
Other languages
Turkish (tr)
Inventor
Köseoğlu Cumhur
Tecer Hüseyi̇n
Özaydin Fati̇h
Original Assignee
Estas Eksantrik Sanayi Ve Ticaret Anonim Sirketi
Estaş Eksantri̇k Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Estas Eksantrik Sanayi Ve Ticaret Anonim Sirketi, Estaş Eksantri̇k Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ filed Critical Estas Eksantrik Sanayi Ve Ticaret Anonim Sirketi
Priority to TR2022/005676A priority Critical patent/TR2022005676A2/en
Publication of TR2022005676A2 publication Critical patent/TR2022005676A2/en
Priority to PCT/TR2022/051586 priority patent/WO2023195948A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • B22F10/322Process control of the atmosphere, e.g. composition or pressure in a building chamber of the gas flow, e.g. rate or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/70Gas flow means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Automation & Control Theory (AREA)
  • Powder Metallurgy (AREA)
  • Laser Beam Processing (AREA)

Abstract

Buluş, metalik toz katmanlarını eritmek ve birleştirmek için bilgisayar kontrollü, yüksek güçlü bir lazer ışını kullanan 3D baskı işlemi olan doğrudan metal lazer sinterleme makinesi olup; lazer lensinin ısı, is ve ortaya çıkan atık gazlardan zarar görmesini engellemek ve istenilen kalite ve şekilde ürün elde etmek üzere doğrudan metal lazer sinterleme makinesi (100) içerisindeki hava akışının türbülanssız bir şekilde gerçekleşmesini sağlayan yatay kanatlara (121) ve/veya dikey kanatlara (122) sahip en az bir adet kanatlı gaz girişi (120) ve/veya gazın türbülansını azaltmak ve laminer bir akış sağlamak üzere en az bir adet deliğe (141) sahip vakum girişi (140) içermesi ile karakterize edilmektedir.The invention is a direct metal laser sintering machine, a 3D printing process that uses a computer-controlled, high-power laser beam to melt and fuse layers of metallic powder; Horizontal blades (121) and/or vertical blades (122) that allow the air flow in the metal laser sintering machine (100) to occur directly in the metal laser sintering machine (100) in order to prevent the laser lens from being damaged by heat, soot and waste gases and to obtain the desired product in the desired quality and shape. and/or vacuum inlet 140 with at least one hole (141) to reduce the turbulence of the gas and provide a laminar flow.

Description

TARIFNAME Dogrudan Metal Lazer Sinterleme Yöntemli Metal Yazici Için Gaz Akis Mekanigi Teknik Alan Bulus, metalik toz katmanlarini eritmek ve birlestirmek için bilgisayar kontrollü, yüksek güçlü bir lazer isini kullanan 3D baski islemi olan dogrudan metal lazer sinterleme makinesi ve makinenin çalismasina iliskin yöntem ile ilgilidir. Önceki Teknik Metalik toz katmanlarini eritmek ve birlestirmek için bilgisayar kontrollü, yüksek güçlü bir lazer isini kullanan 3D baski islemine Dogrudan Metal Lazer Sinterleme- Direct Metal Laser Sintering (DMLS) ismi verilmektedir. DMLS makinesi metalik toz yatagina yönelik bir lazer ile her bir katmani sinterleyerek üç boyutlu baski yapmaktadir. Mevcut teknikte yer alan metal printer sistemlerinde makine içerisindeki hava akisi düzenli degildir. Akis düzenli olmadigi için proses esnasinda ölçü tutarsizliklari olmaktadir. Ayrica üretilen parçalarin mekanik özelliklerinde istenilen sonuçlari elde edememe ve optik sistemde arizalar meydana gelmektedir. Mevcut teknikte metal printer içerisine çesitli gazlar verilmektedir. Özellikler argon ve nitrojen gazlari kullanilmaktadir. Kullanilan gazlarin görevi özgül agirliklari havadan agir olduklari için ortamdaki oksijen ve yanmadan dolayi olusan isi uzaklastirmaktir. Ayrica inert gazlar ile titanyum vb. metallerin tepkimeye girmesini de engellenmekte ve prosesin saglikli bir sekilde tamamlanmasini saglanmaktadir. Bulusun Amaci Bulusun amaci, lazer lensinin zarar görmesini engellemek ve istenilen kalite ve sekilde ürün elde edilmesini saglayan dogrudan metal lazer sinterleme makinesi (100) elde etmektir. Bulusun bir diger amaci; içerisindeki hava akisinin türbülanssiz bir sekilde gerçeklestirilebildigi dogrudan metal lazer sinterleme makinesi (100) elde etmektedir. Bulusun bir diger amaci; isinin, isin ve ortaya çikan atik gazlarin lazer lensine ulasmasinin engellendigi bir dogrudan metal lazer sinterleme makinesi (100) elde etmektir. Bahsedilen amaçlari gerçeklestirmek üzere gelistirilen dogrudan metal lazer sinterleme makinesi (100); lazer lensinin zarar görmesini engellemek ve istenilen kalite ve sekilde ürün elde etmek üzere dogrudan metal lazer sinterleme makinesi (100) içerisindeki hava akisinin türbülanssiz bir sekilde gerçeklesmesi saglayan yatay kanatlara (121) ve/Veya dikey kanatlara (122) sahip en az bir adet kanatli gaz girisi (120) ve/Veya gazin türbülansini azaltmak ve laminer bir akis saglamak üzere elips formunda en az bir adet delige (141) sahip vakum girisi (140) içermektedir. Sekillerin Açiklamasi Ekte sunulan Sekil - 1 dogrudan metal lazer sinterleme makinesinin üstten perspektif görünümüdür. Sekil-2 dogrudan metal lazer sinterleme makinesinin yandan görünümüdür. Sekil-3 vakum girisinin detay görünümüdür. Sekil-4 dogrudan metal lazer sinterleme makinesinin önden görünümüdür. Sekil-5 kanatli gaz girisinin detay görünümüdür. Sekil-6 kanatli gaz girisinin A-A kesitinin detay görünümüdür. Sekil-7 dogrudan metal lazer sinterleme yönteminin is akis diyagramidir. Sekil-8 kapak tarafi gaZ girisinden inert gaZ verilmis olan dogrudan metal lazer sinterleme makinesinin içerisindeki gaZ akisinin simülasyonudur. Sekil-9 sol kanatli gaZ girisinden ineit gaZ verilmis olan dogrudan metal lazer sinterleme makinesinin içerisindeki gaZ akisinin simülasyonudur. Sekil-10 sag kanatli gaZ girisinden ineit gaZ verilmis olan dogrudan metal lazer sinterleme makinesinin içerisindeki gaZ akisinin simülasyonudur. Sekil-11 galvanometre tarafi gaZ girisinden ineit gaZ verilmis olan dogrudan metal lazer sinterleme makinesinin içerisindeki gaZ akisinin simülasyonudur. Sekillerde ifade edilen baslica parçalar asagida numara ve isim olarak verilmistir. (100) Dogrudan metal lazer sinterleme makinesi (110) Galvanometre tarafi gaZ girisi (120) Kanatli gaZ girisi (121) Yatay kanatlar (122) Dikey kanatlar (130) Kapak tarafi gaZ girisi (140) Vakum girisi (141) Delik Bulusun Detayli Açiklamasi Bulus, metalik toz katmanlarini eritmek ve birlestirmek için bilgisayar kontrollü, yüksek güçlü bir lazer isini kullanan 3D baski islemi olan dogrudan metal lazer sinterleme makinesi ve makinenin çalismasina iliskin yöntem ile ilgilidir. Bulus konusu dogrudan metal lazer sinterleme makinesi (100), dogrudan metal lazer sinterleme yöntemiyle üretim yapmaktadir. Bahsedilen üretim, istenen parçanin bir CAD (Computer Aided Design- Bilgisayar destekli Tasarim) programi ile tasariminin yapilmasi ve tezgah datasina kaydedilmesi ile baslamaktadir. Tasarim yapildiktan sonra üretilmesi istenen parçanin, paket program ile topoloji optimizasyonu yapilmaktadir. Topoloji optimizasyonu ile üretilmek istenen parça dilimlere ayrilmaktadir. Dilimlere ayrildiktan sonra dogrudan metal lazer sinterleme makinesinin (100) datasina "stl" formatinda kaydedilmektedir. "stl", üç boyutlu ve CAD yazilimina özgü bir dosya formatidir. Bulusun alternatif uygulamalarinda farkli formatlar kullanilabilmektedir. CAD programi ile tasarimi yapilan parçalarda lazerin göremedigi noktalar için topoloji optimizasyonu yapilmaktadir. Yani üretilmesi planlanan parça, program üzerinde katmanlara ve dilimlere ayrilmaktadir. Ayirma islemi sonucunda olusan hatlar veya hareket kotlari, dogrudan metal lazer sinterleme makinesi (100) üzerinde bulunan arayüz ile galvanometreye aktarilip hareket için komut beklenmektedir. Dogrudan metal lazer sinterleme makinesi (100) üzerinde bulunan siyirici (recoiter), toz besleme haznesinden tozlari alarak üretim alanina sermektedir. Üretim alanina serilen 15 ila 45 mikron boyutlarinda bulunan küresel tozlar, lazer ile ergitilmektedir. Ergitme islemi ile birlestirilme yapilmaktadir. Birlestirilme islemi en alt dilimden baslayip en üst dilime dogru yapilmaktadir. Dogrudan metal lazer sinterleme makinesi (100) içerisinde lazer ile ergitme islemi sirasinda is ve isi olusmaktadir. Ergitme isleminin daha iyi olmasi için, ortamda olusan isin, isinin ve ortamda bulunan oksijenin dogrudan metal lazer sinterleme makinesi (100) içerisinden uzaklastirilmasi gerekmektedir. Bahsedilen is, isi ve oksijenin uzaklastirilmasi islemi için, dogrudan metal lazer sinterleme makinesi (100) içerisinde, üretilecek malzemenin türüne göre ineit gazlar kullanilmaktadir. Örnegin; titanyumda argon, kobalt, krom kullanilirken paslanmaz çelikte helyum gibi gazlar kullanilmaktadir. Dogrudan metal lazer sinterleme makinesi (100) içerisindeki basinç 10 milibar ve gaz akis hizi 2 metre/sn. olarak ayarlanip bir vakum pompasi ile proses kabininin havasi sürekli sirküle edilmektedir. Ayrica üretim yapilan tabla sicakliginin maksimum 200 derece, ortamda bulunan oksijen ve nem miktarinin 10ppm olmasi gerekmektedir. Ortam basinci, isi, is, nem ve oksijen miktarlari ineit gaz yönetim sistemi ve bu sisteme bagli vakum pompasi tarafindan ayarlanmaktadir. Ayrica üzerinde bulunan oksijen, nem ve isi sensörleri ile takibi saglanmaktadir. Bulus konusu dogrudan metal lazer sinterleme makinesi (100) içerisindeki hava akisinin türbülanssiz olmasi gerekmektedir. Bahsedilen dogrudan metal lazer sinterleme makinesi (100) içerisinde türbülans oldugunda, ergitme islemi esnasinda olusan is, lazer lensine ulasabilmektedir. Is, lazer lensine ulastiginda, bahsedilen lazer lensine zarar vermekte ve üretilen ürünün istenilen kalite ve sekilde olmasini engellemektedir. Yukarida bahsedilen türbülansin engellenmesi için dogrudan metal lazer sinterleme makinesi (100) üzerine galvanometre tarafi gaz girisi (110), kanatli gaz girisi (120), kapak tarafi gaz girisi (130) ve vakum girisi (140) konumlandirilmistir. Galvanometre tarafi gaz girisi (110), islem esnasinda olusan isin optik cam üzerine yapismasini önleyerek temiz kalmasini saglamaktadir. Kanatli gaz girisi (120), belirli açilarda yerlestirilmis kanatçiklar içermektedir. Belirli açilarda yerlestirilen kanatçiklar sayesinde laminer akis saglanmaktadir. Laminer akis ile dogrudan metal lazer sinterleme makinesi (100) içerisindeki akisin türbülanssiz bir sekilde gerçeklesmesi saglanarak isinin ve ortaya çikan atik gazlarin lazer lensine ulasmasi engellenmektedir. Kanatli gaz girisi (120), yatay kanatlar (121) ve/Veya dikey kanatlar (122) içermektedir. Bahsedilen yatay kanatlar (121) (x açisina sahiptir. Bulusun tercih edilen uygulamasinda (x açisi 5 derecedir. Bulusun alternatif uygulamalarinda (x açisi, 1 - 20 derece araliginda degisebilmektedir. Dikey kanatlar (122), [3 açisina sahiptir. Bulusun tercih edilen uygulamasinda ß açisi 20 derecedir. Bulusun alternatif ß açisi, 10-40 derece araliginda degisebilmektedir. Kanatli gaz girisi (120) sayesinde, laminer bir ineit gaz akisi saglanmaktadir. Kapak tarafi gaz girisi (130), ineit gazin giris yaptigi bölümdür. Bahsedilen kapak tarafi gaz girisi (130), ineit gazin is parçasi üzerinde kalkan olusturmasini saglamaktadir. Vakum girisi (140), elips seklinde deliklere (141) sahiptir. Bahsedilen vakum girisi (140), ineit gazin ve metal lazer sinterleme makinesi (100) içerisindeki isin tahliyesini saglamaktadir. Deligin (141), elipstik geometrisi sayesinde gazin türbülansini azaltmakta ve laminer bir akis saglamaktadir. Vakum girisi (140), elips formunda 33 adet 3 tip delikten (141) olusmaktadir. Tüm sistemin gaz giris ve çikislari inert gaz yönetim sistemi ve bu sisteme bagli vakum motoru tarafindan ayarlanmakta ve üzerinde bulunan oksijen, nem ve isi sensörleri ile takibi saglanmaktadir. Oksijen, nem ve isi sensörleri, ineit gaz yönetim sistemi ile entegre olarak çalismaktadir. Bulusun alternatif uygulamalarinda vakum girisinin (140) formu ve delik (141) sayilari degisebilmektedir. Elips vakum delikleri (141), 3 sira ve tipten olusmaktadir. Elips vakum deliklerinin (141) kesit alanlari asagidan yukariya dogru azalmaktadir. Buna bagli olarak akiskanin hizi da formül -1 de gösterildigi gibi ters orantili sekilde artmaktadir. Elipstik form, gazlarin daha hizli ortamdan uzaklasmasini saglamaktadir. vm: boru içinde ortalama akiskan hiz: (mis) v : radyzi] mesafeye bagli hiz Unit:) A : horunun kesit alani mi:) Formül- 1 Boru içindeki akiskanin hiz formülü Bulus konusu dogrudan metal lazer sinterleme makinesi (100) uzaktan ag baglantisi ile çalisabilmektedir. Bu sayede CAD programlarin ile hazirlanan tasarim, uzaktan ag baglantisi ile dogrudan metal lazer sinterleme makinesine (100) aktarilabilmektedir. Galvanometre, 150 mm çapinda olan bir çemberin içindeki lazeri hareket ettirmektedir. Galvanometre sayesinde hareket eden lazer istenilen sekillerde metal tozlarini eriterek hareket etmektedir. Bahsedilen hareket dilim ve katman sayisiyla iliskili olarak döngü halinde devam etmektedir. Islem tamamlandiginda içerideki oitam ile disaridaki ortam dengeye gelene kadar beklenmekte ve is parçasi cihazdan alinmaktadir. Bulus konusu dogrudan metal lazer sinterleme makinesi (100) asagidaki sekilde çalismaktadir. Tasarimin katmanlara ayrilmasi, Katmanlara ayrilmis tasarimin dogrudan metal lazer sinterleme makine (100) datasina aktarilmasi, Lazer gücü, lazer hizi, yapinin olusacagi plakanin sicakligi, malzeme bilgisi, parametrelerinin dogrudan metal lazer sinterleme makinesi (100) sistemine girilmesi, Toz besleme haznesine tozun doldurulmasi, Dogrudan metal lazer sinterleme makinesinin (100) kapaginin kapatilmasi, Baslat dügmesine basilmasi, Dogrudan metal lazer sinterleme makinesi (100) içerisinden oksijenin ve nemin vakumlanmasi (02<10ppm), Dogrudan metal lazer sinterleme makinesine (100), galvanometre tarafi gaz girisi (110), kanatli gaz girisi (120) ve kapak tarafi gaz girisi (130) üzerinden ineit gazin gönderilmesi (Basinç 10mbar olacak sekilde sürekli sirküle edilmesi), Lazer yollarinin dogrudan metal lazer sinterleme makinesi (100) datasindan galvanometre datasina iletilmesi, Siyirici (recorter) ile toz besleme alanindan metal tozun yapi tablasina sürüklenmesi, Lazerin tetiklenmesi, Galvanometre tarafindan lazerin yönlendirilmesi, Toz metallerinin ergitilmesi, Üretimin, dilimlere ayrilan tasarimin dilim sayisi kadar devam etmesi, Sekil-89te yer alan simülasyon, inert gazlarin sirkülasyon sirasinda akisin durumunu göstermektedir. Sol kisimda bulunan grafik ise gaz moleküllerinin anlik hizini ifade etmektedir. Simülasyonda ortam basinci = P: 10 mbar ve ortam sicakligi T225°C olarak girilmistir. Kapak tarafi gaz girisinden (130) 2m/ sn hizla gönderilmis ve karsi tarafinda bulunan elipstik formundaki vakum girisinden (140) 2m/ sn hiziyla gaz vakumlanmistir. Sekil-9 ve Sekil-109de yer alan simülasyon, inert gazlarin sirkülasyon sirasinda akisin durumunu göstermektedir. Sol kisimda bulunan grafik, gaz moleküllerinin anlik hizini ifade etmektedir. Sekil 6,da sol tarafta bulunan kanatli gaz girisinden (120) 2m/ sn hizla gönderilmis ve karsi tarafinda bulunan elipstik formundaki vakum girisinden (140) 2m/ sn hiziyla vakumlanmistir. Sekil 7,de ise sag tarafta bulunan kanatli gaz girisinden (120) 2m/sn hizla gönderilmis ve karsi tarafinda bulunan elipstik formundaki vakum girisinden (140) V2:2m/ sn hiziyla vakumlanmistir. Sekil-llade yer alan simülasyon, ineit gazlarin sirkülasyon sirasinda akisin durumunu göstermektedir. Sol kisimda bulunan grafik, gaz moleküllerinin anlik hizini ifade etmektedir. Simülasyonda ortam basinci P:10 mbar ve ortam sicakligi T225°C olarak girilmistir. Galvanometre tarafi gaz giris (110) deliklerinden 2m/sn hizla gönderilmis ve karsi tarafinda bulunan elipstik formundaki vakum girisinden (140) 2m/sn hiziyla vakumlanmistir. Bulus, metalik toz katmanlarini eritmek ve birlestirmek için bilgisayar kontrollü, yüksek güçlü bir lazer isini kullanan 3D baski islemi olan dogrudan metal lazer sinterleme makinesi (100) olup; lazer lensinin zarar görmesini engellemek ve istenilen kalite ve sekilde ürün elde etmek üzere dogrudan metal lazer sinterleme makinesi (100) içerisindeki hava akisinin türbülanssiz bir sekilde gerçeklesmesi saglayan yatay kanatlara (121) ve/Veya dikey kanatlara (122) sahip en az bir adet kanatli gaz girisi (120) ve/Veya gazin türbülansini azaltmak ve laminer bir akis saglamak üzere elips formunda en az bir adet delige (141) sahip vakum girisi (140) içermesi ile karakterize edilmektedir. TR TR TR TR TR TR DESCRIPTION Gas Flow Mechanics for a Metal Printer with Direct Metal Laser Sintering Method Technical Field The invention relates to a direct metal laser sintering machine, which is a 3D printing process that uses a computer-controlled, high-power laser beam to melt and combine layers of metallic powder, and the method of operation of the machine. Prior Art The 3D printing process that uses a computer-controlled, high-power laser beam to melt and combine layers of metallic powder is called Direct Metal Laser Sintering (DMLS). The DMLS machine performs three-dimensional printing by sintering each layer with a laser aimed at the metallic powder bed. In current state-of-the-art metal printer systems, the air flow inside the machine is not regular. Since the flow is not regular, measurement inconsistencies occur during the process. In addition, the mechanical properties of the produced parts fail to achieve the desired results and malfunctions occur in the optical system. In the current technique, various gases are introduced into the metal printer. Features argon and nitrogen gases are used. The duty of the gases used is to remove the oxygen in the environment and the heat resulting from combustion, since their specific gravity is heavier than air. Also, inert gases and titanium etc. It also prevents metals from reacting and ensures that the process is completed in a healthy way. Purpose of the Invention The purpose of the invention is to obtain a direct metal laser sintering machine (100) that prevents damage to the laser lens and provides products with the desired quality and shape. Another purpose of the invention is; It obtains a direct metal laser sintering machine (100) in which the air flow can be achieved without turbulence. Another purpose of the invention is; The aim is to obtain a direct metal laser sintering machine (100) in which the heat, light and the resulting waste gases are prevented from reaching the laser lens. Direct metal laser sintering machine (100) developed to achieve the mentioned purposes; In order to prevent damage to the laser lens and to obtain products of the desired quality and shape, at least one winged gas valve with horizontal wings (121) and/or vertical wings (122) ensures that the air flow within the metal laser sintering machine (100) occurs in a non-turbulent manner. It contains an inlet (120) and/or a vacuum inlet (140) with at least one hole (141) in elliptical shape to reduce the turbulence of the gas and provide a laminar flow. Explanation of the Figures The attached Figure 1 is the top perspective view of the direct metal laser sintering machine. Figure-2 is the side view of the direct metal laser sintering machine. Figure-3 is the detail view of the vacuum inlet. Figure-4 is the front view of the direct metal laser sintering machine. Figure-5 is the detail view of the winged gas inlet. Figure-6 is the detail view of the A-A section of the finned gas inlet. Figure-7 is the workflow diagram of the direct metal laser sintering method. Figure-8 is the simulation of the gas flow inside the metal laser sintering machine, where inert gas is supplied from the cover side gas inlet. Figure-9 is the simulation of the gas flow inside the direct metal laser sintering machine, where inert gas is supplied from the left wing gas inlet. Figure-10 is the simulation of the gas flow inside the direct metal laser sintering machine, where inert gas is supplied from the right wing gas inlet. Figure-11 is the simulation of the gas flow inside the metal laser sintering machine, where ineit gas is supplied from the gas inlet on the galvanometer side. The main parts expressed in the figures are given below as numbers and names. (100) Direct metal laser sintering machine (110) Galvanometer side gas inlet (120) Finned gas inlet (121) Horizontal wings (122) Vertical wings (130) Cover side gas inlet (140) Vacuum inlet (141) Hole Detailed Explanation of the Invention The invention relates to a direct metal laser sintering machine, which is a 3D printing process that uses a computer-controlled, high-power laser beam to melt and combine layers of metallic powder, and to the method of operation of the machine. The direct metal laser sintering machine (100), which is the subject of the invention, produces by the direct metal laser sintering method. The production in question begins with designing the desired part with a CAD (Computer Aided Design) program and recording it in the machine data. After the design is made, the topology optimization of the part to be produced is done with the package program. With topology optimization, the part to be produced is divided into slices. After being cut into slices, it is recorded directly to the data of the metal laser sintering machine (100) in "stl" format. "stl" is a three-dimensional file format specific to CAD software. Different formats can be used in alternative applications of the invention. Topology optimization is performed for the points that the laser cannot see in the parts designed with the CAD program. In other words, the part planned to be produced is divided into layers and slices on the program. The lines or movement levels formed as a result of the separation process are transferred directly to the galvanometer through the interface on the metal laser sintering machine (100) and the command for movement is waited. The scraper (recoiter) located directly on the metal laser sintering machine (100) takes the powder from the powder feeding chamber and spreads it to the production area. Spherical powders with dimensions of 15 to 45 microns laid in the production area are melted with a laser. Combining is done by melting process. The merging process starts from the bottom slice and works towards the top slice. During the laser melting process, work and heat are generated directly in the metal laser sintering machine (100). In order for the melting process to be better, the heat, heat and oxygen in the environment must be removed directly from the metal laser sintering machine (100). For the mentioned process of removing heat and oxygen, ineid gases are used directly in the metal laser sintering machine (100), depending on the type of material to be produced. For example; While argon, cobalt and chromium are used in titanium, gases such as helium are used in stainless steel. The pressure in the direct metal laser sintering machine (100) is 10 millibars and the gas flow rate is 2 meters/sec. It is set to , and the air of the process cabin is constantly circulated with a vacuum pump. In addition, the temperature of the production tray must be a maximum of 200 degrees and the amount of oxygen and humidity in the environment must be 10ppm. Ambient pressure, temperature, heat, humidity and oxygen amounts are adjusted by the ineit gas management system and the vacuum pump connected to this system. In addition, it is monitored with the oxygen, humidity and temperature sensors on it. The air flow in the direct metal laser sintering machine (100) which is the subject of the invention must be non-turbulent. When there is turbulence in the said direct metal laser sintering machine (100), the work generated during the melting process can reach the laser lens. When the heat reaches the laser lens, it damages the said laser lens and prevents the produced product from being of the desired quality and shape. In order to prevent the turbulence mentioned above, the galvanometer side gas inlet (110), finned gas inlet (120), cover side gas inlet (130) and vacuum inlet (140) are positioned directly on the metal laser sintering machine (100). The gas inlet (110) on the galvanometer side prevents the light generated during the process from sticking to the optical glass and keeps it clean. The finned gas inlet (120) contains fins placed at certain angles. Laminar flow is achieved thanks to the fins placed at certain angles. With laminar flow, the flow directly within the metal laser sintering machine (100) is ensured without turbulence, thus preventing the heat and the resulting waste gases from reaching the laser lens. The finned gas inlet (120) includes horizontal wings (121) and/or vertical wings (122). The mentioned horizontal wings (121) have an angle of The ß angle of the invention can vary between 10-40 degrees. Thanks to the finned gas inlet (120), a laminar inert gas flow is provided. The cover side gas inlet (130) is the section where the inert gas enters. The inlet (130) enables the ineid gas to form a shield on the work piece. The vacuum inlet (140) has elliptical holes (141). Thanks to the elliptical geometry of the hole (141), it reduces the turbulence of the gas and provides a laminar flow. The vacuum inlet (140) consists of 33 holes (141) in elliptical form. The gas inlets and outlets of the entire system are adjusted by the inert gas management system and the vacuum engine connected to this system, and are monitored by the oxygen, humidity and temperature sensors on it. Oxygen, humidity and temperature sensors work integrated with the ineit gas management system. In alternative embodiments of the invention, the form of the vacuum inlet (140) and the number of holes (141) may change. Ellipse vacuum holes (141) consist of 3 rows and types. The cross-sectional areas of the ellipse vacuum holes (141) decrease from bottom to top. Accordingly, the speed of the fluid increases inversely as shown in formula -1. The elliptical form allows gases to move away from the environment faster. vm: average fluid velocity in the pipe: (mis) v: radius] speed depending on distance Unit:) A: cross-sectional area of the pipe mi:) Formula- 1 Velocity formula of the fluid in the pipe Remote network connection of the direct metal laser sintering machine (100) that is the subject of the invention It can work with . In this way, the design prepared with CAD programs can be transferred directly to the metal laser sintering machine (100) via remote network connection. The galvanometer moves the laser inside a circle with a diameter of 150 mm. The laser, which moves thanks to the galvanometer, moves by melting metal powders in the desired shapes. The mentioned movement continues in a cycle depending on the number of slices and layers. When the process is completed, it is waited until the environment inside and the environment outside come into balance and the workpiece is taken from the device. The direct metal laser sintering machine (100) that is the subject of the invention operates as follows. Separating the design into layers, Transferring the layered design directly to the metal laser sintering machine (100) data, Entering laser power, laser speed, temperature of the plate where the structure will be formed, material information, parameters directly into the metal laser sintering machine (100) system, Filling the powder into the powder feeding chamber, Closing the lid of the direct metal laser sintering machine (100), pressing the start button, vacuuming of oxygen and moisture from the direct metal laser sintering machine (100) (02<10ppm), gas inlet (110) on the galvanometer side directly into the metal laser sintering machine (100). , Sending ineid gas through the finned gas inlet (120) and cover side gas inlet (130) (Continuously circulating the pressure to 10mbar), Transmitting laser paths directly from the metal laser sintering machine (100) data to the galvanometer data, Powder with a scraper (recorter). Dragging the metal powder from the feeding area to the build table, Triggering the laser, Directing the laser by the galvanometer, Melting the powder metals, Continuing the production as long as the number of slices of the design divided into slices. The simulation in Figure 89 shows the flow status during the circulation of inert gases. The graph on the left expresses the instantaneous speed of gas molecules. In the simulation, ambient pressure = P: 10 mbar and ambient temperature was entered as T225°C. The gas was sent through the cover side gas inlet (130) at a speed of 2m/sec, and the gas was vacuumed at a speed of 2m/sec through the elliptical vacuum inlet (140) on the opposite side. The simulation in Figure-9 and Figure-109 shows the flow situation during the circulation of inert gases. The graph on the left expresses the instantaneous speed of gas molecules. In Figure 6, it was sent at a speed of 2m/sec through the finned gas inlet (120) on the left side, and was vacuumed at a speed of 2m/sec through the elliptical vacuum inlet (140) on the opposite side. In Figure 7, it was sent at a speed of 2m/sec through the finned gas inlet (120) on the right side, and was vacuumed at a speed of V2:2m/sec through the elliptical vacuum inlet (140) on the opposite side. The simulation in Figure 1 shows the flow situation during the circulation of inert gases. The graph on the left expresses the instantaneous speed of gas molecules. In the simulation, ambient pressure was entered as P:10 mbar and ambient temperature was entered as T225°C. It was sent through the gas inlet (110) holes on the galvanometer side at a speed of 2m/sec and was vacuumed at a speed of 2m/sec through the elliptical vacuum inlet (140) on the opposite side. The invention is a direct metal laser sintering machine (100), which is a 3D printing process that uses a computer-controlled, high-power laser beam to melt and combine layers of metallic powder; In order to prevent damage to the laser lens and to obtain products of the desired quality and shape, at least one winged gas valve with horizontal wings (121) and/or vertical wings (122) ensures that the air flow within the metal laser sintering machine (100) occurs in a non-turbulent manner. It is characterized by containing an inlet (120) and/or a vacuum inlet (140) with at least one hole (141) in elliptical shape to reduce the turbulence of the gas and provide a laminar flow. TR TR TR TR TR TR

Claims (1)

1.ISTEMLER . Bulus, metalik toz katmanlarini eritmek ve birlestirmek için bilgisayar kontrollü, yüksek güçlü bir lazer isini kullanan 3D baski islemi olan dogrudan metal lazer sinterleme makinesi olup özelligi; lazer lensinin isi, is ve ortaya çikan atik gazlardan zarar görmesini engellemek ve istenilen kalite ve sekilde ürün elde etmek üzere dogrudan metal lazer sinterleme makinesi (100) içerisindeki hava akisinin türbülanssiz bir sekilde gerçeklesmesini saglayan - yatay kanatlara (121) ve/Veya dikey kanatlara (122) sahip en az bir adet kanatli gaz girisi (120) ve/Veya - gazin türbülansini azaltmak ve laminer bir akis saglamak üzere en az bir adet delige (141) sahip vakum girisi (140) içermesidir. . Istem 1,de bahsedilen vakum girisi (140) olup özelligi; gazlarin daha hizli ortamdan uzaklasmasini saglamak amaciyla kesit alanlari asagidan yukariya dogru azalan elips formunda delik (141) içermesidir. . Istem 2,de bahsedilen delik (141) olup özelligi; üç sira ve tipten olusmasidir. . Istem 1,de bahsedilen yatay kanat (121) olup özelligi; (x açisina sahip olmasidir. . Istem 4,te bahsedilen (x açisi olup özelligi; 1-20 derece araliginda olmasidir. . Istem 4,te bahsedilen (x açisi olup özelligi; bulusun tercih edilen uygulamasinda 5 derece olmasidir. . Istem 1,de bahsedilen dikey kanat (122) olup özelligi; ß açisina sahip olmasidir. . Istem 7,de bahsedilen ß açisi olup özelligi; 10-40 derece araliginda olmasidir. . Istem 7,de bahsedilen ß açisi olup özelligi; bulusun tercih edilen uygulamasinda 20 derece olmasidir. Istem 1,de bahsedilen dogrudan metal lazer sinterleme makinesi (100) olup özelligi; islem esnasinda olusan isin optik cam üzerine yapismasini önleyerek temiz kalmasini saglayan galvanometre tarafi gaz girisi (110) içermesidir. . Istem 1 ,de bahsedilen dogrudan metal lazer sinterleme makinesi (100) olup özelligi; ineit gazin is parçasi üzerinde kalkan olusturmasini saglayan kapak tarafi gaz girisi (130) içermesidir. Istem 1,de bahsedilen dogrudan metal lazer sinterleme makinesi (100) olup özelligi; tüm sistemin gaz giris ve çikislarini kontrol eden ineit gaz yönetim sistemi ve bahsedilen inert gaz yönetim sistemine bagli olarak çalisan vakum motoru içermesidir. Istem 1 ,de bahsedilen dogrudan metal lazer sinterleme makinesi (100) olup özelligi; iç ortamda bulunan oksijen, nem ve isiyi algilayan ve ineit gaz yönetim sistemi ile entegre olarak çalisan oksijen ve/Veya nem ve/Veya isi sensörü içermesidir. Bulus, metalik toz katmanlarini eritmek ve birlestirmek için bilgisayar kontrollü, yüksek güçlü bir lazer isini kullanan 3D baski islemi olan dogrudan metal lazer sinterleme makinesinin (100) çalisma yöntemi olup özelligi; - Tasarimin katmanlara ayrilmasi, - Katmanlara ayrilmis tasarimin dogrudan metal lazer sinterleme makine (100) datasina aktarilmasi, - Lazer gücü, lazer hizi, yapinin olusacagi plakanin sicakligi, malzeme bilgisi, parametrelerinin dogrudan metal lazer sinterleme makinesi (100) sistemine girilmesi, - Toz besleme haznesine tozun doldurulmasi, - Dogrudan metal lazer sinterleme makinesinin (100) kapaginin kapatilmasi, - Baslat dügmesine basilmasi, - Dogrudan metal lazer sinterleme makinesi (100) içerisinden oksijenin ve nemin vakumlanmasi (02<10ppm), Dogrudan metal lazer sinterleme makinesine (100), galvanometre tarafi gaZ girisi (110), kanatli gaZ girisi (120) ve kapak tarafi gaZ girisi (130) üzerinden inert gazin gönderilmesi (Basinç 10mbar olacak sekilde sürekli sirküle edilmesi), Lazer yollarinin dogrudan metal lazer sinterleme makinesi (100) datasindan galvanometre datasina iletilmesi, Siyirici (recoiter) ile toz besleme alanindan metal tozun yapi tablasina sürüklenmesi, Lazerin tetiklenmesi, Galvanometre tarafindan lazerin yönlendirilmesi, Toz metallerinin ergitilmesi, Üretimin, dilimlere ayrilan tasarimin dilim sayisi kadar devam etmesi, TR TR TR TR TR TR1.CLAIMS. The invention is a direct metal laser sintering machine, which is a 3D printing process that uses a computer-controlled, high-power laser beam to melt and combine layers of metallic powder. In order to prevent the laser lens from being damaged by heat, work and the resulting waste gases and to obtain the product in the desired quality and shape, it has horizontal wings (121) and/or vertical wings (which enable the air flow directly within the metal laser sintering machine (100) to occur in a non-turbulent way). 122) and/or a vacuum inlet (140) with at least one hole (141) to reduce the turbulence of the gas and provide a laminar flow. . It is the vacuum inlet (140) mentioned in Request 1 and its feature is; It contains an ellipse-shaped hole (141) with cross-sectional areas decreasing from bottom to top in order to enable the gases to move away from the environment faster. . It is the hole (141) mentioned in claim 2 and its feature is; It consists of three rows and types. . It is the horizontal wing (121) mentioned in claim 1 and its feature is; It is the x angle mentioned in claim 4 and its feature is that it is in the range of 1-20 degrees. . It is the x angle mentioned in claim 4 and its feature is that it is 5 degrees in the preferred application of the invention. . In claim 1 It is the vertical wing (122) and its feature is; it is the ß angle mentioned in Claim 7 and is in the range of 10-40 degrees. It is the direct metal laser sintering machine (100) mentioned in claim 1, and its feature is that it contains a gas inlet (110) on the galvanometer side, which prevents the light generated during the process from sticking to the optical glass. 100) and its feature is; It is the direct metal laser sintering machine (100) mentioned in Claim 1 and has an ineit gas management system that controls the gas inlets and outlets of the entire system. and it contains a vacuum engine that works connected to the said inert gas management system. It is the direct metal laser sintering machine (100) mentioned in claim 1 and its feature is; It contains an oxygen and/or humidity and/or temperature sensor that detects the oxygen, humidity and heat in the indoor environment and works integrated with the ineit gas management system. The invention is the working method of the direct metal laser sintering machine (100), which is a 3D printing process that uses a computer-controlled, high-power laser beam to melt and combine metallic powder layers, and its feature is; - Separating the design into layers, - Transferring the layered design directly to the metal laser sintering machine (100) data, - Entering laser power, laser speed, temperature of the plate where the structure will be formed, material information, parameters directly into the metal laser sintering machine (100) system, - Powder feeding Filling the powder into the chamber, - Closing the lid of the direct metal laser sintering machine (100), - Pressing the start button, - Vacuuming oxygen and moisture from the direct metal laser sintering machine (100) (02<10ppm), Directly into the metal laser sintering machine (100), Sending inert gas through the galvanometer side gas inlet (110), finned gas inlet (120) and cover side gas inlet (130) (Continuous circulation so that the pressure is 10 mbar), Transmitting laser paths directly from the metal laser sintering machine (100) data to the galvanometer data. , Dragging the metal powder from the powder feeding area to the build table with the scraper (recoiter), Triggering the laser, Directing the laser by the galvanometer, Melting the powder metals, Continuing the production as long as the number of slices of the design divided into slices, TR TR TR TR TR TR
TR2022/005676A 2022-04-08 2022-04-08 Gas Flow Mechanics for Metal Printer with Direct Metal Laser Sintering Method TR2022005676A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TR2022/005676A TR2022005676A2 (en) 2022-04-08 2022-04-08 Gas Flow Mechanics for Metal Printer with Direct Metal Laser Sintering Method
PCT/TR2022/051586 WO2023195948A1 (en) 2022-04-08 2022-12-23 Gas flow mechanics for metal printer with direct metal laser sintering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2022/005676A TR2022005676A2 (en) 2022-04-08 2022-04-08 Gas Flow Mechanics for Metal Printer with Direct Metal Laser Sintering Method

Publications (1)

Publication Number Publication Date
TR2022005676A2 true TR2022005676A2 (en) 2022-06-21

Family

ID=84046692

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2022/005676A TR2022005676A2 (en) 2022-04-08 2022-04-08 Gas Flow Mechanics for Metal Printer with Direct Metal Laser Sintering Method

Country Status (2)

Country Link
TR (1) TR2022005676A2 (en)
WO (1) WO2023195948A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU9065991A (en) * 1990-11-09 1992-06-11 Dtm Corporation Controlled gas flow for selective laser sintering
EP3147047B1 (en) * 2015-09-25 2023-08-02 SLM Solutions Group AG Apparatus for producing a three-dimensional workpiece with improved gas flow and manufacturing method of a three-dimensional workpiece
US10661341B2 (en) * 2016-11-07 2020-05-26 Velo3D, Inc. Gas flow in three-dimensional printing

Also Published As

Publication number Publication date
WO2023195948A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
Grasso et al. Process defects and in situ monitoring methods in metal powder bed fusion: a review
CN110114203B (en) Method for process control in additive manufacturing
US11090728B2 (en) Apparatus for additive manufacturing and method of additive manufacturing
US10232439B2 (en) Gas flow monitoring in additive manufacturing
Roy et al. Prediction and experimental validation of part thermal history in the fused filament fabrication additive manufacturing process
JP2021091971A (en) Apparatus for producing object by means of additive manufacturing
Vlasea et al. Development of powder bed fusion additive manufacturing test bed for enhanced real-time process control
Kleszczynski et al. Improving process stability of laser beam melting systems
US20200254691A1 (en) Powder reclamation and cleaning system for an additive manufacturing machine
KR20150129711A (en) Autofocus systems and methods for particle analysis in blood samples
CN108838397B (en) Laser additive manufacturing online monitoring method
CN114140376A (en) System and method for generating a single observation image for analyzing coating defects
Barrett et al. Low cost, high speed stereovision for spatter tracking in laser powder bed fusion
CN110281526A (en) Increasing material manufacturing method
CN109477580A (en) Flux suppressor and its manufacturing method
Tenner et al. Experimental approach for quantification of fluid dynamics in laser metal welding
CN113172240A (en) 3D printing system and method based on selective laser melting
TR2022005676A2 (en) Gas Flow Mechanics for Metal Printer with Direct Metal Laser Sintering Method
Jafari et al. An investigation of porous structure characteristics of heat pipes made by additive manufacturing
US20230104090A1 (en) Devices, systems, and methods for monitoring a powder layer in additive manufacturing processes
Le et al. A study on the influence of scanning strategies on the levelness of the melt track in selective laser melting process of stainless steel powder
Kim et al. High-throughput directed energy deposition process with an optimized scanning nozzle
Thanki et al. Melt pool feature analysis using a high-speed coaxial monitoring system for laser powder bed fusion of Ti-6Al-4 V grade 23
JP7485865B2 (en) Analysis system and method for metal powder jets - Patents.com
EP3964813B1 (en) Systems and methods for automatic detection of coating defects