TR2021021757A2 - TRACKING MECHANISM FOR UNMANNED GROUND VEHICLES - Google Patents

TRACKING MECHANISM FOR UNMANNED GROUND VEHICLES

Info

Publication number
TR2021021757A2
TR2021021757A2 TR2021/021757 TR2021021757A2 TR 2021021757 A2 TR2021021757 A2 TR 2021021757A2 TR 2021/021757 TR2021/021757 TR 2021/021757 TR 2021021757 A2 TR2021021757 A2 TR 2021021757A2
Authority
TR
Turkey
Prior art keywords
tracking mechanism
vehicles
unmanned ground
ground vehicles
vehicle
Prior art date
Application number
TR2021/021757
Other languages
Turkish (tr)
Inventor
Semi̇h Parlak Ahmet
Onur Ozceli̇k Mehmet
Solmaz Muhi̇tti̇n
Ahi̇n Volkan
Original Assignee
Havelsan Hava Elektroni̇k Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇
Filing date
Publication date
Application filed by Havelsan Hava Elektroni̇k Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ filed Critical Havelsan Hava Elektroni̇k Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇
Priority to PCT/TR2022/051636 priority Critical patent/WO2023129066A2/en
Publication of TR2021021757A2 publication Critical patent/TR2021021757A2/en

Links

Abstract

Buluş; iç ve dış ortamda, farklı arazi yapısında, hava durumu ve ortamın ışık düzeyinden bağımsız olarak insansız kara araçlarının insan ve araçları kolaylıkla takip etmesini sağlayan bir takip mekanizması ile ilgilidir.Meet; It is about a tracking mechanism that allows unmanned ground vehicles to easily track people and vehicles in indoor and outdoor environments, on different terrain structures, regardless of weather conditions and light levels of the environment.

Description

TARIFNAME INSANSIZ KARA ARAÇLARI IÇIN TAKIP MEKANIZMASI Teknik Alan Bulus; iç ve dis ortamda, farkli arazi yapisinda, hava dummu ve ortamin isik düzeyinden bagimsiz olarak insansiz kara araçlarinin insan ve araçlari kolaylikla takip etmesini saglayan bir takip mekanizmasi ile ilgilidir. Önceki Teknik Günümüzde bazi mobil araçlar, mobil robotlar ve insansiz askeri araç prototiplerinde lider takip özelligi konsept olarak ortaya koyulmustur. Bu görevi yerine getirebilmek için mono kamera, stereo kamera, lidar gibi elektro Optik, ultrasonik sensör, radar gibi aktif radyo frekans yayin yapan sensörler kullanilmaktadir. Bu sensörlerden bir veya birkaçi araç üzerinde bulundugunda daha hassas sonuç için sensör füzyonu islemleri gerçeklestirilmektedir. Bu sensörlerin çiktilari ile bir sanal dünya modeli ortaya koyulmakta ve bu sanal dünya üzerinde robotun takip edebilecegi rota planlanmasi yapilmaktadir. Ya da takip edilecek insan ya da araç üzerinde radyo frekans yayini yapan veya görsel olarak kendini belli eden isaretçiler (beacon) bulundurmaktadirlar, böylelikle takip edecek araç ya da robot bu isaretçinin mesafe ve yön bazinda izini sürmektedir. Kullnilan bu sensörlerin önünde mercekler bulundugu için toz, kir ve siviya maruz kaldiginda ya kullanilamaz hale gelmekte ya da performanslari düsmektedir. Kamera, renk sensörü gibi elektro-optik komponentler ortam isigindan dogrudan etkilenmektedir. Her ne kadar kullanilan isik frekansi donanimsal veya yazilim yoluyla filtrelenmeye çalisilsa da farkli ortam isiklarinda sensörden verim alinamamaktadir. Elektro-optik sistemler ile insan ve araç tespiti yazilimsal olarak makine Ögrenmesi algoritmalari ile gerçeklestirildigi için görev mahallindeki diger belirleyici görsel unsurlara (agaç, yol, bina vs.) dogrudan bagimlidir bu sebeple her ortamda farkli performansa sahiptir. Oysa takip ve konvoy uygulamalarinin istenen her ortamda bu degiskenlerden bagimsiz olarak saglikli sekilde çalismasi elzemdir. Konvoy ve takip görevleri unsurlarin güvenliginin ön planda oldugu kritik bir süreçtir. Lidar sensörleri, aktif isinim yoluyla takip edilecek hedefin mesafesini buldugu için kizilötesi kameralarla kolaylikla tespit edilebilmekte bu da operasyon sirasinda konvoyun hareketini açiga çikararak hem askeri operasyonu hem de askeri unsurlari hayati riske atmaktadir. patent dokümaninda, kasa içeren bir yer istasyonunu, kasaya yerlestirilmis bir güç kaynagini ve birinci uca ve birinci uca zit bir ikinci uca sahip ip içeren bir insansiz hava araci sisteminden bahsedilmektedir. Teknigin bilinen durumunda yer alan USlO36402681 sayili Birlesik Devletler patent dokümaninda, bir insansiz hava aracini (UAV) uçurmak için bir ortam açiklanmaktadir. Burada ip, insansiz hava aracinin uçus alani içindeki yer veya diger nesnelerle kasitsiz temasini önlemek için kullanilmaktadir. Teknikte var olan sistemler incelendiginde iç ve dis ortamda, farkli arazi yapisinda, hava durumu ve ortamin isik düzeyinden bagimsiz olarak insansiz kara araçlarinin insan ve araçlari kolaylikla takip etmesini saglayan bir takip mekanizmasinin gelistirilmesi ihtiyaci duyulmustur. Bulusun Amaçlari Bu bulusun amaci, iç ve dis ortamda, farkli arazi yapisinda, hava durumu ve ortamin isik düzeyinden bagimsiz olarak insansiz kara araçlarinin insan ve araçlari kolaylikla takip etmesini saglayan bir takip mekanizmasinin gerçeklestirilmesidir. Bu bulusun bir baska amaci, basit elektromekanik yapisi sayesinde mercek, optik, radyo frekans yayini gibi özel gereksinimlere ihtiyaç duymayan bir takip mekanizmasinin gerçeklestirilmesidir. Bu bulusun bir baska amaci, farkli insan, insansiz kara araci, motorlu tasitlarin takibinde herhangi bir ön hazirlik gerekmeksizin düsük hesaplama maliyeti ile görevin icra edilmesini saglayan bir takip mekanizmasinin gerçeklestirilmesidir. Bulusun Ayrintili Açiklamasi Bu bulusun amacina ulasmak için gerçeklestirilen insansiz kara araçlari için takip mekanizmasi ekli sekilde gösterilmistir. Bu sekiller; Sekil 1: Bulus konusu insansiz kara araçlari için gelistirilmis takip mekanizmasinin perspektif görünümüdür. Sekil 2: Bulus konusu insansiz kara araçlari için gelistirilmis takip mekanizmasinin üstten görünümüdür. Sekil 3: Bulus konusu insansiz kara araçlari için gelistirilmis takip mekanizmasinin A-A kesit görünümüdür. Sekil 4: Bulus konusu insansiz kara araçlari için gelistirilmis takip mekanizmasinin B-B kesit görünümüdür. Sekilde yer alan parçalar tek tek numaralandirilmis olup, bu numaralarin karsiliklari asagida verilmistir. Baglanti kancasi Potansiyometre Yön mili Yön çubugu Torsiyon yayi Zemberek yay . Kasnak kapagi . Rulman Bulus, insansiz kara araçlari için gelistirilmis bir takip mekanizmasi ile ilgili Olup, takip edilecek insan ya da aracin takip mesafesini ve yönelimini belirleyen halatin (1) ucunda yer alan ve takip edilecek insan ya da araca mekanik olarak baglantinin saglanmasi islevini yerine getiren baglanti kancasi (2), halat (1) çekilme mesafesi ve yöneliminin algilanmasini saglayan potansiyometre (3), takip edilecek insan veya aracin yönelimini (azimut) potansiyometreye (3) ileten yön mili (4), yön miline (4) bagli ve halatin (1) çekilme yönünün belirlenmesinde kullanilan yön çubugu (5), Mekanizma içerisindeki parçalari barindiran ve dis ortam sartlarindan muhafaza eden gövde (6), gövde (6) üzerinde yer alan ve mekanizma içerisindeki iç unsurlara erisimi saglayan kapak (7), - gövde (6) içerisinde yer alan ve yönelim açisinin kuvvet olmadigi zamanlarda baslangiç konumuna dönmesini saglayan torsiyon yayi (8), - haiatta (1) çekme kuvveti olmadiginda geri dönüs hareketi yaparak halatin (l) üzerine sarilmasini saglayan zemberek yay (9), - halat (1] hareketi esnasinda zemberek yayinin (9) baglantisinin yapilmasini ve halatin (1] üzerine sarilmasini saglayan kasnak (10), - kasnak (10) ile baglantili ve kasnak (10) içine erisimini saglayan kasnak kapagi (l 1 i, - gövde (6) içerisinde yer alan ve halat (1] çekildiginde kasnagi (10) yataklayan rulman (12), parçalarini içermektedir. Bulus konusu insansiz kara araçlari (IKA) için gelistirilmis takip mekanizmasi, IKA üzerine entegre edilir. Baglanti kancasi (2), takip edilecek unsur (insan ya da herhangi bir araç) üzerine kolaylikla takilir. Uygun takip mesafesine gelince takip sistemi aktive edilir. Takip edilecek unsur ilerledikçe halati (1) çeker ve halat (1) potansiyometreyi (3) çevirerek zemberek yaya (9) bagli kasnaktan (10) bosalir. Potansiyometre (3] Ölçümü ile takip edilecek unsurun hangi mesafede oldugu algilanir. Yine ayni sekilde takip edilecek unsur yön degistirdikçe yön çubugu (5 ), yön mili (4) vasitasiyla yatay yönelim açisi degisir. Yön milinin (4] bagli oldugu potansiyometre (3) takip açisini ölçer. Böylelikle takip edilecek insan ya da aracin mesafesi ve açisi ölçülerek IKA kontrol sistemine gönderilir. IKA kontrol Sistemi bu verilerle uygun takip mesafesini ve araç yönelimini düzenler. Bulus; insansiz kara araçlarinin gerçeklestirdigi görevlerde insan ve araç unsurlarini kolaylikla takip ederek, onlarin gittigi yoldan yakindan takip edilmesini saglamaktadir. Otonom devriye, lojistik sevkiyat, arama kurtarma ve kesif gözetleme görevlerinde intikal düzeni alinmasini kolaylastiran hem lider takibini gerçeklestiren hem de geriye kalan konvoyun düzeninin korunmasini saglayan bir mekanizmadir. Askeri robotik teknolojilerde kullanilmasi amaçlanan bulus, kolaylikla sivil uygulamalara da entegre edilebilmektedir. Arama kurtarma, yarali tahliyesi gibi sivil saglik sektörü görevleri için uygun olmaktadir. Pek çok kisi ile tasinan sedye sistemleri yerine tek kisi ile yönlendirilebilen ve kullaniciyi takip eden mobil sistemlerin tasarlanmasini saglamaktadir. Tarim ve onnancilik alaninda hasadin yüklenmesi, ormaneilik alet ve malzemelerinin tasinmasi için insani ya da farkli bir araci takip etmekte kullanilabilir. Endüstriyel otomasyon ve fabrika içi tasimacilik (milkrun sistemleri, otonom mobil robotlar Vb.) sektöründe kullanim potansiyeli yüksektir. TR TR TR DESCRIPTION TRACKING MECHANISM FOR UNMANNED GROUND VEHICLES Technical Alan Bulus; It is about a tracking mechanism that allows unmanned ground vehicles to easily track people and vehicles in indoor and outdoor environments, on different terrain structures, regardless of weather conditions and ambient light levels. Prior Art Today, the leader-following feature has been introduced as a concept in some mobile vehicles, mobile robots and unmanned military vehicle prototypes. In order to fulfill this task, active radio frequency transmitting sensors such as mono camera, stereo camera, lidar, electro optic, ultrasonic sensor and radar are used. When one or more of these sensors are on the vehicle, sensor fusion processes are performed for more accurate results. A virtual world model is created with the outputs of these sensors, and a route that the robot can follow is planned in this virtual world. Or they have beacons that broadcast radio frequency or visually reveal themselves on the person or vehicle to be followed, so that the vehicle or robot to be followed tracks this beacon based on distance and direction. Since there are lenses in front of these sensors, they either become unusable or their performance decreases when exposed to dust, dirt and liquid. Electro-optical components such as cameras and color sensors are directly affected by ambient light. Although the light frequency used is tried to be filtered through hardware or software, the sensor cannot be effective in different ambient lights. Since human and vehicle detection with electro-optical systems is carried out software with machine learning algorithms, it is directly dependent on other determining visual elements (trees, roads, buildings, etc.) in the task scene, therefore it has different performance in each environment. However, it is essential for tracking and convoy applications to work properly in any desired environment, independent of these variables. Convoy and follow-up missions are a critical process where the safety of the elements is at the forefront. Since lidar sensors find the distance of the target to be followed through active radiation, it can be easily detected with infrared cameras, which reveals the movement of the convoy during the operation, putting both the military operation and the military elements at risk. The patent document describes an unmanned aerial vehicle system comprising a ground station containing a chassis, a power supply placed in the chassis, and a tether having a first end and a second end opposite to the first end. In the state-of-the-art United States patent document numbered US1036402681, an environment for flying an unmanned aerial vehicle (UAV) is described. Here, the rope is used to prevent unintentional contact of the unmanned aerial vehicle with the ground or other objects within the flight area. When the existing systems in the technology are examined, there is a need to develop a tracking mechanism that allows unmanned ground vehicles to easily track people and vehicles in indoor and outdoor environments, on different terrain structures, regardless of weather conditions and ambient light levels. Purposes of the Invention The purpose of this invention is to realize a tracking mechanism that allows unmanned ground vehicles to easily track people and vehicles in indoor and outdoor environments, on different terrain structures, regardless of weather conditions and ambient light levels. Another purpose of this invention is to realize a tracking mechanism that does not need special requirements such as lenses, optics, or radio frequency broadcasting, thanks to its simple electromechanical structure. Another purpose of this invention is to realize a tracking mechanism that enables the execution of the task with low computational cost and without the need for any preliminary preparation in tracking different people, unmanned land vehicles and motor vehicles. Detailed Description of the Invention The tracking mechanism for unmanned ground vehicles designed to achieve the purpose of this invention is shown in the figure below. These shapes; Figure 1: The perspective view of the tracking mechanism developed for unmanned ground vehicles that is the subject of the invention. Figure 2: Top view of the tracking mechanism developed for unmanned ground vehicles, which is the subject of the invention. Figure 3: A-A cross-sectional view of the tracking mechanism developed for unmanned ground vehicles, which is the subject of the invention. Figure 4: B-B cross-sectional view of the tracking mechanism developed for unmanned ground vehicles, which is the subject of the invention. The parts in the figure are numbered one by one, and the equivalents of these numbers are given below. Connection hook Potentiometer Direction shaft Direction rod Torsion spring Mainspring. Pulley cover . Bearing The invention is related to a tracking mechanism developed for unmanned land vehicles. The connection hook (1) is located at the end of the rope (1) that determines the tracking distance and orientation of the person or vehicle to be followed, and performs the function of mechanically connecting the person or vehicle to be followed. 2), the potentiometer (3), which enables the detection of the rope (1) withdrawal distance and orientation, the direction shaft (4), which transmits the orientation (azimuth) of the person or vehicle to be followed to the potentiometer (3), connected to the direction shaft (4) and allowing the rope (1) to be pulled. Direction stick (5) used to determine the direction, body (6) that houses the parts inside the mechanism and protects them from external environmental conditions, cover (7) located on the body (6) and providing access to the internal elements within the mechanism, - located inside the body (6) Torsion spring (8), which allows the field and orientation angle to return to the initial position when there is no force, - mainspring (9), which enables the rope (1) to be wound on it by making a return movement when there is no pulling force in the rope (1), - mainspring during the movement of the rope (1). The pulley (10), which allows the spring (9) to be connected and the rope wrapped on it (1), - the pulley cover (l1i), which is connected to the pulley (10) and provides access to the pulley (10), - located inside the body (6) and It contains the parts of the bearing (12), which supports the pulley (10) when the rope (1] is pulled. The tracking mechanism developed for the unmanned ground vehicles (IKA) that is the subject of the invention is integrated onto the UAV. The connection hook (2) is easily attached to the element to be followed (human or any vehicle). When the appropriate following distance is reached, the tracking system is activated. As the element to be followed progresses, it pulls the rope (1) and the rope (1) is released from the pulley (10) connected to the mainspring (9) by turning the potentiometer (3). The distance of the element to be followed is detected with the measurement of the potentiometer (3). Similarly, as the element to be followed changes direction, the horizontal orientation angle changes via the direction rod (5) and the direction shaft (4). The potentiometer (3) to which the direction shaft (4) is connected. It measures the tracking angle. Thus, the distance and angle of the person or vehicle to be followed is measured and sent to the IKA control system. With this data, the IKA control system regulates the appropriate tracking distance and vehicle orientation by easily tracking the human and vehicle elements in the tasks performed by unmanned land vehicles. The invention, which is intended to be used in military robotic technologies, facilitates the establishment of a deployment order in autonomous patrol, logistics shipment, search and rescue and reconnaissance surveillance missions, and ensures the maintenance of the order of the remaining convoy. It can also be easily integrated into civilian applications. . It is suitable for civil health sector tasks such as search and rescue and casualty evacuation. It enables the design of mobile systems that can be guided by a single person and follow the user, instead of stretcher systems carried by many people. In agriculture and agriculture, it can be used to follow a human or other vehicle for the loading of harvest and the transportation of forestry tools and materials. It has a high potential for use in the industrial automation and factory transportation (milkrun systems, autonomous mobile robots, etc.) sectors. TR TR TR

TR2021/021757 2021-12-30 2021-12-30 TRACKING MECHANISM FOR UNMANNED GROUND VEHICLES TR2021021757A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/TR2022/051636 WO2023129066A2 (en) 2021-12-30 2022-12-27 Following mechanism for unmanned ground vehicles

Publications (1)

Publication Number Publication Date
TR2021021757A2 true TR2021021757A2 (en) 2023-07-21

Family

ID=

Similar Documents

Publication Publication Date Title
US11697411B2 (en) Apparatus and methods for obstacle detection
JP7185032B2 (en) Fixed air countermeasures for rapid deployment and neutralization of target aircraft
Yamauchi PackBot: a versatile platform for military robotics
JP2022501263A (en) Aircraft with countermeasures to neutralize the target aircraft
EP3078988B1 (en) Flight control system with dual redundant lidar
CA1338747C (en) Automatic landing and navigation system
JP7039880B2 (en) Takeoff / landing device, control method of takeoff / landing device, and program
EP2697700B1 (en) System and method for controlling an unmanned air vehicle
US8380425B2 (en) Autonomous collision avoidance system for unmanned aerial vehicles
CN110624189B (en) Unmanned aerial vehicle-mounted fire extinguishing bomb device, fire-fighting unmanned aerial vehicle and emission control method
CN212332970U (en) Unmanned aerial vehicle machine carries fire extinguishing bomb device, fire control unmanned aerial vehicle
TR2021021757A2 (en) TRACKING MECHANISM FOR UNMANNED GROUND VEHICLES
WO2023129066A2 (en) Following mechanism for unmanned ground vehicles
Ayaz Comparative study of indoor navigation systems for autonomous flight
RU2661295C1 (en) Device for determination and marking of a territory with chemical and radioactive influence
US20200307783A1 (en) Compact Transformable Robot
Danko et al. Robotic rotorcraft and perch-and-stare: Sensing landing zones and handling obscurants
Fraiwan et al. Obstacle avoidance and navigation in robotic systems: A land and aerial robots study
Dille et al. Air-ground collaborative surveillance with human-portable hardware
RU2717047C1 (en) Complex of distributed control of intelligent robots for control of small-size drones
Saska et al. ‘DARPA SubT STIX qualification submission: CTU-CRAS
Bruemmer et al. Mixed-initiative control for collaborative countermine operations
CN111776221A (en) Demonstration type automatic striking type intelligent rotor unmanned aerial vehicle for police
Elliott et al. 9 Detect, Sense, and Avoid
Beckman et al. Towards unmanned systems for dismounted operations in the Canadian Forces