TR2022001886U5 - CONSTRUCTION OF A SYSTEM THAT REDUCES THE THERMAL LOSS RATE IN HYBRID VEHICLES AND GENERATORS - Google Patents

CONSTRUCTION OF A SYSTEM THAT REDUCES THE THERMAL LOSS RATE IN HYBRID VEHICLES AND GENERATORS

Info

Publication number
TR2022001886U5
TR2022001886U5 TR2022/001886U TR2022001886U TR2022001886U5 TR 2022001886 U5 TR2022001886 U5 TR 2022001886U5 TR 2022/001886 U TR2022/001886 U TR 2022/001886U TR 2022001886 U TR2022001886 U TR 2022001886U TR 2022001886 U5 TR2022001886 U5 TR 2022001886U5
Authority
TR
Turkey
Prior art keywords
fuel
internal combustion
generators
loss rate
dead center
Prior art date
Application number
TR2022/001886U
Other languages
Turkish (tr)
Inventor
Aydin Mehmet
Original Assignee
Aydin Mehmet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aydin Mehmet filed Critical Aydin Mehmet
Priority to TR2022/001886U priority Critical patent/TR2022001886U5/en
Publication of TR2022001886U5 publication Critical patent/TR2022001886U5/en

Links

Abstract

Buluş, bir ECU elektronik kontrol sistemi (17) ile koordineli çalışan, üst pistonun (13) iç silindir içerisindeki (14) alt ölü nokta ile (16) üst ölü nokta (15) arasında yakıtın tam verimli yanmasını sağlayacak büyüklükteki bir piston silindiri strok mesafesini (B) içeren bir içten yanmalı motor (A) sistemi içeren hibrit araçlarda ve jeneratörlerde termal kayıp oranını azaltan bir sistem yapılanması ile ilgilidir.The invention is a piston cylinder stroke distance of a size that works in coordination with an ECU electronic control system (17) to ensure full efficient combustion of the fuel between the lower dead center (16) and the top dead center (15) of the upper piston (13) in the inner cylinder (14). It relates to a system configuration that reduces the thermal loss rate in hybrid vehicles and generators containing an internal combustion engine (A) system containing (B).

Description

TARIFNAME HIBRIT ARAÇLARDA VE JENERATÖRLERDE TERMAL KAYIP ORANINI TEKNIK ALAN Bulus, içten yanmali motor kullanan motorlu araçlarda ve ayni zamanda jeneratörlerde termal kayip oranini azaltan, yakit veriminin en yüksek oldugu devirde elektrik enerjisi üreterek elektrikli tasitlarin sabit bir yerde durmadan, hareket halindeyken de sarj olmasini ve daha az bataryayla daha uzun menzil gitmesini, jeneratörlerde de daha az yakitla daha fazla elektrik enerjisi elde etmeyi saglayan " hibrit araçlarda ve jeneratörlerde termal kayip oranini azaltan bir sistem yapilanmasi" ile ilgilidir. TEKNIGIN BILINEN DURUMU Mevcut içten yanmali motor çalistirma yönteminde; yakit verildikçe devir artar ve daha fazla yakita strok mesafesinin az olmasindan dolayi daha az yanma süresi verildigi için, piston alt ölü noktaya gelinceye kadar oransal olarak daha az yanma olur ve termal kayiplar katlana katlana artar. Rölanti seviyesinde %20 civarinda olan termal kayip orani; yüksek devirli motorlarda, maksimum devirde %80'i geçebilmektedir. Mevcut jeneratör motorlari da: sogukken bile, çalisir çalismaz istenilen performansi gösterebilmesi için çok fazla hacimli üretildiklerinden; rölanti devrinin çok üzerinde çalistiklarindan ve strok mesafeleri sinirli oldugu için termal kayip orani %50'ye yakindir. Günümüzde en fazla güç üreten içten yanmali motor tipi; özellikle büyük gemilerde kullanilan krosedli, uzun strok mesafeli motorlardir. Bu tip motorlarda; düsük devirlerde de sürtünme kaybi azdir ve yanma reaksiyonu için verilen süre/mesafe fazla oldugu için, iki zamanli olmalarina ragmen daha verimlidirler. Aracin yükü ve boyutu arttikça, yakit verimi daha yüksek, daha düsük devirli ve strok mesafesi fazla olan motor tercih edilmektedir. Bulus konusu sistemde, alternatörü çevirecek olan motor; düsük devirdeyken agir yükte çalisabildigi ve strok mesafesi fazla oldugu için; daha fazla yakitin uzun süre yanma odasinda kalarak, egzoz valfi açilincaya kadar oransal olarak daha fazla yanmasini saglar. Alternatörün motora karsi yükü sinirli ve belirli oldugu için, yakitin yanma odasindaki reaksiyon süresinin maksimum düzeyde tutulmasi; motoru rölanti devrinde sabit tutmakla mümkün olacaktir. Ayrica, yüksek sikistirma oraninin rölanti devrinde teklemeye neden olmamasi için, atesleme veya püskürtmenin yapilacagi bölgede lokal olarak, sikistirma oraninin ortalamanin üzerinde artirilmasi da yanma verimini yükseltecektir. Motor isinincaya kadar serbest çalistiktan sonra, (klima devredeyken yakit tüketiminin artirilmasi gibi) alternatöre ikazlama yapilmasiyla beraber yakit tüketimi artirilarak, devir rölantide sabitlenir. Bu sistemin temel amaci; güce ihtiyaç duyuldukça devir sayisini yükseltip termal kayip oranini artirmak yerine, alternatörün yük seviyesini yükseltip yüksek yakit verimi saglayarak elektrik enerjisi üretmek ve araçlarin/jeneratörlerin tükettigi yakit miktarini azaltmaktir. BULUSUN AMACI Mevcut bulus, yukarida bahsedilen gereksinimleri karsilayan, tüm dezavantajlari ortadan kaldiran ve ilave bazi avantajlar saglayan hibrit araçlarda ve jeneratörlerde termal kayip oranini azaltan bir sistem yapilanmasi ile alakalidir. Bulusun ana amaci, termal kayip oranini azaltarak alternatörün yük seviyesini yükseltip yakit verimi saglayarak elektrik enerjisi üretmek ve araçlarin/jeneratörlerin tükettigi yakit miktarini azaltmaktir. Bulusun bir baska amaci, yakitin daha verimli yanmasini saglayarak havaya salinan yanmamis yakit miktarini düsürmek ve sonuç olarak zararli gaz salinimini azaltmaktir. Bulusun bir diger amaci; tam elektrikli veya hibrit motorlu araçlarin üretim maliyetlerini düsürmektir. SEKILLERIN KISA AÇIKLAMASI: Sekil 1 de bulus konusu sistemin temsili görünümü bulunmaktadir. KULLANILAN REFERANSLAR A. Içten yanmali motor B. Piston silindiri strok mesafesi .Alternatör 11.Alternatör hareket aktarma dislisi 12. Motor hareket aktarma dislisi 13. Üst piston 14. Iç silindir . Üst ölü nokta 16.Alt ölü nokta 17. ECU elektronik kontrol sistemi 18.bataryalar BULUSUN DETAYLI AÇIKLAMASI Bu detayli açiklamada, bulus konusu hibrit araçlarda ve jeneratörlerde termal kayip oranini azaltan bir sistem yapilanmasinin detayli anlatimi, sadece konunun iyi anlasilmasina yönelik olarak ve hiçbir sinirlayici etki olusturmayacak sekilde açiklanmaktadir. Sekil 1 de bulus konusu sistemin temsili görünümü bulunmaktadir. Alternatörü (10) çevirecek olan içten yanmali motor sistemi (A): düsük devirdeyken agir yükte çalisabilme özelligine sahip olmalidir. Yaygin olarak kullanilan mevcut tip içten yanmali motorlara düsük devirde fazla yük bindirildiginde sürtünme kayiplari, hararet ve arizalar artacagindan; sürtünme kaybi az ve yakit verimi çok olan krosedli motor tipinin kullanilmasi dogru olacaktir. Alternatör (11), Içten yanmali motorun (A) ürettigi gücü elektrige çevirip bataryalari (18) sarj eder (jeneratör modelinde sebekeye verir) ve özellikle nakliye araçlarinda, sabit hizlarda çekis motoruna da baglanir. Bataryalar (18), Araçlarda; elektrikli çekis motorunun ve elektrik enerjisiyle çalisan diger sistemlerin (ses, aydinlatma sistemi; sogutma fani;...) ihtiyacini karsilar. Sadece jeneratör olarak kullanilacak versiyonda ise, motor isinincaya kadar geçen sürede sebekenin elektrik ihtiyacini karsilar. Üst piston (13) ve iç silindir (14); Silindirin atesleme veya püskürtme yapilan kisminda lokal olarak sikistirma oranini ekstradan yükselterek yanma verimini artirir ve düsük devirlerde de teklemeyi önler. Iç silindir, motor kapagina; üst piston ise, ana pistona sabittir. ECU elektronik kontrol sistemi (17) ise sistemin çalismasini koordine eder, bataryalarin (18) doluluk durumlarina göre sistem koordinasyonunu saglar. Içten yanmali motor sistemi (A) içerisindeki yakit yakildiginda üst piston (13), iç silindir (14) içerisinde üst ölü nokta (15) ile alt ölü nokta (16) arasinda hareketini sürdürür. Bu hareketi esnasinda yanan yakit disariya atilir. Ancak yakitin tam yanmadan disari atilmasi üst ölü nokta (15) ile alt ölü nokta (16) arasindaki strok mesafesine (B) baglidir. Strok mesafesi (B) ne kadar uzunsa yakitin yanma miktari da o kadar fazla olacaktir. Dolayisi ile ne kadar yakit fazla yanarsa o kadar fazla enerji üretecek ve daha az yakitla daha fazla enerji saglanacagi için sistemin yakit sarfiyati azalacaktir. Açiga çikan enerji sayesinde olusacak hareket, motor hareket aktarma dislisi (12) tarafindan alternatör hareket dislisine (11) aktarilacak ve sonuç olarak alternatör (10) de altigi hareket enerjisini elektrik enerjisine çevirerek bataryalara (18) depo etmek için gönderecektir. ECU elektronik kontrol sistemi (17) ise, Araç çalistirildiginda, daha önce sarj edilmis olan bataryalari (18) kullanacagindan, hemen harekete geçebilir. Hava ve motor sicakligi çok düsükse, yeterli sicakliga çikincaya kadar sadece motor (A) çalisir. Daha sonra, 1/4'er basamaklarla ikazlama seviyesi artirilarak elektrik enerjisi üretimi/sarj baslatilir. ECU (17), motorun (A) devrini; tekleme ve asiri titremenin olmadigi en düsük devirde ( minimum çalisma devrinin yaklasik %30-40 fazlasinda) sabit tutar. Alternatörün (10) yük seviyesi artirildikça yakit tüketimi de artirilarak devir dengelenir. Normalin altinda tempoda kullanilan aracin sarj nöbetindeki bataryasi (18) %75 doluluk oranina çiktiginda, alternatörün (10) yük seviyesi 1/4'e indirilir. Çekis motorunu çeviren batarya gurubu (18) çok azaldigi için sarj nöbetine geçince, alternatör (10); diger gurup bataryayi (18) sarj etmeye baslar. Çekis motorunu çeviren çalisma nöbetindeki batarya (18); sarj nöbetindeki batarya (18) tam doldugu halde bile bosalmadiysa, bataryalara (18) nöbet degistirilir ve alternatör (10); yükle çalisarak sarj etmeye devam eder. Bütün bataryalar (18) doluyken klima veya isitma devreye alininca, alternatör (10) kabin içinin ihtiyaci olan sicakligi üretmek üzere, sadece klimayi çevirmek veya sogutma sivisini isitmak için çalismaya baslar, alternatöre (10) ikazlama yapilmaz. Buna karsilik; 3 dakikadan daha fazla süre boyunca gaz pedalina fazla yüklenilirse, sport moduna alinirsa ve buna benzer nedenlerle hizli desarj olma durumu ortaya çikarsa; sarj seviyesinin yariya inmesini beklemeden de alternatör (10) yüksek kapasiteyle çalismaya baslar. Böyle durumlarda; sarj nöbetindeki bataryalar (18) dolu oldugu taktirde, ürettigi elektrigi çalisma nöbetindeki bataryalara (18) verir. Kontak kapatildiginda, alternatör (10), sogutma çalismasi yapar ve durur. Ancak, toplam sarj seviyesi %50'den düsükse, alternatör (10) toplam sarj seviyesini yaridan yukari çikarir ve ondan sonra durur. TR DESCRIPTION The invention, which takes the THERMAL LOSS RATE IN HYBRID VEHICLES AND GENERATORS TECHNICALLY, reduces the thermal loss rate in motor vehicles using internal combustion engines and also in generators, and enables electric vehicles to be charged while moving, without standing in a fixed place, by producing electrical energy at the speed when fuel efficiency is highest. It is about "a system structuring that reduces the rate of thermal loss in hybrid vehicles and generators", which allows going longer range with less battery and obtaining more electrical energy with less fuel in generators. KNOWN STATE OF THE TECHNIQUE In the current internal combustion engine starting method; As fuel is given, the speed increases and since more fuel is given less burning time due to the shorter stroke distance, proportionally less combustion occurs until the piston reaches bottom dead center and thermal losses increase exponentially. Thermal loss rate at idle level is around 20%; In high speed engines, it can exceed 80% at maximum speed. Existing generator engines are: produced in very large volumes so that they can show the desired performance as soon as they start up, even when cold; Since they operate well above idle speed and their stroke distance is limited, the thermal loss rate is close to 50%. The internal combustion engine type that produces the most power today; They are cross-sectional, long-stroke engines used especially in large ships. In this type of engines; Friction loss is low at low speeds and since the time/distance given for the combustion reaction is longer, they are more efficient even though they are two-stroke. As the load and size of the vehicle increases, engines with higher fuel efficiency, lower speeds and longer stroke distance are preferred. In the system subject to the invention, the engine that will turn the alternator; Since it can work under heavy load at low speed and has a long stroke distance; It ensures that more fuel remains in the combustion chamber for a longer period of time and burns proportionally more until the exhaust valve opens. Since the load of the alternator on the engine is limited and specific, the reaction time of the fuel in the combustion chamber is kept at the maximum level; This will be possible by keeping the engine constant at idle speed. In addition, in order to prevent the high compression ratio from causing a misfire at idle speed, increasing the compression ratio locally above the average in the area where ignition or injection will be made will also increase the combustion efficiency. After the engine runs freely until it warms up, fuel consumption is increased by giving a warning to the alternator (like increasing fuel consumption when the air conditioning is on), and the speed is fixed at idle. The main purpose of this system is; Instead of increasing the number of revolutions and increasing the thermal loss rate as power is needed, it produces electrical energy and reduces the amount of fuel consumed by vehicles/generators by increasing the load level of the alternator and providing high fuel efficiency. PURPOSE OF THE INVENTION The present invention is related to a system structure that meets the above-mentioned requirements, eliminates all disadvantages and provides some additional advantages, reducing the thermal loss rate in hybrid vehicles and generators. The main purpose of the invention is to produce electrical energy and reduce the amount of fuel consumed by vehicles/generators by reducing the thermal loss rate, increasing the load level of the alternator and providing fuel efficiency. Another purpose of the invention is to reduce the amount of unburned fuel released into the air by enabling the fuel to burn more efficiently and, as a result, to reduce harmful gas emissions. Another purpose of the invention is; is to reduce the production costs of fully electric or hybrid motor vehicles. BRIEF DESCRIPTION OF THE FIGURES: Figure 1 shows a representative view of the system subject to the invention. USED REFERENCES A. Internal combustion engine B. Piston cylinder stroke distance. Alternator 11. Alternator drive transmission gear 12. Engine drive transmission gear 13. Upper piston 14. Inner cylinder. Top dead center 16. Bottom dead center 17. ECU electronic control system 18. batteries DETAILED DESCRIPTION OF THE INVENTION In this detailed description, a detailed explanation of a system structuring that reduces the thermal loss rate in the hybrid vehicles and generators that are the subject of the invention is provided only for a good understanding of the subject and without any limiting effect. It is explained in a way that does not create Figure 1 shows a representative view of the system subject to the invention. The internal combustion engine system (A) that will turn the alternator (10): must have the ability to operate at heavy load at low speed. When the current type of widely used internal combustion engines are overloaded at low speed, friction losses, overheating and malfunctions will increase; It would be correct to use a crosshead engine type that has low friction loss and high fuel efficiency. The alternator (11) converts the power produced by the internal combustion engine (A) into electricity and charges the batteries (18) (in the generator model, it gives it to the grid) and is also connected to the traction engine at constant speeds, especially in transportation vehicles. Batteries (18), in Vehicles; It meets the needs of the electric traction engine and other systems that work with electrical energy (sound, lighting system; cooling fan;...). In the version that will be used only as a generator, it meets the electricity needs of the network until the engine warms up. Upper piston (13) and inner cylinder (14); It increases the combustion efficiency by additionally increasing the compression ratio locally in the part of the cylinder where ignition or injection is carried out and prevents misfire at low revs. Inner cylinder, engine cover; The upper piston is fixed to the main piston. The ECU electronic control system (17) coordinates the operation of the system and ensures system coordination according to the charge status of the batteries (18). When the fuel in the internal combustion engine system (A) is burned, the upper piston (13) continues its movement between top dead center (15) and bottom dead center (16) in the inner cylinder (14). During this movement, the burning fuel is thrown out. However, discharging the fuel before it is completely burned depends on the stroke distance (B) between top dead center (15) and bottom dead center (16). The longer the stroke distance (B), the greater the burning amount of fuel. Therefore, the more fuel is burned, the more energy it will produce, and since more energy will be provided with less fuel, the fuel consumption of the system will decrease. The movement that will occur thanks to the energy released will be transferred to the alternator movement gear (11) by the engine movement transmission gear (12) and as a result, the alternator (10) will convert the movement energy it receives into electrical energy and send it to the batteries (18) for storage. The ECU electronic control system (17) can take action immediately when the vehicle is started, as it will use the previously charged batteries (18). If the air and engine temperature are too low, only the engine (A) will run until it reaches sufficient temperature. Then, electrical energy production/charging is started by increasing the excitation level in steps of 1/4. ECU (17) calculates the speed of the engine (A); It keeps it constant at the lowest speed (approximately 30-40% above the minimum operating speed) where there is no misfire or excessive vibration. As the load level of the alternator (10) is increased, fuel consumption is also increased and the speed is balanced. When the battery (18) of the vehicle used at a lower than normal pace reaches 75% charge level, the load level of the alternator (10) is reduced to 1/4. When the battery group (18), which turns the traction engine, goes into charging mode because it is too low, the alternator (10); The other group starts charging the battery (18). The battery (18) on duty that turns the traction motor; If the battery (18) on charging duty is not discharged even though it is fully charged, the batteries (18) are switched and the alternator (10); It continues to charge by working with the load. When air conditioning or heating is turned on when all batteries (18) are charged, the alternator (10) starts to work only to turn the air conditioner or heat the cooling liquid in order to produce the temperature needed in the cabin, and no warning is given to the alternator (10). Against this; If the accelerator pedal is heavily loaded for more than 3 minutes, if it is switched to sport mode, or if a rapid discharge occurs for similar reasons; Without waiting for the charge level to drop by half, the alternator (10) starts to operate at high capacity. In such cases; If the batteries (18) on charging duty are full, it gives the electricity it produces to the batteries (18) on duty duty. When the ignition is turned off, the alternator (10) performs cooling operation and stops. However, if the total charge level is lower than 50%, the alternator (10) increases the total charge level by half and then stops. TR

Claims (1)

1.ISTEMLER Bulus, içten yanmali motor kullanan motorlu araçlarda ve ayni zamanda jeneratörlerde termal kayip oranini azaltan, yakit veriminin en yüksek oldugu devirde elektrik enerjisi üreterek elektrikli tasitlarin sabit bir yerde durmadan, hareket halindeyken de sarj olmasini ve daha az bataryayla daha uzun menzil gitmesini, jeneratörlerde de daha az yakitla daha fazla elektrik enerjisi elde etmeyi saglayan sistem ile ilgili olup özelligi; Bir ECU elektronik kontrol sistem (17) ile yönetilen, üst pistonun (13) iç silindir içerisindeki (14) alt ölü nokta ile (16) üst ölü nokta (15) arasinda yakitin tam verimli yanmasini saglayacak büyüklükteki bir piston silindiri strok mesafesini (B) içeren bir içten yanmali motor (A) sistemidir. . Istem 1 e bagli bir içten yanmali motor (A) sistemi olup özelligi; kendi çalismasini kontrol eden bir ECU elektronik kontrol sistemi (17) içermesidir. . Istem 2 ye bagli bir ECU elektronik kontrol sistemi (17) olup özelligi; alternatörü (10) ve bataryalari (18) kontrol ederek gerektiginde içten yanmali motordan (A) elde edilen gücün kademeli olarak aktarilmasini saglamasidir. TR1. CLAIMS The invention reduces the thermal loss rate in motor vehicles using internal combustion engines and also in generators, produces electrical energy at the time when fuel efficiency is highest, allowing electric vehicles to be charged while moving without standing in a fixed place and to travel longer distances with less battery. It is related to the system that allows generating more electrical energy with less fuel in generators and its feature is; Managed by an ECU electronic control system (17), a piston-cylinder stroke distance (B) is large enough to ensure fully efficient combustion of fuel between the bottom dead center (14) of the upper piston (13) in the inner cylinder and the top dead center (15). It is an internal combustion engine (A) system containing . It is an internal combustion engine (A) system based on Claim 1 and its feature is; It contains an ECU electronic control system (17) that controls its own operation. . It is an ECU electronic control system (17) based on Request 2 and its feature is; It controls the alternator (10) and batteries (18) and ensures that the power obtained from the internal combustion engine (A) is gradually transferred when necessary. TR
TR2022/001886U 2022-02-14 2022-02-14 CONSTRUCTION OF A SYSTEM THAT REDUCES THE THERMAL LOSS RATE IN HYBRID VEHICLES AND GENERATORS TR2022001886U5 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TR2022/001886U TR2022001886U5 (en) 2022-02-14 2022-02-14 CONSTRUCTION OF A SYSTEM THAT REDUCES THE THERMAL LOSS RATE IN HYBRID VEHICLES AND GENERATORS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2022/001886U TR2022001886U5 (en) 2022-02-14 2022-02-14 CONSTRUCTION OF A SYSTEM THAT REDUCES THE THERMAL LOSS RATE IN HYBRID VEHICLES AND GENERATORS

Publications (1)

Publication Number Publication Date
TR2022001886U5 true TR2022001886U5 (en) 2022-02-21

Family

ID=85118045

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2022/001886U TR2022001886U5 (en) 2022-02-14 2022-02-14 CONSTRUCTION OF A SYSTEM THAT REDUCES THE THERMAL LOSS RATE IN HYBRID VEHICLES AND GENERATORS

Country Status (1)

Country Link
TR (1) TR2022001886U5 (en)

Similar Documents

Publication Publication Date Title
CN101506492B (en) Six-cycle engine with generator
US6338391B1 (en) Hybrid vehicles incorporating turbochargers
US8793999B2 (en) Process for starting an internal-combustion engine and an internal-combustion engine having a starting-aid device
CN101397010A (en) Electrical assist for reducing emissions and torsion response delay in a hybrid electric vehicle
KR101801499B1 (en) Isothermal compression based combustion engine
WO2014068746A1 (en) Controller for starting vehicular direct-injection engine
CN102501850B (en) A kind of automatic start-stop system
JP2004176688A (en) Controller for compression self-ignition engine and hybrid vehicle
RU2701632C2 (en) Hybrid vehicle starting method (embodiments)
CN101737184A (en) Vehicle engine starting and idling fuel cut-off operation control system and control method
JP5742665B2 (en) Control device for hybrid vehicle
CN201756054U (en) Manned vehicle hybrid-electric system
JP3956953B2 (en) Power output apparatus, automobile equipped with the same, and control method of power output apparatus
CN100580238C (en) Control apparatus for internal combustion engine
TR2022001886U5 (en) CONSTRUCTION OF A SYSTEM THAT REDUCES THE THERMAL LOSS RATE IN HYBRID VEHICLES AND GENERATORS
JP6756303B2 (en) Vehicle control device
JP2020147197A (en) Hybrid vehicle and supercharger cooling method
JP4229117B2 (en) Power output device, automobile equipped with the same, and control method of power output device
JP2004052693A (en) Hybrid vehicle equipped with compression self-ignition engine
US11761400B2 (en) Engine device
WO2022163410A1 (en) Drive control device and drive control method
JP2014015915A (en) Warm-up acceleration apparatus of vehicular engine
US20230406283A1 (en) Method for Operating a Motor Vehicle, and Motor Vehicle
US20240149880A1 (en) Turbulent jet ignition cold start aid via compression heating
Schacht et al. Low cost Range Extender technology for hybrid electric city scooters