TR2021021659A2 - MAGNETIC PROBIOTIC BACTERIA PRODUCTION METHOD THAT SPECIFICALLY TARGETS CANCER CELLS - Google Patents

MAGNETIC PROBIOTIC BACTERIA PRODUCTION METHOD THAT SPECIFICALLY TARGETS CANCER CELLS

Info

Publication number
TR2021021659A2
TR2021021659A2 TR2021/021659A TR2021021659A TR2021021659A2 TR 2021021659 A2 TR2021021659 A2 TR 2021021659A2 TR 2021/021659 A TR2021/021659 A TR 2021/021659A TR 2021021659 A TR2021021659 A TR 2021021659A TR 2021021659 A2 TR2021021659 A2 TR 2021021659A2
Authority
TR
Turkey
Prior art keywords
magnetite
sequence
bacterial strain
iron
magnetic resonance
Prior art date
Application number
TR2021/021659A
Other languages
Turkish (tr)
Inventor
Özgür Şafak Şeker Urartu
Yavuz Merve
Şahi̇n Kehri̇bar Ebru
Original Assignee
Bilkent Ueniversitesi Ulusal Nanoteknoloji Arastirma Merkezi
Bi̇lkent Üni̇versi̇tesi̇ Ulusal Nanoteknoloji̇ Araştirma Merkezi̇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bilkent Ueniversitesi Ulusal Nanoteknoloji Arastirma Merkezi, Bi̇lkent Üni̇versi̇tesi̇ Ulusal Nanoteknoloji̇ Araştirma Merkezi̇ filed Critical Bilkent Ueniversitesi Ulusal Nanoteknoloji Arastirma Merkezi
Priority to TR2021/021659A priority Critical patent/TR2021021659A2/en
Publication of TR2021021659A2 publication Critical patent/TR2021021659A2/en
Priority to PCT/TR2022/051032 priority patent/WO2023128982A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/26Iron; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1896Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes not provided for elsewhere, e.g. cells, viruses, ghosts, red blood cells, virus capsides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0091Oxidoreductases (1.) oxidizing metal ions (1.16)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y116/00Oxidoreductases oxidizing metal ions (1.16)
    • C12Y116/03Oxidoreductases oxidizing metal ions (1.16) with oxygen as acceptor (1.16.3)
    • C12Y116/03001Ferroxidase (1.16.3.1), i.e. ceruloplasmin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K2035/11Medicinal preparations comprising living procariotic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

Bu buluş, tümör kitlelerinde kolonize olabilen ve septik şok yaratmayan probiyotik bakteri suşu içerisinde manyetit biriktirilmesini ve manyetit yüklenen probiyotik bakterilerin manyetik rezonans görüntülemesinde ve hedefli manyetik rezonans hipertermisi tedavisinde kullanılmasını sağlayan bir yöntem (100) ile ilgilidir.The present invention relates to a method (100) that enables magnetite to be deposited in a probiotic bacterial strain that can colonize tumor masses and does not cause septic shock, and to use magnetite-loaded probiotic bacteria in magnetic resonance imaging and in the treatment of targeted magnetic resonance hyperthermia.

Description

TARIFNAME KANSER HÜCRELERINI SPESIFIK OLARAK HEDEFLEYEN MANYETIK ÖZELLIK TASIYAN PROBIYOTIK BAKTERI ÜRETIM YÖNTEMI Teknik Alan Bu bulus, tümör kitlelerinde kolonize olabilen ve septik sok yaratmayan probiyotik bakteri susu içerisinde manyetit biriktirilmesini ve manyetit yüklenen probiyotik bakterilerin manyetik rezonans görüntülemesinde ve hedefli manyetik rezonans hiperterrnisi tedavisinde kullanilmasini saglayan bir yöntem ile ilgilidir. Önceki Teknik Kanser hastaligi küresel ölçüde sik rastlanan bir hastalik olarak öne çikmakta ve kanser tedavisi ve arastirmalari saglik sektöründe önemli bir paya sahip olmaktadir. Tümör kitlelerinin görüldügü kanser tiplerinde hastalarin görüntüleme ve tedavi hedefleme süreçlerinde manyetik rezonans görüntüleme teknikleri büyük yer tutmaktadir. Manyetik rezonans görsellerinin görüntü kalitesi tümör dokusunun çevresindeki saglikli dokularla karsilastirildiginda belirgin manyetik rezonans tepkisi vermesine bagli oldugundan görüntüleme islemi belli durumlarda zorlasabilmektedir. Görüntü netligini artirmak üzere kullanilan hedefli manyetik isaretçiler bulunsa dahi isaretçi teslimi ve metabolizmasi görüntüleme süreçlerinde farkli bir zorluga neden olmaktadir. Mevcut teknikteki hedefli manyetik isaretçilerin eksiklikleri düsünüldügünde teknigin bilinen durumunda tümör kitlelerinde kolonize olabilen ve septik sok yaratmayan probiyotik bakteri susu içerisinde manyetit biriktirilmesini ve manyetit yüklenen probiyotik bakterilerin manyetik rezonans görüntülemesinde ve hedetli manyetik rezonans hipertermisi tedavisinde kullanilmasini saglayan bir yönteme ihtiyaç duyuldugu görülmektedir. Teknigin bilinen durumunda yer alan US 10273469 sayili Birlesik Devletler patent dokümaninda, metal nanopartikülleri biriktiren probiyotik bakterilerden bahsedilmektedir bahsedilmektedir. Söz konusu bakteriyel sistein mineral alimi yetersizliginin iyilestirilmesinde, gastrointestinal görüntülemede kontrast ajani olarak görüntü kalitesinin artirilmasinda veya kanser dokularinin hedeflenerek farkli doku kanserlerinin iyilestirilmesinde kullanilabilmekte, seçilen probiyotik bakteri yüzeyine uygun pH ortaminda seçici olarak manyetik nanoparçaciklar biriktirilmektedir. Bulusun Kisa Açiklamasi Bu bulusun amaci, tümör kitlelerinde kolonize olabilen ve septik sok yaratmayan probiyotik bakteri susu içerisinde manyetit biriktirilmesini ve manyetit yüklenen probiyotik bakterilerin manyetik rezonans görüntülemesinde ve hedefli manyetik rezonans hipertermisi tedavisinde kullanilmasini saglayan bir yöntem gerçeklestirmektir. Bulusun Ayrintili Açiklamasi Bu bulusun amacina ulasmak için gerçeklestirilen "Kanser Hücrelerini Spesifik Olarak HedeIleyen Manyetik Özellik Tasiyan Probiyotik Bakteri Üretim Yöntemi" ekli sekilde gösterilmis olup, bu sekil; Sekil-l Bulus konusu yöntemin akis semasidir. Sekilde yer alan parçalar tek tek numaralandirilmis olup, bu numaralarin karsiliklari asagida verilmistir. 100. Yöntem Tümör kitlelerinde kolonize olabilen ve septik sok yaratmayan probiyotik bakteri susu içerisinde manyetit biriktirilmesini ve manyetit yüklenen probiyotik bakterilerin inanyetik rezonans görüntülemesinde ve hedefli manyetik rezonans hipertermisi tedavisinde kullanilmasini saglayan bulus konusu yöntem (100); - tümör kitlelerinde kolonize olabilen ve septik sok yaratmayan hedef probiyotik bakteri susunun belirlenmesi (101); - belirlenen bakteri susu içerisine demir iyonlarinin hücre içine alimini, hücre içinde tutulumunu, oksidasyonunu ve çekirdeklenmesini yönetecek proteinlerin yüksek hacimde üretilmesini saglayacak sekansin manyetit biriktirme sekansi olarak eklenmesi (102); - manyetit biriktirme sekansini gösteren manyetit depolayan bakteri kolonisinin çogaltilarak ilaçlastirilmasi (103); - ilaçlastirilan manyetit depolayan bakteri kolonisinin manyetik rezonans görüntüleme ve hedefli manyetik rezonans hipertermisi tedavisi öncesinde hasta tarafindan alinarak tümör kitlelerinde kolonilesmenin saglanmasi Bulus konusu yöntem (100) içerisinde yer alan tümör kitlelerinde kolonize olabilen ve septik sok yaratmayan hedef probiyotik bakteri susunun belirlenmesi (101) adimi, görüntüleme ve tedavi uygulanmak istenen tümör bölgesinde kolonilesebilen ve hasta vücudunda septik sok yaratmayan en az bir hedef probiyotik bakteri susunu belirlemek üzere yapilandirilmaktadir. Bulusun tercih edilen uygulamasinda tümör kitlelerinde kolonize olabilen ve septik sok yaratmayan hedef probiyotik bakteri susunun belirlenmesi (101) adimi, Escherichia coli' BL21 (DE3) hedef probiyotik bakteri susunu belirlemek üzere yapilandirilmaktadir. Bulus konusu yöntem (100) içerisinde yer alan belirlenen bakteri susu içerisine demir iyonlarinin hücre içine alimini, hücre içinde tutulumunu, oksidasyonunu ve çekirdeklenmesini yönetecek proteinlerin yüksek hacimde üretilmesini saglayacak sekansin manyetit biriktirrne sekansi olarak eklenmesi (102) adimi, en az bir demir alimi proteinini, en az bir demir tutulumu proteinini, en az bir kontrolü demir oksidasyonu proteinini ve en az bir okside demir çekirdeklenmesi yönetici proteinini sekanslamak, sekansi çikarilan proteinleri üretmek üzere söz konusu sekanslari içeren bir sentetik genetik devre düzenlemek, sentetik genetik devreyi hedef probiyotik bakteriye yatay gen transferi tekniklerinden en az biriyle aktarmak üzere yapilandirilmaktadir. Bulusun tercih edilen uygulamasinda belirlenen bakteri susu içerisine demir iyonlarinin hücre içine alimini, hücre içinde tutulumunu, oksidasyonunu ve çekirdeklenmesini yönetecek proteinlerin yüksek hacimde üretilmesini saglayacak sekansin manyetit biriktirme sekansi olarak eklenmesi (102) adimi, demir iyonlarinin hücre içine alinmasinin kolaylastirilmasi için demir tasiyici proteini sekanslayarak sentetik genetik devreye eklemek üzere yapilandirilmaktadir. Bulusun tercih edilen uygulamasinda belirlenen bakteri susu içerisine demir iyonlarinin hücre içine alimini, hücre içinde tutulumunu, oksidasyonunu ve çekirdeklenmesini yönetecek proteinlerin yüksek hacimde üretilmesini saglayacak sekansin manyetit biriktirme sekansi olarak eklenmesi (102) adimi, demir oksit malzemeye olan baglanma egilimini arttirmak amaciyla malzeme baglama peptidini sekanslayarak sentetik genetik devreye eklemek üzere yapilandirilmaktadir. Bulusun tercih edilen uygulamasinda belirlenen bakteri susu içerisine demir iyonlarinin hücre içine alimini, hücre içinde tutulumunu, oksidasyonunu ve çekirdeklenmesini yönetecek proteinlerin yüksek haciinde üretilmesini saglayacak sekansin manyetit biriktirine sekansi olarak eklenmesi (102) adimi, arti iki yüklü demir iyonlarinin efektif bir sekilde oksitlenmesini saglamak amaciyla ferroksidaz proteinini sekanslayarak sentetik genetik devreye eklemek üzere yapilandirilmaktadir. Bulusun tercih edilen uygulamasinda belirlenen bakteri susu içerisine demir iyonlarinin hücre içine alimini, hücre içinde tutulumunu, oksidasyonunu ve çekirdeklenmesini yönetecek proteinlerin yüksek hacimde üretilmesini saglayacak sekansin manyetit biriktirme sekansi olarak eklenmesi (102) adimi, demire baglanma özelligi tasiyan ve nano- malzemenin çekirdeklenmesini saglayan manyetit biyomineralizasyon proteinini sekanslayarak sentetik genetik devreye eklemek üzere yapilandirilmaktadir. Bulus konusu yöntem (100) içerisinde yer alan manyetit biriktirme sekansini gösteren manyetit depolayan bakteri kolonisinin çogaltilarak ilaçlastirilmasi (103) adimi, sentetik genetik devreyi alarak protein sentezi yapan hedef probiyotik bakterileri içlerinde biriktirilen manyetitleri manyetik alan ile yönlendirerek seçmek, seçilen hedef probiyotik bakterileri ilaç üretimine uygun derisimde çogaltmak, çogaltilan bakteri kolonisini ilaç halinde paketlemek üzere yapilandirilmaktadir. Bulus konusu yöntem (100) içerisinde yer alan ilaçlastirilan manyetit depolayan bakteri kolonisinin manyetik rezonans görüntüleme ve hedefli manyetik rezonans hipertermisi tedavisi öncesinde hasta tarafindan alinarak tümör kitlelerinde kolonilesmenin saglanmasi (104) adimi, manyetit içeren hedef probiyotik bakteriyi ilaç olarak hastaya vermek, hedef probiyotik bakteri kolonisinin tümör içerisinde kolonilesmesini saglamak, hedef probiyotik bakteri kolonisiyle kontrasti artirilmis manyetik rezonans görüntüleme islemleri yürütmek, hedef probiyotik bakteri kolonisini hedefli manyetik rezonans alaninda tutarak tümör içinde lokal hipertermi yaratmak ve tümör dokusunu fiziksel olarak küçültmek üzere yapilandirilmaktadir. Bulusun Sanayiye Uygulanmasi Bulus konusu yöntemde (100) tümör kitlelerinde kolonize olabilen ve septik sok yaratmayan Escherichi'a cali BL21 (DE3) hedef probiyotik bakteri susu belirlenmekte (101), demir iyonlarinin hücre içine alinmasinin kolaylastirilmasi için demir tasiyici proteini seklindeki en az bir demir alimi proteini, demir oksit malzemeye olan baglanma egilimini arttirmak amaciyla malzeme baglama peptidi seklindeki en az bir demir tutulumu proteini, arti iki yüklü demir iyonlarinin efektif bir sekilde oksitlenmesini saglamak amaciyla ferroksidaz proteini seklindeki en az bir kontrolü demir oksidasyonu proteini ve demire baglanma özelligi tasiyan ve nano-malzemenin çekirdeklenmesini saglayan manyetit biyomineralizasyon proteini seklindeki en az bir okside demir çekirdeklenmesi yönetici proteini sekanslanmakta, sekansi çikarilan proteinleri üretmek üzere söz konusu sekanslari içeren bir sentetik genetik devre düzenlenmekte, sentetik genetik devre hedef probiyotik bakteriye yatay gen transferi tekniklerinden en az biriyle aktarilmakta (102), sentetik genetik devreyi alarak protein sentezi yapan hedef probiyotik bakteriler içlerinde biriktirilen manyetitleri manyetik alan ile yönlendirilerek seçilmekte, seçilen hedef probiyotik bakteriler ilaç üretimine uygun derisimde çogaltilmakta, çogaltilan bakteri kolonisi ilaç halinde paketlenmekte (103), manyetit içeren hedef probiyotik bakteri ilaç olarak hastaya verilmekte, hedef probiyotik bakteri kolonisinin tümör içerisinde kolonilesmesi saglanmakta, hedef probiyotik bakteri kolonisiyle kontrasti artirilmis manyetik rezonans görüntüleme islemleri yürütülmekte, hedef probiyotik bakteri kolonisi hedefli manyetik rezonans alaninda tutularak tümör içinde lokal hipertermi yaratilmakta ve tümör dokusu fiziksel olarak küçültülmektedir (104). Bulus konusu yöntem (100) kendiliginden manyetit biriktiren probiyotik bakterilerin tümör besin ve oksijen ortaminda kolonilesmesiyle manyetik rezonans görüntüleme ve hipertermi terapisi islemlerinin kolaylastirilmasi saglanmaktadir. Bu temel kavramlar etrafinda, bulus konusu "Kanser Hücrelerini Spesifik Olarak Hedefleyen Manyetik Özellik Tasiyan Probiyotik Bakteri Üretim Yöntemi (100)" ile ilgili çok çesitli uygulamalarin gelistirilmesi mümkün olup, bulus burada açiklanan örneklerle sinirlandirilamaz, esas olarak istemlerde belirtildigi gibidir. Tümör kitlelerinde kolonize olabilen ve septik sok yaratmayan hedef probiyotik bakteri susunun belirlenmesi 4,. 101 Belirlenen bakteri susu içerisine demir iyonlarinin hücre içine alimini, hücre içinde tutulumunu, oksidasyonunu ve çekirdeklenmesini 4/- 102 yönetecek proteinlerin yüksek hacimde üretilmesini saglayacak sekansin manyetit biriktirme sekansi olarak eklenmesi Manyetit biriktirme sekansini gösteren manyetit depolayan bakteri 103 kolonisinin çogaltilarak ilaçlastirilmasi Ilaçlastirilan manyetit depolayan bakteri kolonisinin manyetik 104 rezonans görüntüleme ve hedefli manyetik rezonans hipertermisi f tedavisi Öncesinde hasta tarafindan alinarak tümör kitlelerinde kolonilesmenin saglanmasi TR TR TR TR TR TR DESCRIPTION METHOD OF PROBIOTIC BACTERIA PRODUCTION WITH MAGNETIC PROPERTIES THAT SPECIFICALLY TARGETS CANCER CELLS Technical Field This invention enables the accumulation of magnetite in probiotic bacterial strain that can colonize tumor masses and does not cause septic shock, and the use of magnetite-loaded probiotic bacteria in magnetic resonance imaging and targeted magnetic resonance hyperthermia treatment. a method It is related to. Prior Art Cancer disease stands out as a common disease on a global scale, and cancer treatment and research have an important share in the healthcare sector. Magnetic resonance imaging techniques have an important place in the imaging and treatment targeting processes of patients in cancer types where tumor masses are seen. Since the image quality of magnetic resonance images depends on the significant magnetic resonance response of tumor tissue compared to surrounding healthy tissues, the imaging process can be difficult in certain situations. Even though targeted magnetic markers are available to improve image clarity, marker delivery and metabolism pose a different challenge in imaging processes. Considering the shortcomings of targeted magnetic markers in the current technique, it seems that a method is needed that allows the accumulation of magnetite in probiotic bacterial strain that can colonize tumor masses and does not cause septic shock in the known state of the technique and the use of magnetite-loaded probiotic bacteria in magnetic resonance imaging and targeted magnetic resonance hyperthermia treatment. In the United States patent document numbered US 10273469, which is in the state of the art, probiotic bacteria that accumulate metal nanoparticles are mentioned. The bacterial cysteine in question can be used to improve mineral intake deficiency, to increase image quality as a contrast agent in gastrointestinal imaging, or to treat different tissue cancers by targeting cancer tissues. Magnetic nanoparticles are selectively accumulated in a pH environment suitable for the surface of the selected probiotic bacteria. Brief Description of the Invention The purpose of this invention is to realize a method that allows the accumulation of magnetite in probiotic bacterial strain that can colonize tumor masses and does not cause septic shock, and the use of magnetite-loaded probiotic bacteria in magnetic resonance imaging and targeted magnetic resonance hyperthermia treatment. Detailed Description of the Invention "Probiotic Bacteria Production Method with Magnetic Features that Specifically Target Cancer Cells", which was carried out to achieve the purpose of this invention, is shown in the figure below; Figure-1 is the flow diagram of the method subject to the invention. The parts in the figure are numbered one by one, and the equivalents of these numbers are given below. 100. Method The method of the invention (100) enables the accumulation of magnetite in probiotic bacterial strain that can colonize tumor masses and does not cause septic shock, and the use of magnetite-loaded probiotic bacteria in magnetic resonance imaging and targeted magnetic resonance hyperthermia treatment; - determination of target probiotic bacterial strain that can colonize tumor masses and do not cause septic shock (101); - adding the sequence into the specified bacterial water as a magnetite accumulation sequence that will ensure the high volume production of proteins that will manage the uptake, retention, oxidation and nucleation of iron ions into the cell (102); - disinfection by multiplying the magnetite-storing bacterial colony showing the magnetite accumulation sequence (103); - Ensuring colonization of tumor masses by taking the medicated magnetite-storing bacterial colony by the patient before magnetic resonance imaging and targeted magnetic resonance hyperthermia treatment. Determination of the target probiotic bacterial strain that can colonize tumor masses and does not cause septic shock within the method (100) of the invention. Step (101), It is configured to identify at least one target probiotic bacterial strain that can colonize the tumor area where imaging and treatment is desired and does not cause septic shock in the patient's body. In the preferred embodiment of the invention, the step (101) of determining the target probiotic bacterial strain that can colonize tumor masses and not cause septic shock is configured to determine the target probiotic bacterial strain of Escherichia coli' BL21 (DE3). The step (102) is to add at least one iron uptake protein, as a magnetite accumulation sequence, to the determined bacterial strain in the method (100) of the invention, which will ensure the high volume production of proteins that will manage the uptake, retention, oxidation and nucleation of iron ions into the cell, sequencing at least one iron retention protein, at least one control iron oxidation protein, and at least one oxidized iron nucleation manager protein, engineering a synthetic genetic circuit containing said sequences to produce the sequenced proteins, applying the synthetic genetic circuit to the target probiotic bacterium using horizontal gene transfer techniques. It is configured to transfer with at least one. In the preferred application of the invention, step (102) is added to the specified bacterial water as a magnetite accumulation sequence of the sequence that will ensure the high volume production of proteins that will manage the uptake, retention, oxidation and nucleation of iron ions into the cell, by sequencing the iron transporter protein and synthetic synthesis to facilitate the uptake of iron ions into the cell. It is structured to add to the genetic circuit. In the preferred application of the invention, the step (102) is to add the sequence that will ensure high volume production of proteins that will manage the uptake, retention, oxidation and nucleation of iron ions into the determined bacterial strain as a magnetite deposition sequence, by sequencing the material binding peptide in order to increase the binding tendency to the iron oxide material. Synthetic genetics are configured to add to the circuit. In the preferred application of the invention, step (102) is added to the magnetite accumulation of the sequence that will ensure the production of high volumes of proteins that will manage the uptake, retention, oxidation and nucleation of iron ions into the specified bacterial water, plus ferroxidase in order to ensure the effective oxidation of doubly charged iron ions. It is structured to sequence the protein and add it to the synthetic genetic circuit. In the preferred application of the invention, step (102) is added to the specified bacterial water as a magnetite deposition sequence, which will ensure the high volume production of proteins that will manage the uptake, retention, oxidation and nucleation of iron ions into the cell, and the magnetite biomineralization, which has the property of binding to iron and enables the nucleation of the nano-material. It is structured to sequence the protein and add it to the synthetic genetic circuit. The step (103) of multiplying and medicating the magnetite-storing bacterial colony showing the magnetite deposition sequence in the method (100) of the invention is to select the target probiotic bacteria that perform protein synthesis by taking the synthetic genetic circuit by directing the magnetite accumulated in them with a magnetic field, and to make the selected target probiotic bacteria suitable for drug production. It is structured to multiply on my skin and package the multiplied bacterial colony into medicine. The step (104) in the method of the invention (100) is to remove the medicated magnetite-storing bacterial colony by the patient before magnetic resonance imaging and targeted magnetic resonance hyperthermia treatment and to ensure colonization in the tumor masses. It is configured to ensure colonization within the tumor, to conduct contrast-enhanced magnetic resonance imaging procedures with the target probiotic bacterial colony, to create local hyperthermia within the tumor by keeping the target probiotic bacterial colony in the targeted magnetic resonance field, and to physically shrink the tumor tissue. Application of the Invention to Industry In the method of the invention (100), the target probiotic bacterial strain of Escherichi, BL21 (DE3), which can colonize tumor masses and does not cause septic shock, is determined (101), and at least one iron intake in the form of iron transporter protein is determined to facilitate the uptake of iron ions into the cell. protein, at least one iron retention protein in the form of a material binding peptide in order to increase its binding tendency to iron oxide material, at least one control iron oxidation protein in the form of ferroxidase protein in order to ensure the effective oxidation of positively charged iron ions, and a nano-oxidation protein with iron-binding properties. At least one oxidized iron nucleation manager protein in the form of magnetite biomineralization protein, which enables the nucleation of the material, is sequenced, a synthetic genetic circuit containing the sequences in question is arranged to produce the sequenced proteins, and the synthetic genetic circuit is transferred to the target probiotic bacterium with at least one of the horizontal gene transfer techniques (102). The target probiotic bacteria, which synthesize protein by taking the synthetic genetic circuit, are selected by directing the magnetite accumulated inside them with a magnetic field, the selected target probiotic bacteria are multiplied in a skin suitable for drug production, the multiplied bacterial colony is packaged as a medicine (103), the target probiotic bacteria containing magnetite is given to the patient as a medicine, the target probiotic bacteria are multiplied in a skin suitable for drug production. Colonization of the probiotic bacterial colony within the tumor is ensured, contrast-enhanced magnetic resonance imaging procedures are carried out with the target probiotic bacterial colony, local hyperthermia is created within the tumor by keeping the target probiotic bacterial colony in the targeted magnetic resonance field, and the tumor tissue is physically reduced (104). The method (100) of the invention facilitates magnetic resonance imaging and hyperthermia therapy processes by colonizing probiotic bacteria that spontaneously accumulate magnetite in the tumor nutrient and oxygen environment. Around these basic concepts, it is possible to develop a wide variety of applications related to the subject of the invention, "Probiotic Bacteria Production Method with Magnetic Features (100) That Specifically Targets Cancer Cells", and the invention cannot be limited to the examples explained here, it is essentially as stated in the claims. Determination of target probiotic bacterial strain that can colonize tumor masses and do not cause septic shock 4,. 101 Addition of the sequence that will ensure high volume production of proteins that will manage the uptake, retention, oxidation and nucleation of iron ions into the cell into the determined bacterial strain as a magnetite accumulation sequence. Multiplying and drugging the magnetite storing bacterial colony showing the magnetite accumulation sequence. magnetic 104 resonance imaging and targeted magnetic resonance hyperthermia f treatment Ensuring colonization of tumor masses by being removed by the patient before TR TR TR TR TR TR

Claims (10)

ISTEMLER . Tümör kitlelerinde kolonize olabilen ve septik sok yaratmayan probiyotik bakteri susu içerisinde manyetit biriktirilmesini ve manyetit yüklenen probiyotik bakterilerin manyetik rezonans görüntülemesinde ve hedefli manyetik rezonans hipertermisi tedavisinde kullanilmasini saglayan; tümör kitlelerinde kolonize olabilen ve septik sok yaratmayan hedef probiyotik bakteri susunun belirlenmesi (101); belirlenen bakteri susu içerisine demir iyonlarinin hücre içine alimini, hücre içinde tutulumunu, oksidasyonunu ve çekirdeklenmesini yönetecek proteinlerin yüksek hacimde üretilmesini saglayacak sekansin manyetit biriktirrne sekansi olarak eklenmesi (102); manyetit biriktirme sekansini gösteren manyetit depolayan bakteri kolonisinin çogaltilarak ilaçlastirilmasi (103); ilaçlastirilan manyetit depolayan bakteri kolonisinin manyetik rezonans görüntüleme ve hedefli manyetik rezonans hipertermisi tedavisi öncesinde hasta tarafindan alinarak tümör kitlelerinde kolonilesmenin saglanmasi (104] adimlari ile karakterize edilen bulus konusu yöntem (100).. It enables the accumulation of magnetite in probiotic bacterial strain that can colonize tumor masses and does not cause septic shock, and the use of magnetite-loaded probiotic bacteria in magnetic resonance imaging and targeted magnetic resonance hyperthermia treatment; determination of target probiotic bacterial strain that can colonize tumor masses and not cause septic shock (101); adding a sequence into the specified bacterial strain as a magnetite accumulation sequence that will ensure high volume production of proteins that will manage the uptake, retention, oxidation and nucleation of iron ions into the cell (102); disinfestation by multiplying the magnetite-storing bacterial colony showing the magnetite accumulation sequence (103); The method of the invention (100) is characterized by the steps of ensuring colonization of tumor masses by removing the medicated magnetite-storing bacterial colony by the patient before magnetic resonance imaging and targeted magnetic resonance hyperthermia treatment (104). . Görüntüleme ve tedavi uygulanmak istenen tümör bölgesinde kolonilesebilen ve hasta vücudunda septik sok yaratmayan en az bir hedef probiyotik bakteri susunu belirlemek üzere yapilandirilan tümör kitlelerinde kolonize olabilen ve septik sok yaratmayan hedef probiyotik bakteri susunun belirlenmesi (101) adimi ile karakterize edilen Istem 1'deki gibi bir yöntem (100).. A system as in Claim 1, characterized by the step (101) of determining at least one target probiotic bacterial strain that can colonize in the tumor area where imaging and treatment is desired and does not cause septic shock in the patient's body, and determines the target probiotic bacterial strain that can colonize in tumor masses and does not cause septic shock. method (100). . Escherichia coli BL21 (DE3) hedef probiyotik bakteri susunu belirlemek üzere yapilandirilan tümör kitlelerinde kolonize olabilen ve septik sok yaratmayan hedef probiyotik bakteri susunun belirlenmesi (101] adimi ile karakterize edilen Istem 1 veya 2'deki gibi bir yöntem (100).. A method (100) as in Claim 1 or 2, characterized by the step (101] of determining the target probiotic bacterial strain that can colonize tumor masses and does not cause septic shock, configured to determine the target probiotic bacterial strain of Escherichia coli BL21 (DE3). . En az bir demir alimi proteinini, en az bir demir tutulumu proteinini, en az bir kontrolü demir oksidasyonu proteinini ve en az bir okside demir çekirdeklenmesi yönetici proteinini sekanslamak, sekansi çikarilan proteinleri üretmek üzere söz konusu sekanslari içeren bir sentetik genetik devre düzenlemek, sentetik genetik devreyi hedef probiyotik bakteriye yatay gen transferi tekniklerinden en az biriyle aktarmak üzere yapilandirilan belirlenen bakteri susu içerisine demir iyonlarinin hücre içine alimini, hücre içinde tutulumunu, oksidasyonunu ve çekirdeklenmesini yönetecek proteinlerin yüksek hacimde üretilmesini saglayacak sekansin manyetit biriktirme sekansi olarak eklenmesi (102) adimi ile karakterize edilen yukaridaki istemlerden herhangi birindeki gibi bir yöntem (100].. Sequencing at least one iron uptake protein, at least one iron retention protein, at least one control iron oxidation protein, and at least one oxidized iron nucleation executive protein, engineering a synthetic genetic circuit comprising said sequences to produce the sequenced proteins, constructing the synthetic genetic circuit. The above sequence is characterized by the step (102) of adding the sequence that will ensure the high volume production of proteins that will manage the uptake, retention, oxidation and nucleation of iron ions into the determined bacterial strain, which is configured to transfer the target probiotic bacteria to the target probiotic bacteria with at least one of the horizontal gene transfer techniques. A method (100) as in any of the claims. . Demir iyonlarinin hücre içine alinmasinin kolaylastirilmasi için demir tasiyici proteini sekanslayarak sentetik genetik devreye eklemek üzere yapilandirilan belirlenen bakteri susu içerisine demir iyonlarinin hücre içine alimini, hücre içinde tutulumunu, oksidasyonunu ve çekirdeklenmesini yönetecek proteinlerin yüksek hacimde üretilmesini saglayacak sekansin manyetit biriktirme sekansi olarak eklenmesi (102) adimi ile karakterize edilen yukaridaki istemlerden herhangi birindeki gibi bir yöntem (100).. In order to facilitate the uptake of iron ions into the cell, the sequence that will enable the high volume production of proteins that will manage the uptake, retention, oxidation and nucleation of iron ions into the cell into the determined bacterial strain, which is structured to add the iron transporter protein to the synthetic genetic circuit, is added as a magnetite accumulation sequence (102) step. A method (100) as in any of the above claims, characterized by. . Demir oksit malzemeye olan baglanma egilimini arttirmak amaciyla malzeme baglama peptidini sekanslayarak sentetik genetik devreye eklemek üzere yapilandirilan belirlenen bakteri susu içerisine demir iyonlarinin hücre içine alimini, hücre içinde tutulumunu, oksidasyonunu ve çekirdeklenmesini yönetecek proteinlerin yüksek hacimde üretilmesini saglayacak sekansin manyetit biriktirme sekansi olarak eklenmesi (102) adimi ile karakterize edilen yukaridaki istemlerden herhangi birindeki gibi bir yöntem (100].. The sequence that will enable the high volume production of proteins that will manage the uptake, retention, oxidation and nucleation of iron ions into the cell into the determined bacterial strain, which was structured to add the material binding peptide to the synthetic genetic circuit by sequencing the material binding peptide in order to increase the binding tendency to the iron oxide material, was added as a magnetite accumulation sequence (102). A method (100) as in any of the above claims, characterized by the step (100). Arti iki yüklü demir iyonlarmin efektif bir sekilde oksitlenmesini saglamak amaciyla ferroksidaz proteinini sekanslayarak sentetik genetik devreye eklemek üzere yapilandirilan belirlenen bakteri susu içerisine demir iyonlarinin hücre içine alimini, hücre içinde tutulumunu, oksidasyonunu ve çekirdeklenmesini yönetecek proteinlerin yüksek hacimde üretilmesini saglayacak sekansin manyetit biriktirrne sekansi olarak eklenmesi (102] adimi ile karakterize edilen yukaridaki istemlerden herhangi birindeki gibi bir yöntem (100].Addition of the sequence that will enable the high volume production of proteins that will manage the uptake, retention, oxidation and nucleation of iron ions into the cell into the determined bacterial strain, which was structured to add the ferroxidase protein to the synthetic genetic circuit by sequencing the ferroxidase protein in order to ensure the effective oxidation of the positively charged iron ions. A method (100) as in any of the above claims, characterized by the step 102]. Demire baglanma özelligi tasiyan ve nano-malzemenin çekirdeklenmesini saglayan manyetit biyomineralizasyon proteinini sekanslayarak sentetik genetik devreye eklemek üzere yapilandirilan belirlenen bakteri susu içerisine demir iyonlarinin hücre içine alimini, hücre içinde tutulumunu, oksidasyonunu ve çekirdeklenmesini yönetecek proteinlerin yüksek hacimde üretilmesini saglayacak sekansin manyetit biriktirme sekansi olarak eklenmesi (102] adimi ile karakterize edilen yukaridaki istemlerden herhangi birindeki gibi bir yöntem (100).Adding the sequence that will enable the high volume production of proteins that will manage the uptake, retention, oxidation and nucleation of iron ions into the cell into the determined bacterial strain, which was structured to add it to the synthetic genetic circuit by sequencing the magnetite biomineralization protein, which has the feature of binding to iron and enables the nucleation of the nano-material, as a magnetite accumulation sequence ( A method (100) as in any of the above claims, characterized by the step 102]. Sentetik genetik devreyi alarak protein sentezi yapan hedef probiyotik bakterileri içlerinde biriktirilen manyetitleri manyetik alan ile yönlendirerek seçmek, seçilen hedef probiyotik bakterileri ilaç üretimine uygun derisimde çogaltmak, çogaltilan bakteri kolonisini ilaç halinde paketlemek üZEre yapilandirilan manyetit biriktirme sekansini gösteren manyetit depolayan bakteri kolonisinin çogaltilarak ilaçlastirilmasi (103) adimi ile karakterize edilen yukaridaki istemlerden herhangi birindeki gibi bir yöntem (100].Pesticide by propagating a magnetite-storing bacterial colony showing the magnetite deposition sequence configured to select target probiotic bacteria that synthesize protein by taking the synthetic genetic circuit and directing the magnetite accumulated within them with a magnetic field, to multiply the selected target probiotic bacteria in a concentration suitable for drug production, and to package the multiplied bacterial colony as a drug (103) A method (100) as in any of the above claims, characterized by the step (100). 10.Manyetit içeren hedef probiyotik bakteriyi ilaç olarak hastaya vermek, hedef probiyotik bakteri kolonisinin tümör içerisinde kolonilesmesini saglamak, hedef probiyotik bakteri kolonisiyle kontrasti artirilmis manyetik rezonans görüntüleme islemleri yürütmek, hedef probiyotik bakteri kolonisini hedefli manyetik rezonans alaninda tutarak tümör içinde lokal hipertermi yaratmak ve tümör dokusunu fiziksel olarak küçültmek üZEre yapilandirilan Ilaçlastirilan manyetit depolayan bakteri kolonisinin manyetik rezonans görüntüleme ve hedefli manyetik rezonans hipertermisi tedavisi öncesinde hasta tarafindan alinarak tümör kitlelerinde kolonilesmenin saglanmasi (104] adimi ile karakterize edilen yukaridaki istemlerden herhangi birindeki gibi bir yöntem (100).10.Administering the target probiotic bacteria containing magnetite to the patient as a drug, ensuring the colonization of the target probiotic bacterial colony within the tumor, conducting contrast-enhanced magnetic resonance imaging procedures with the target probiotic bacterial colony, creating local hyperthermia within the tumor by keeping the target probiotic bacterial colony in the targeted magnetic resonance field and damaging the tumor tissue. A method (100) as in any of the above claims, characterized by the step (104] where the medicated magnetite-storing bacterial colony, which is configured to physically shrink, is removed by the patient before magnetic resonance imaging and targeted magnetic resonance hyperthermia treatment, ensuring colonization of the tumor masses.
TR2021/021659A 2021-12-29 2021-12-29 MAGNETIC PROBIOTIC BACTERIA PRODUCTION METHOD THAT SPECIFICALLY TARGETS CANCER CELLS TR2021021659A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TR2021/021659A TR2021021659A2 (en) 2021-12-29 2021-12-29 MAGNETIC PROBIOTIC BACTERIA PRODUCTION METHOD THAT SPECIFICALLY TARGETS CANCER CELLS
PCT/TR2022/051032 WO2023128982A1 (en) 2021-12-29 2022-09-21 A method for producing probiotic bacteria with magnetic characteristic that specifically targets cancer cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2021/021659A TR2021021659A2 (en) 2021-12-29 2021-12-29 MAGNETIC PROBIOTIC BACTERIA PRODUCTION METHOD THAT SPECIFICALLY TARGETS CANCER CELLS

Publications (1)

Publication Number Publication Date
TR2021021659A2 true TR2021021659A2 (en) 2022-03-21

Family

ID=85119538

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2021/021659A TR2021021659A2 (en) 2021-12-29 2021-12-29 MAGNETIC PROBIOTIC BACTERIA PRODUCTION METHOD THAT SPECIFICALLY TARGETS CANCER CELLS

Country Status (2)

Country Link
TR (1) TR2021021659A2 (en)
WO (1) WO2023128982A1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8828681B2 (en) * 2012-01-13 2014-09-09 Bell Biosystems, Inc. Host cells with artificial endosymbionts

Also Published As

Publication number Publication date
WO2023128982A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
Van de Walle et al. Magnetic nanoparticles in regenerative medicine: what of their fate and impact in stem cells?
AU2019223992B2 (en) Therapeutic systems using magnetic and electric fields
Lu et al. Fe3O4@ Au composite magnetic nanoparticles modified with cetuximab for targeted magneto-photothermal therapy of glioma cells
Hinzmann et al. Nanoparticles containing allotropes of carbon have genotoxic effects on glioblastoma multiforme cells
Minandri et al. Promises and failures of gallium as an antibacterial agent
Taylor et al. Superparamagnetic iron oxide nanoparticles (SPION) for the treatment of antibiotic‐resistant biofilms
Abtin et al. The antimicrobial heterodimer S100A8/S100A9 (calprotectin) is upregulated by bacterial flagellin in human epidermal keratinocytes
CN101355874B (en) Compositions and methods for cell killing
KR20080016793A (en) Bioactive fus1 peptides and nanoparticle-polypeptide complexes
US20240207629A1 (en) Compositions And Methods Of Altering The Electric Impedance To An Alternating Electric Field
Álvarez et al. Superparamagnetic iron oxide nanoparticles decorated mesoporous silica nanosystem for combined antibiofilm therapy
CN101389314A (en) Bioactive fus1 peptides and nanoparticle-polypeptide complexes
Kawaguchi et al. Tumor targeting Salmonella typhimurium A1-R in combination with gemcitabine (GEM) regresses partially GEM-resistant pancreatic cancer patient-derived orthotopic xenograft (PDOX) nude mouse models
Gorobets et al. Chain‐like structures of biogenic and nonbiogenic magnetic nanoparticles in vascular tissues
Igarashi et al. Exquisite tumor targeting by salmonella A1-r in combination with caffeine and valproic acid regresses an adult pleomorphic rhabdomyosarcoma patient-derived orthotopic xenograft mouse model
CN111471105A (en) Preparation and application of novel coronavirus silver therapeutic neutralizing antibody
EP2846839B1 (en) Formulations for the delivery of active ingredients
TR2021021659A2 (en) MAGNETIC PROBIOTIC BACTERIA PRODUCTION METHOD THAT SPECIFICALLY TARGETS CANCER CELLS
Denyer et al. Magnetic kyphoplasty: A novel drug delivery system for the spinal column
Rao et al. BNCT of 3 cases of spontaneous head and neck cancer in feline patients
Chetty Nanomedicine and drug delivery-revolution in health system
Ibrahim et al. Determination of Priority Elements of Vigilance in the Use of Pesticides based on Difficulty and Usefulness (A Supporting Study for Law and Policy in Health)
US20230381503A1 (en) Compositions And Methods For Treating With A Combination Of Alternating Electric Fields And Ion Channel Inhibitors
Guler et al. Therapeutic Nanomaterials
Rani et al. Metallic Nanoparticles Applications in Medicine