TR2022004472A2 - TUNNEL BRACKET AND PRODUCTION METHOD - Google Patents

TUNNEL BRACKET AND PRODUCTION METHOD

Info

Publication number
TR2022004472A2
TR2022004472A2 TR2022/004472A TR2022004472A TR2022004472A2 TR 2022004472 A2 TR2022004472 A2 TR 2022004472A2 TR 2022/004472 A TR2022/004472 A TR 2022/004472A TR 2022004472 A TR2022004472 A TR 2022004472A TR 2022004472 A2 TR2022004472 A2 TR 2022004472A2
Authority
TR
Turkey
Prior art keywords
preform
tunnel bracket
tunnel
shell structure
production method
Prior art date
Application number
TR2022/004472A
Other languages
Turkish (tr)
Inventor
Şeyranli Yi̇ği̇t
Baş Çep Emi̇ne
Yildiz Faruk
Aksu Aşkin
Original Assignee
Plascam Plastik Oto Cam Sanayi Ve Ticaret Anonim Sirketi
Plascam Plasti̇k Oto Cam Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plascam Plastik Oto Cam Sanayi Ve Ticaret Anonim Sirketi, Plascam Plasti̇k Oto Cam Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ filed Critical Plascam Plastik Oto Cam Sanayi Ve Ticaret Anonim Sirketi
Priority to TR2022/004472A priority Critical patent/TR2022004472A2/en
Publication of TR2022004472A2 publication Critical patent/TR2022004472A2/en
Priority to PCT/TR2023/050324 priority patent/WO2023182967A2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/20Floors or bottom sub-units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/22Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
    • B29C70/222Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure the structure being shaped to form a three dimensional configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/04Superstructures, understructures, or sub-units thereof, characterised by the material thereof predominantly of synthetic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials

Abstract

Buluş otomotiv sektöründe kullanılmak üzere araç alt kısmında taban sacına monte edilen araca etki eden çarpma kuvveti altında plastik şekil değişimine uğramak suretiyle aracın ayrılmamasına, bükülmemesine destek olması ve enerji sönümlemesi sağlayan tünel braket ve üretim yöntemi olup, Metal malzemeden üretilen ve yüksek ağırlığa sahip tünel braketlerin yerine üretilen aynı mekanik özellikleri sahip olmasına karşın daha düşük ağırlığa sahip, düşük yalıt tüketimi sağlayan geri dönüştürülebilir ve düşük ağırlığa sahip tünel braket ile ilgilidir.The invention is a tunnel bracket and production method, which is mounted on the floor sheet at the bottom of the vehicle to be used in the automotive industry, and is a tunnel bracket and production method that helps the vehicle not to separate or bend by undergoing plastic deformation under the impact force, and provides energy absorption. It is related to the recyclable and low weight tunnel bracket, which has the same mechanical properties as produced, but has a lower weight, provides low insulation consumption.

Description

TARIFNAME TEKNIK ALAN Bulus otomotiv sektöründe kullanilmak üzere araç alt kisminda taban sacina monte edilen araca etki eden çarpma kuvveti altinda plastik sekil degisimine ugramak suretiyle aracin ayrilmamasina, bükülmemesine destek olmasi ve enerji sönümlemesi saglayan tünel braket ve üretim yöntemi ile ilgilidir. TEKNIGIN BILINEN DURUMU Teknikte Tünel braket yaklasik 38 kN dayanima sahip bir parçadir. Tünel braketler çelik veya alüminyum alasimlardan imal edilmektedir. Bu durum parçanin yaklasik olarak 1,5-2 kg agirliginda imal edilmesine neden olmakta ve aracin agirligini arttirmaktadir. özellikle kuvvet akisina yönelik bir sekilde yönlendirildigi TFP ("Tailored Fiber Placement) yöntemi kullanilarak tek veya çok katmanli elyaf ön kaliplarinin üretilmesi için bir yöntemle ilgilidir, elyaf ön kaliplari, bozucu taban katmanlari olmaksizin hemen hemen her türlü yüzey geometrisine ve malzeme kalinligina sahip olabilecegi açiklanan preform üretimi ile ilgilidir. az bir TFP-preformu içeren bir yapi, özellikle bir fren diski veya debriyaj diski formunda olup, sürtünme özelliklerine sahip olan bir fiber kompozit bilesen ile ilgilidir. Bagimsiz istem ise parçada bir veya daha fazla gerilebilir takviye fiber tabakasina sahip TFP preformlu özellikle fren diskleri veya debriyaj diskleri seklinde yapilar kullanan, sürtünme özelliklerine sahip fiber kompozitler, Yapinin gaz fazindan malzeme biriktirerek ve/veya monomerler ve/veya polimerler kullanarak, kürleyerek ve pirolize ederek stabilize edildigi bir fiber kompozit bilesen olmasi seklinde tanimlanmistir. BULUSUN AÇIKLAMASI Bulusun amaci aracin toplam agirliginin azaltilmasi ile yakit tasarrufuna katki saglayan yenilikçi üretim yöntemleri içermedir. Bulusun diger bir amaci tünel braketin termoplastik kompozit malzemeden üretilebilmesi ve otomotiv sektöründe yapisal parçalarin termoplastik kompozitten üretilebilmesini saglamasidir. Bulusun diger bir amaci çerçevesinde tünel braket karbon fiber takviyeli termoplastik kompozit kullanilarak üretilmesidir. Bulusun diger bir amaci karbon fiber takviyeli termoplastik kompozit, karbon fiber ipliklerin termoplastik iplikler ile birlestigi bir birlesik malzeme olmasidir. Bulusun diger bir amaci TFP üretim yöntemi kullanilarak üretilmesidir. Bulusun diger bir amaci karbon fiber takviyeli termoplastik kompozit malzemenin standartlari karsilayabilmesi için analiz sonucu belirlenen katman sayisi ve katman yönelimlerinde bir araya getirilmesi için belirlenen ürün geometrisinde bir preform olusturulmasidir. Bulusun diger bir amaci tünel braketin 38kN ve üzeri dayanima sahip olabilmesini saglayan bombelendirilmis bölge, lokal kalinliklar ve feder içermesidir. REFERANS LISTESI - Kabuk Yapi 11- Preform Kaliplama 12- Kalip Baskilama 13- Kalip lsitma 14- Kürlenme - Kalip Sogutma 16- Kaliptan Çikarma 17- Taban Yüzeyi - Feder 21- Bombelendirilmis bölge 22- Destek Blogu 23- Baglanti açikligi 24- Baglanti destek bölgesi - Yan Destek Bölgesi - Preform 31- Matris 32- Fiber 33- lVlukavemet Destek Örüntüsü 34- Bombe Örüntüsü - Yan Destek Örüntüsü SEKILLERIN AÇIKLAMASI Sekil 1- Ürünün üretim yöntemini gösteren akis diyagrami Sekil 2- Matris ve temel örüntü üst görünümü Sekil 3- Preform örüntü son hal üst görünümü Sekil 4- Preformun feder yapisi ile uyumlu geometrik formda sekillendirilmesiyle meydana gelen kabuk yapi perspektif görünümü Sekil 5- Tünel braket pespektif görünümü Sekil 6- Feder altyapisi perspektif görünümü BULUSUN DETAYLI AÇIKLAMASI Yukaridaki açiklamalar, bulusu açiklamak için ileri sürülmüs olup herhangi bir sinirlayici etki olusturmamaktadir. Bulusun ruhunu ve özünü içeren açiklanan düzenlemelerin modifikasyonlari, açiklanan bilgilerden kaynakli teknikte uzman kisilerin aklina gelebileceginden, bulus, ekteki istemler ve bunlarin esdegerleri kapsamindaki her seyi içerecek sekilde yorumlanmalidir. Asagida unsurlari ile tanimlanan bulusa konu ürün asagidaki üretim yöntemi kullanilarak üretilmektedir; Sekil 1'de tünel braket üretim yöntemini içeren akis diyagrami gösterilmistir. Buna göre belirlenmis özelliklerde hazirlanmis preform (30), ilk olarak kalip içerisine yerlestirilmek suretiyle preform kaliplama (11) gerçeklesmektedir. Ardindan kalip baskilama (12) ve belirlenmis sicaklik degerine kalip isitma (13) gerçeklestirilmektedir. Preformun (30) sicaklik altinda belirli bir süre belirli bir basinçta tutulmasi suretiyle kürlenmesi (14) saglanmaktadir. Kalip sogutma (15) sonrasinda kalibin geometrisini alarak rijit bir kabuk yapi (10) meydana gelmekte ve kabuk yapiya (10) kaliptan çikarma (16) islemi uygulanmaktadir. Ardindan Sekil 'te gösterildigi gibi kabuk yapinin (10) arka kismina ikinci proses olan enjeksiyon presinde üzerine baskilama yöntemiyle plastik bir feder (20) olusturularak tünel braket üretim yöntemi tamamlanmaktadir. Bulusa konu ürün ve bulusu olusturan unsurlar su sekilde sirasi ile parçanin taban sacina non galvanik limiter baglanti elemanlari vasitasiyla irtibatlanmasini saglayan baglanti açikligi (23), TFP yöntemiyle üretilmis karbon fibertakviyeli termoplastikten mamul kabuk yapi (10) , mekanik özelliklerin artirilmasi ile ilgili olarak lokal olarak kalinlastirilmis bölge yan destek bölgesi (25), termoplastik yapiya sahip mekanik özelliklerin artirilmasi amaciyla olusturulmus bombelendirilmis bölge (21), taban saci ile örtüsen baglanti yüzeyi, mekanik özelliklerin iyilestirilmesi amaciyla lokal et kalinliginin artirilmis oldugu baglanti destek bölgesi (24), dayanimin artirilmasi amaciyla dizayn edilmis kisim olan destek blogu (22), preform (30) ile iki parçadan olusan yapiyi birlestirmek için kullanilan ve tünel braket malzemesinin içine konumlandirildigi disi kalip, TFP hammaddesi ile tünel braket feder (20) (plastik) malzemesini birlestirmek için kullanilan erkek kalip ve bu sicak kaliplama islemi sonucunda elde edilen bulusa konu ürün olan Tünel braketi olusturmaktadir. Sekil 2'de tünel braket üretim yöntemine ait matris (31) ve temel örüntü üst görünümü verilmistir. Buna göre bahsedilen matris (31) esasen tutucu bir bilesiktir. Matris (31) bulusta plastik bir levha olarak kullanilmakta ve farkli bir yapilanmada mat elyaf, termoplastik levha, reçine vb bilesik olabilmektedir. Preform (30) matris (31) üzerine fiber (32) örülmesiyle meydana gelmektedir. Bahsedilen fiber, termoplastik lifler ile takviye liflerinin katistirilarak bir lif demeti haline getirilmesidir. Bulusun mümkün bir yapilanmasinda katistirilan takviye lifler karbon fiber, fiberglas, kevlar, aramid, mühendislik kompozitleri gibi dayanimi artirilmis yapilar olabilmektedir. Bahsedilen fiberin bir matris (31) üzerine örülerek parça olusturulmasi bilinen bir teknik olan orijinalinden alintilayarak özel elyaf yerlestirilmesi (Tailored fiber placement) yöntemine dayanmaktadir. Bulusta TFP (tailored fiber placement) yöntemi ile termoplastik iplik ve karbon fiber (32) ipliklerin katistirilarak belirlenen katman sayisi ve katman yönelimlerinde belirli bir düzende yerlestirilerek preform (30) saglanmaktadir. TFP yönteminin tercih edilmesinin nedenlerinden biri olan farkli geometrik yönelimlere (açisal örüntülere) (0-30-45 ve 90 dereceler gibi farkli derecelerde - yönelimlerde- fiber (32) katmanlarinin olusturulmasiyla parça üzerine gelen yüke karsi dayanim artirilmaktadir) sahip preform (30) olusturma imkâni saglamasidir. Bahsedilen yönelim matris (31) üzerine yerlestirilen fiberin örülme düzenidir. Sekil 3'te görülecegi üzere preform (30) en az bir mukavemet destek örüntüsü (33) içermektedir. Bahsedilen mukavemet destek örüntüsü (33) esasen preform (30) üzerine lokal et kalinligi saglamak üzere örülmüs bir destek örüntüsüdür. Mukavemet destek örüntüsü (33) preformun (30) en azindan kismen köse bölgesinde saglanmis ve tünel braketin baglanti kisimlarinin desteklenmesini saglamak üzere bir kisimdir. Preform (30) en az bir bombe örüntüsü (34) içermektedir. Bahsedilen bombe örüntüsü (34) esasen preform (30) orta kisminda saglanmis bir destek örüntüsüdür. Bulusun mümkün bir yapilanmasinda bombe örüntüsü (34) preformun (30) orta kisminda uzun kenara paralel biçimde boylu boyunca ardisik üç tane olacak sekilde saglanmaktadir. Preform (30) en az bir yan destek örüntüsü (35) içermektedir bahsedilen yan destek örüntüsü (35) kabuk yapinin (10) esasen orta kisminin en azindan bir yaninda saglanmis bir destek örgü kismidir. Yan destek örüntüsü (35) kabuk yapinin (10) bükülme direncini artirmak üzere bir lokal kalinlastirilmis bölgedir. ilave olarak 90 derece yönelimdeki fiber (32) katmanlari 60 derece yönelimleri parçalarinin bükülme direnci 22 kN olarak elde edilmis ve parça kalinligi 5 mm'ye ve kirilma bölgelerinde lokal olarak 1 mm daha eklenmistir kalinlik iyilestirmesi yapilirken merkez katmanlar yine 90 60 ve 30 derece katman yönelimleri olarak degerlendirilmistir. Gerçeklestirilen üretimler sonrasinda bükülme direnci seviyesi 33-35 kN bant araliginda elde edilmistir. Yapilan testler ile elde edilen veriler dogrultusunda karar kilinan yönelim ise (0-0-0- örüntüsü (33), bombe örüntüsü (34) ve yan destek örüntüsünün (35) yönelimi ise (0-0-0-0) seklindedir. Bu yönelim preform (30) içeresindeki katmanli karbon fiber (32) yapilarin dizilis açilarini ifade etmektedir. Her bir açi bir katmana karsilik gelmektedir. Preform (30), hidrolik preste disi kalip içerisine yerlestirilmek suretiyle preform kaliplama (11) gerçeklesmektedir. Kalip baskilama (12) ise erkek kalibin disi kalip üzerine kapatilmasiyla gerçeklesmektedir. Ardindan erkek ve disi kalip çekirdekleri isitilip kalip isitma (13) saglanmaktadir. Kalip isitma (13) preform (30) yapinin kimyasal özelliklerine göre seçilmis sicaklik degerine ulasmak üzere kaliplari isitmaktir. Bulusun mümkün bir yapilanmasinda kalip isitma (13), 280-315 °C araliginda ve özellikle 300°C sicaklik degerine hidrolik presin baski kuvveti altinda ulasmasini saglamaktir. Bu sicaklik degerinde, preform (30) içerisinde bulunan matris (31) eriyik hale gelmek suretiyle fiber (32) ile bir bütünlesik yapi olusturmaktadir. Söz konusu sicaklikta belirli bir süre ve belirli basinç altinda tutulmak suretiyle kürlenme (14) gerçeklesmektedir. Ardindan kalip çekirdekleri sogutma sivisi kullanilarak belirli bir sicaklik degerine sogutulmaktadir. Bulusun mümkün bir yapilanmasinda söz konusu sicaklik degeri 50 °C ve altinda bir deger olabilmektedir. Kürlenen preform (30) kalip sogutma (15) sonrasinda rijit bir termoplastik kompozit yapi olan kabuk yapiya (10) dönüsmektedir. Ardindan erkek kalip ile disi kalibin birbirinden uzaklastirilmasi yoluyla kalibin açilmasi ve kabuk yapinin (10) kaliptan çikarma (16) islemi uygulanmaktadir. Kaliplama hizli isitma ve sogutmanin saglanabilmesi adina indüksiyon yöntemi ile isitilmaktadir. Kalibin içerisine veya kalibin baglantisinin yapildigi alt ve üst tablaya yerlestirilen bakir borulara indüksiyon akimi saglanmasiyla hizi isitma saglanmaktadir. Kabuk yapi (10) sekil 4'te gösterildigi üzere hidrolik preste kaliplama yetenegiyle geometrik olarak sekillendirilmektedir. Ayrica bulusun mümkün kilinan bir yapilanmasinda kaliplama süreleri ve isi degerleri altta grafik ile verilmektedir. isitma tutma sogutma çikarma SiLakfik (Cl Grafik 1- Kaliplama süreleri ve isi degerleri tablosu Sekil 5'te bulusa konu tünel braketin perspektif bir görünümü verilmektedir. Buna göre kabuk yapi (10) en az bir bombelendirilmis bölge (21 ) içermektedir. Bahsedilen bombelendirilmis bölge (21) esasen preformda (30) ara katman olarak örülmüs bombe örüntüsünün (34) kaliplama ile sekillendirilmis halidir. Kabuk yapi (10) en az bir baglanti destek bölgesi (24) içermektedir. Bahsedilen baglanti destek bölgesi (24) esasen baglanti örüntüsünün sekillendirmesiyle ortaya çikan lokal olarak kalinlastirilmis bölgedir. Bulusun mümkün bir yapilanmasinda baglanti destek bölgesi (24) kabuk yapinin (10) her bir kösesinde saglanmaktadir. Kabuk yapi (10) en az bir yan destek bölgesi (25) içermektedir. Bahsedilen yan destek bölgesi (25) esasen yan destek örüntüsünün (35) sekillendirilmesiyle meydana gelen lokal olarak kalinligin artirilmasiyla mukavemet artisi saglanan bölgedir. Bulusun mümkün bir yapilanmasinda yan destek bölgesi (25) kabuk yapinin (10) uzun kenarinda ve özellikle uzun kenarin orta kisminin iki yan yüzeyinde saglanmaktadir. Kabuk yapi (10) en az bir destek blogu (22) içermektedir. Bahsedilen destek blogu (22) esasen kabuk yapinin (10) bir kanal seklini almasiyla saglanan mukavemet artirmak üzere bir yapidir. Bulusun mümkün bir yapilanmasinda destek blogu (22) kabuk yapida (10) boylu boyunca birbirine ve uzun kenara paralel olacak biçimde iki tane saglanmaktadir. Kabuk yapi (10) özellikle destek bloklari (22) arasinda sirayla saglanmis bombelendirilmis bölgeler (21) içerecek biçimde konfigüre edilmektedir. Bombelendirilmis bölge (21) ve destek blogu (22) kabuk yapinin (10) mekanik özellikler iyilestirmek, yük altinda kirilmasini önlemek ve burkulma direncini artirmak üzere saglanan birer bölgedir. Sekil 6'de bulusa konu tünel brakete ait feder (20) yapisinin perspektif görünümü verilmektedir. Buna göre tünel braket en az bir feder (20) içermektedir. Bahsedilen feder (20) esasen mukavemet artirilmak üzere saglanmis plastik destek desenleri bütünüdür. Kabuk yapinin (10) esasen arka kisminda en az bir taban yüzeyi (17) saglanmaktadir. Bahsedilen taban yüzeyi (17) esasen destek blogu (22) ile ters yüzeyde konumlanmaktadir. Feder (20), enjeksiyon presinde kabuk yapinin (10) üzerine baski yöntemiyle saglanmaktadir. Bulusun mümkün bir yapilanmasinda taban yüzeyi (17) ile feder (20) arasinda en az bir tutunma elemani uygulanmaktadir. Bahsedilen tutunma elemani bir maleik anhidrit ajani, bir plazma uygulamasi, kimyasal ve fiziksel asindirma veya benzeri bir yapistirma ajani olabilmektedir. Tünel braket baglanti yüzeyinin taban sacina iliskilendirilmesiyle araç tabaninda konumlanmaktadir. Tünel braket baglanti açikliginda (23) baglanti elemanlari vasitasiyla taban sacina sökülebilir biçimde monte edilmektedir. Feder (20) yapisi ise araç metalik parçalariyla tünel braket arasinda meydana gelen galvanik korozyonun önlenmesini saglamaktadir. Bulusa konu ürünün belirlenen katmanlari arasinda kirilma bölgelerinin gerçeklestigi bölgelerde preformun (30) lokal olarak kalinligi örüntülerle artirilmis olup, termoplastik bir kabuk yapi (10) üretilmekte ve üretilen kabuk yapi (10) üzerine enjeksiyon metoduyla analiz sonucu belirlenmis plastik feder (20) ile dayanimi artirilarak boyutsal spesifikasyonlarin asilmasi önlenmektedir. Böylece bulusa konu ürün, metal parçadan üretilmis muadil tünel braket ile daha iyi mekanik özelliklere (dayanim, enerji sönümleme) sahip olmakta ve parça agirligi %50 oraninda hafifletilirken dayanimi teknigin bilinen durumunda kullanilan metal malzemeden mamul tünel braketlere oranla %30-40 oraninda arttirilmaktadir. Kullanim alaninda tünel braketlerden beklenen dayanim 38 kN iken bulusa konu ürün ile 45-50 kN araliginda dayanim saglanmaktadir. Böylelikle daha dayanikli ve daha hafif, yenilikçi, geri dönüstürülebilir bir tünel braket imal edilmektedir. Tünel braket, karbon fiber takviyeli termoplastik kompozitlerden imal edilerek hafiflestirilip ayni zamanda %100 geri dönüstürülebilir özellikli bir ürün haline getirilmektedir. Parça yaklasik 500-800 gr agirliginda imal edilmektedir. Agirligi azaltilan parça ile araçta kullanim esnasinda yakit tasarrufu saglanmakta, karbon emisyonu da düsürülmektedir. Ayrica kompozit tünel braketin ömrü tamamlandiginda ya da parça degisimi yapildiginda tamamen geri dönüsümü yapilabilir bir ürün meydana gelmektedir. Teknikte iki parça halinde üretimi ve montaji gerçeklestirilen metal tünel braket bu yöntemle tek parça halinde üretilmektedir. Bulusa konu tünel braket üretim yöntemi adimlari su sekilde gerçeklesmektedir; matris (31) üzerine belirli açilarda fiberlerin (32) örülmesi ve mukavemet destek örüntüsü (33), yan destek örüntüsü (35) ve bombe örüntüsüyle (34) belirli yönelimde ara katmanlarin saglanmasiyla preform (30) elde edilmektedir. Preform (30) hazirlanmasinin ardindan erkek ve disi kaliplarin birlestirilmesi yöntemiyle süresinin ardindan sogutulmasiyla sekillenir. Böylelikle termoplastik iplikler ile karbon fiberin örülmesiyle olusan preform (30), rijit yapi olan kabuk yapi (10) haline getirilmektedir. Ardindan kabuk yapi (10) arka yüzüne overmolding (üzerine baski) yöntemiyle enjeksiyonda feder (20) yapisi meydana getirilmektedir. Tünel braket baglanti açikliklari (23) vasitasiyla araç tabanina sökülebilir olarak irtibatlanmaktadir. Tüm bu yapilanmayla birlikte tünel braket TFP yönteminin saglamis oldugu serbestlikle lokal olarak kalinlastirilmis bölgelerin yetenegiyle darbe direnci artarken kalinlik spesifikasyonlari karsilanabilmektedir. Fiber (32) yapisinin içerdigi takviye lifin özellikleri degisme imkâni sunulmaktadir. Termoplastik malzemeden imal tünel braket hafif, kompakt, yenilikçi üretime sahip ve geri dönüstürülebilir bir ürün olarak meydana gelmektedir. Araç yapisal parçalarinin çelige muadil yenilikçi bir yöntemle üretilebilmesi saglanmaktadir. Tamamen geri dönüstürülebilen, yakit tasarrufuyla birlikte zararli gaz salinimin düsürülmesine olanak saglayan çevreci bir otomobil parçasinin imal edilmesi gerçeklesmektedir. TR TR TR TR TR DESCRIPTION TECHNICAL FIELD The invention is related to the tunnel bracket and its production method, which is mounted on the floor sheet at the bottom of the vehicle for use in the automotive industry, and which provides energy absorption and supports the vehicle from detaching and bending by changing its plastic shape under the impact force acting on the vehicle. KNOWN STATE OF THE TECHNIQUE In the art, the tunnel bracket is a piece with a strength of approximately 38 kN. Tunnel brackets are manufactured from steel or aluminum alloys. This causes the part to be manufactured weighing approximately 1.5-2 kg and increases the weight of the vehicle. It specifically relates to a method for producing single or multi-layer fiber preforms using the TFP ("Tailored Fiber Placement) method in which the force flow is directed in a manner, the fiber preforms being described as being capable of having almost any surface geometry and material thickness without disruptive base layers. The independent claim relates to a fiber composite component having friction properties, particularly in the form of a brake disc or clutch disc, comprising a small amount of TFP-preform. Fiber composites with friction properties, using structures in the form of brake discs or clutch discs, are defined as a fiber composite component in which the structure is stabilized by accumulating material from the gas phase and/or using monomers and/or polymers, curing and pyrolyzing. DESCRIPTION OF THE INVENTION The purpose of the invention is the total vehicle. It includes innovative production methods that contribute to fuel savings by reducing weight. Another purpose of the invention is to enable the tunnel bracket to be produced from thermoplastic composite material and to enable structural parts in the automotive industry to be produced from thermoplastic composite. Another purpose of the invention is to produce tunnel brackets using carbon fiber reinforced thermoplastic composite. Another purpose of the invention is carbon fiber reinforced thermoplastic composite, a composite material in which carbon fiber yarns are combined with thermoplastic yarns. Another aim of the invention is to produce it using the TFP production method. Another purpose of the invention is to create a preform in the product geometry determined to combine the carbon fiber reinforced thermoplastic composite material in the number of layers and layer orientations determined as a result of the analysis in order to meet the standards. Another purpose of the invention is to include a curved region, local thicknesses and ribs that enable the tunnel bracket to have a strength of 38kN and above. REFERENCE LIST - Shell Structure 11- Preform Molding 12- Mold Printing 13- Mold Heating 14- Curing - Mold Cooling 16- Removing from the Mold 17- Base Surface - Fed 21- Cambered area 22- Support Block 23- Connection opening 24- Connection support area - Side Support Area - Preform 31- Matrix 32- Fiber 33- lVlukavemet Support Pattern 34- Camber Pattern - Side Support Pattern DESCRIPTION OF THE FIGURES Figure 1- Flow diagram showing the production method of the product Figure 2- Matrix and basic pattern top view Figure 3- Preform pattern final state top view Figure 4- Perspective view of the shell structure formed by shaping the preform in a geometric form compatible with the rib structure Figure 5- Perspective view of the tunnel bracket Figure 6- Perspective view of the rib substructure DETAILED DESCRIPTION OF THE INVENTION The above explanations have been put forward to explain the invention and are not intended to be any limiting. It does not create any effect. Since modifications of the disclosed embodiments embodying the spirit and essence of the invention may occur to those skilled in the art from the information disclosed, the invention should be construed to include everything within the scope of the appended claims and their equivalents. The product subject to the invention, defined by its elements below, is produced using the following production method; Figure 1 shows the flow diagram containing the tunnel bracket production method. Accordingly, preform molding (11) is carried out by first placing the preform (30), prepared with specified properties, into the mold. Then, mold pressing (12) and mold heating (13) to the determined temperature value are carried out. The preform (30) is cured (14) by keeping it at a certain pressure under temperature for a certain period of time. After mold cooling (15), a rigid shell structure (10) is formed by taking the geometry of the mold and the shell structure (10) is removed from the mold (16). Then, as shown in Figure, the tunnel bracket production method is completed by creating a plastic rib (20) at the back of the shell structure (10) by pressing on it in the second process, the injection press. The product subject to the invention and the elements constituting the invention are as follows: the connection opening (23), which allows the part to be connected to the base sheet by means of non-galvanic limiter connection elements, the shell structure (10) made of carbon fiber reinforced thermoplastic produced by the TFP method, locally thickened to increase the mechanical properties. The zone is the side support zone (25), the curved zone (21) created to increase the mechanical properties with a thermoplastic structure, the connection surface overlapping the base metal, the connection support zone (24) where the local wall thickness is increased in order to improve the mechanical properties, the connection support zone (24) designed to increase the strength. The support block (22), which is the part, is the female mold used to combine the preform (30) and the structure consisting of two parts and into which the tunnel bracket material is positioned, the male mold used to combine the TFP raw material and the tunnel bracket feder (20) (plastic) material and this hot The product subject to the invention obtained as a result of the molding process constitutes the Tunnel bracket. Figure 2 shows the matrix (31) and basic pattern top view of the tunnel bracket production method. Accordingly, the said matrix (31) is essentially a retention compound. The matrix (31) is used as a plastic sheet in the invention and can be a compound of mat fiber, thermoplastic sheet, resin, etc. in a different configuration. The preform (30) is formed by knitting fiber (32) on the matrix (31). The fiber in question is made into a fiber bundle by mixing thermoplastic fibers and reinforcing fibers. In a possible embodiment of the invention, the reinforcing fibers incorporated may be structures with increased strength such as carbon fiber, fiberglass, kevlar, aramid, engineering composites. Creating a piece by knitting the said fiber on a matrix (31) is based on the well-known technique of placing special fibers by quoting the original (Tailored fiber placement). In the invention, preform (30) is provided by embedding thermoplastic yarn and carbon fiber (32) yarns with the TFP (tailored fiber placement) method and placing them in a certain order with the determined number of layers and layer orientations. One of the reasons why the TFP method is preferred is the possibility of creating preforms (30) with different geometric orientations (angular patterns) (the resistance to the load on the part is increased by creating fiber (32) layers at different degrees - orientations such as 0-30-45 and 90 degrees). is to ensure. The orientation mentioned is the knitting order of the fiber placed on the matrix (31). As can be seen in Figure 3, the preform (30) contains at least one strength support pattern (33). The mentioned strength support pattern (33) is essentially a support pattern knitted on the preform (30) to provide local wall thickness. The strength support pattern (33) is provided at least partially in the corner region of the preform (30) and is a part to support the connection parts of the tunnel bracket. The preform (30) contains at least one dome pattern (34). The mentioned camber pattern (34) is essentially a support pattern provided in the middle part of the preform (30). In a possible embodiment of the invention, the dome pattern (34) is provided in the middle part of the preform (30), parallel to the long edge, as three consecutive ones. The preform (30) includes at least one side support pattern (35). Said side support pattern (35) is a support mesh section provided at least on one side of essentially the middle part of the shell structure (10). The side support pattern (35) is a locally thickened region to increase the bending resistance of the shell structure (10). In addition, the bending strength of the fiber (32) layers in 90 degree orientation and 60 degree orientation parts was obtained as 22 kN and the part thickness was reduced to 5 mm and 1 mm more was added locally in the fracture areas. It was evaluated as . After the productions, the bending strength level was obtained in the band range of 33-35 kN. The orientation decided on the basis of the data obtained from the tests is (0-0-0- pattern (33), the orientation of the camber pattern (34) and the side support pattern (35) is (0-0-0-0). This orientation is It refers to the alignment angles of the layered carbon fiber (32) structures within the preform (30). Each angle corresponds to a layer. Preform molding (11) is carried out by placing the preform (30) into the female mold in the hydraulic press. The male and female mold cores are then heated and the mold heating (13) is achieved by heating the molds to reach the temperature value selected according to the chemical properties of the preform (30). 13) is to ensure that it reaches the temperature value between 280-315 °C and especially 300 °C under the pressure force of the hydraulic press. At this temperature value, the matrix (31) in the preform (30) becomes molten and forms an integrated structure with the fiber (32). It constitutes. Curing (14) takes place by keeping it at the said temperature for a certain period of time and under a certain pressure. Then, the mold cores are cooled to a certain temperature using cooling liquid. In a possible embodiment of the invention, the temperature value in question may be 50 °C or below. The cured preform (30) turns into the shell structure (10), which is a rigid thermoplastic composite structure, after mold cooling (15). Then, the process of opening the mold by moving the male mold and the female mold away from each other and removing the shell structure (10) from the mold (16) is performed. The molding is heated by induction method to ensure rapid heating and cooling. Rapid heating is provided by providing induction current to the copper pipes placed inside the mold or on the upper and lower trays to which the mold is connected. The shell structure (10) is shaped geometrically with the ability to be molded in the hydraulic press, as shown in Figure 4. In addition, in a possible embodiment of the invention, molding times and heat values are given graphically below. heating retention cooling removal Silakfik (Cl Graph 1 - Molding times and heat values table Figure 5 gives a perspective view of the tunnel bracket subject to the invention. Accordingly, the shell structure (10) contains at least one curved region (21). The said curved region ( 21) is essentially the molding of the camber pattern (34) woven as an intermediate layer in the preform (30). The shell structure (10) contains at least one connection support region (24). Said connection support region (24) is essentially formed by shaping the connection pattern. It is a locally thickened region. In a possible embodiment of the invention, the connection support region (24) is provided at each corner of the shell structure (10). The said side support region (25) essentially includes the side. It is the region where strength increase is achieved by increasing the local thickness, which occurs by shaping the support pattern (35). In a possible embodiment of the invention, the side support region (25) is provided on the long edge of the shell structure (10) and especially on the two side surfaces of the middle part of the long edge. The shell structure (10) includes at least one support block (22). The mentioned support block (22) is essentially a structure to increase the strength provided by the shell structure (10) taking the shape of a channel. In a possible embodiment of the invention, two support blocks (22) are provided in the shell structure (10), parallel to each other and to the long side. The shell structure (10) is especially configured to include curved regions (21) provided sequentially between the support blocks (22). The cambered region (21) and the support block (22) are regions provided to improve the mechanical properties of the shell structure (10), prevent it from breaking under load, and increase the buckling resistance. Figure 6 shows the perspective view of the rib (20) structure of the tunnel bracket subject to the invention. Accordingly, the tunnel bracket contains at least one rib (20). The mentioned rib (20) is essentially a set of plastic support patterns provided to increase strength. At least one base surface (17) is provided essentially at the rear of the shell structure (10). Said base surface (17) is essentially located on the opposite surface with the support block (22). The rib (20) is provided by printing on the shell structure (10) in the injection press. In a possible embodiment of the invention, at least one holding element is applied between the base surface (17) and the rib (20). Said adhesion element may be a maleic anhydride agent, a plasma application, chemical and physical etching or a similar adhesion agent. The tunnel bracket is positioned on the vehicle floor by associating the connection surface to the floor sheet. The tunnel bracket is detachably mounted to the base sheet by means of fasteners in the connection opening (23). The Feder (20) structure prevents the galvanic corrosion that occurs between the vehicle metallic parts and the tunnel bracket. In regions where fracture zones occur between the determined layers of the product subject to the invention, the local thickness of the preform (30) is increased with patterns, a thermoplastic shell structure (10) is produced and its strength is increased by using a plastic rib (20) determined as a result of analysis by injection method on the produced shell structure (10). Exceeding dimensional specifications is prevented. Thus, the product subject to the invention has better mechanical properties (strength, energy absorption) with the equivalent tunnel bracket made of metal parts, and while the weight of the part is lightened by 50%, its strength is increased by 30-40% compared to the tunnel brackets made of metal materials used in the state of the art. While the expected strength of tunnel brackets in the field of use is 38 kN, the product subject to the invention provides strength in the range of 45-50 kN. Thus, a more durable and lighter, innovative, recyclable tunnel bracket is manufactured. The tunnel bracket is manufactured from carbon fiber reinforced thermoplastic composites, making it lightweight and at the same time a 100% recyclable product. The piece is manufactured with a weight of approximately 500-800 grams. With the reduced weight of the part, fuel savings are achieved during use in the vehicle and carbon emissions are also reduced. In addition, when the life of the composite tunnel bracket is completed or parts are replaced, a completely recyclable product is created. The metal tunnel bracket, which is technically produced and assembled in two parts, is produced in one piece with this method. The steps of the tunnel bracket production method subject to the invention are carried out as follows; Preform (30) is obtained by knitting fibers (32) at certain angles on the matrix (31) and providing intermediate layers in certain orientations with the strength support pattern (33), side support pattern (35) and camber pattern (34). After the preform (30) is prepared, it is shaped by combining the male and female molds and then cooling it. Thus, the preform (30), formed by knitting thermoplastic yarns and carbon fiber, is turned into a rigid structure, the shell structure (10). Then, the rib (20) structure is formed by injection into the back side of the shell structure (10) using the overmolding method. It is detachably connected to the vehicle floor through the tunnel bracket connection openings (23). With all this structuring, thickness specifications can be met while impact resistance increases with the freedom provided by the tunnel bracket TFP method and the ability of locally thickened areas. It is possible to change the properties of the reinforcement fiber contained in the fiber (32) structure. The tunnel bracket made of thermoplastic material is a light, compact, innovatively produced and recyclable product. Vehicle structural parts can be produced with an innovative method equivalent to steel. It is possible to manufacture an environmentally friendly automobile part that is completely recyclable and allows reducing harmful gas emissions while saving fuel.TR TR TR TR TR

TR2022/004472A 2022-03-23 2022-03-23 TUNNEL BRACKET AND PRODUCTION METHOD TR2022004472A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TR2022/004472A TR2022004472A2 (en) 2022-03-23 2022-03-23 TUNNEL BRACKET AND PRODUCTION METHOD
PCT/TR2023/050324 WO2023182967A2 (en) 2022-03-23 2023-04-05 A tunnel bracket and a production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2022/004472A TR2022004472A2 (en) 2022-03-23 2022-03-23 TUNNEL BRACKET AND PRODUCTION METHOD

Publications (1)

Publication Number Publication Date
TR2022004472A2 true TR2022004472A2 (en) 2022-04-21

Family

ID=85127964

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2022/004472A TR2022004472A2 (en) 2022-03-23 2022-03-23 TUNNEL BRACKET AND PRODUCTION METHOD

Country Status (2)

Country Link
TR (1) TR2022004472A2 (en)
WO (1) WO2023182967A2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050020986A (en) * 2002-06-11 2005-03-04 슝크 코렌슈토프테크닉 게엠베하 Tribological fiber composite component produced according to the TFP process
US11117627B2 (en) * 2019-12-04 2021-09-14 Ford Global Technologies, Llc Overmolded vehicle sheet metal structures with integrated attachments
JP2022129277A (en) * 2021-02-24 2022-09-05 トヨタ紡織株式会社 Method for manufacturing preform, method for manufacturing composite material, and sewing machine for manufacturing preform

Also Published As

Publication number Publication date
WO2023182967A2 (en) 2023-09-28
WO2023182967A3 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
EP2512780B1 (en) Method of forming a sheet molding compound with cores
US9180627B2 (en) Process for manufacturing articles in carbon fiber and article manufactured with this process
Schemme LFT–development status and perspectives
US20130082416A1 (en) Compression overmolding process, device therefor and part made therefrom
JP2013538137A (en) In-mold foaming method using foamable medium and surface layer, and plastic molded body obtained by the method
CN104416911A (en) Formed Articles Comprising Carbon And Natural Fibers, Methods Of Manufacture And Use Thereof
WO2007117796A2 (en) Composite products and methods of making the same
Mitschang et al. Polymer and composite moulding technologies for automotive applications
WO2013094702A1 (en) Method for producing molded article and molded article
KR20190111950A (en) Preform elements, and preforms using the same and methods for producing the same
EP0330960A2 (en) Method of forming a fiber-reinforced thermoplastic article
WO2018078501A2 (en) Process and/or substrate and/or sheet for a composite article
Karger‐Kocsis Swirl mat–and long discontinuous fiber mat–reinforced polypropylene composites—status and future trends
TW201708006A (en) Exterior trim part and the use thereof
TR2022004472A2 (en) TUNNEL BRACKET AND PRODUCTION METHOD
CN111873575A (en) Integrated structure of heterogeneous materials and method for integrating heterogeneous materials
US11504922B2 (en) Multi-layered composite structures and methods for the preparation thereof
JP2016531777A (en) Method for producing polymer material member
AU2011264449B2 (en) Method of making automotive body parts
CN110116522B (en) Prepreg part comprising a main layer and a reinforcement layer
CN104875790A (en) Car roof cover and machining method for car roof cover
Karger-Kocsis Glass mat reinforced thermoplastic polypropylene
CN108381944A (en) A kind of carbon fiber door sash reinforcing plate and its moulding process
JP2721820B2 (en) Fiber reinforced thermoplastic resin laminate
KARA et al. The effect of holding time on the mechanical properties of TFP produced thermoplastic matrix composites under compression molding process