TR2021021656A1 - ACOUSTIC METHOD DETECTING FLOODS, LANDSLIDES AND UNDER-TRAIL DISCHARGE PROBLEMS ARISING AS A RESULT OF NATURAL DISASTERS ON RAILWAYS - Google Patents

ACOUSTIC METHOD DETECTING FLOODS, LANDSLIDES AND UNDER-TRAIL DISCHARGE PROBLEMS ARISING AS A RESULT OF NATURAL DISASTERS ON RAILWAYS

Info

Publication number
TR2021021656A1
TR2021021656A1 TR2021/021656 TR2021021656A1 TR 2021021656 A1 TR2021021656 A1 TR 2021021656A1 TR 2021/021656 TR2021/021656 TR 2021/021656 TR 2021021656 A1 TR2021021656 A1 TR 2021021656A1
Authority
TR
Turkey
Prior art keywords
rail
acoustic signal
acoustic
under
rails
Prior art date
Application number
TR2021/021656
Other languages
Turkish (tr)
Inventor
Haluk Gokmen Sabri̇
Original Assignee
Sabri̇ Haluk Gökmen
Filing date
Publication date
Application filed by Sabri̇ Haluk Gökmen filed Critical Sabri̇ Haluk Gökmen
Priority to PCT/TR2022/051604 priority Critical patent/WO2023129052A2/en
Publication of TR2021021656A1 publication Critical patent/TR2021021656A1/en

Links

Abstract

Buluş, raylı sistemler teknolojisi alanında, demiryolu ray arızalarının tespitinde kullanılabilen ray kırığı veya çatlağı algılama sistemindeki raylara bağlı akustik sinyal üretici ve akustik sinyal algılayıcı modüllerini kullanarak demiryolu trafiğinin güvenliğini tehdit edebilecek hat üzerinde yoğun yağış, sel, toprak kayması ve ray altı boşalmalarının gerçek zamanlı ve tren gelmeden önce akustik sinyaller kullanılarak algılanmasını sağlayabilen ray altı boşalma tespit yöntemi ile ilgilidir. Buluş özellikle, alıcının ve vericinin hat üzerinde hareket ettirilerek değil, belirli noktalarda sabitlendikten sonra aralarında veri alışverişi yapmalarına olanak sunan, yani sabit bir noktadan belirli bir akustik sinyal gönderip algılama işlemini başlatan ve yine hem aynı noktadan hem de diğer noktalardan belirli bir değişime uğrayarak gelen orijinal akustik sinyalin ve/veya ray altı boşalmadan kaynaklanan akustik sinyalin algılanmasını ve değerlendirilmesini sağlayan yoğun yağış, sel, toprak kayması ve ray altı boşalma tespit yöntemi ile ilgilidir.The invention is in the field of rail systems technology, by using the acoustic signal generator and acoustic signal sensor modules attached to the rails in the rail break or crack detection system, which can be used to detect railway rail faults, and real-time and It is related to the under-rail discharge detection method that can be detected using acoustic signals before the train arrives. In particular, the invention is based on the original signal that allows the receiver and transmitter to exchange data between them, not by moving them on the line, but after being fixed at certain points, that is, by sending a certain acoustic signal from a fixed point and starting the detection process, and again coming from the same point and other points after undergoing a certain change. It is related to the detection method of heavy rainfall, flood, landslide and subrail discharge, which enables the detection and evaluation of the acoustic signal and/or the acoustic signal resulting from subrail discharge.

Description

TARIFNAME DEMIRYOLLARINDA DOGAL AFET SONUCU ORTAYA ÇIKAN SEL TOPRAK KAYMASI VE RAY ALTi BOSALMA PROBLEMLERINI TESPIT EDEN AKUSTIK YÖNTEM TEKNIK ALAN Bulus, rayli sistemler teknolojisi alaninda, demir yolu ray arizalarinin tespitinde kullanilabilen ray kirigi veya çatlagi algilama sistemindeki raylara bagli akustik sinyal üretici ve akustik sinyal algilayici modüllerini kullanarak demiryolu trafiginin güvenligini tehdit edebilecek hat üzerinde yogun yagis, sel, toprak kaymasi ve ray alti bosalmalarinin gerçek zamanli ve tren gelmeden önce akustik sinyaller kullanilarak algilanmasini saglayabilen akustik yöntem ile ilgilidir. Bulus özellikle, alicinin ve vericinin hat üzerinde hareket ettirilerek degil, belirli noktalarda sabitlendikten sonra aralarinda veri alisverisi yapmalarina olanak sunan, yani sabit bir noktadan belirli bir sinyal gönderip algilama islemini baslatan ve yine hem ayni noktadan hem de diger noktalardan belirli bir degisime ugrayarak gelen orijinal akustik sinyalin ve/veya yogun yagis, sel, toprak kaymasi ve ray alti bosalmadan kaynaklanan akustik sinyalin algilanmasini ve degerlendirilmesini saglayan akustik yöntem ile ilgilidir. ÖNCEKI TEKNIK Dünya üzerinde rayli sistemler hizli, ekonomik, çevre dostu, güvenli ve çagdas sistemler olmalarindan dolayi her geçen gün önem kazanmaktadir. Rayli sistemlerin en önemli özelliklerinden biri yüksek güvenlikli toplu ulasim araci olmalaridir. Bu özelligin devam ettirilebilmesi, süphesiz bu sistemlere yapilan düzenli bakimlarla saglanabilir. Raylarin güvenligini etkileyen faktörlerden biri raylarin konumlandirildigi cografi bölge sartlaridir. Sel, erozyon vb. dogal afetler sonucu raylarin üzerine konumlandirildigi zeminde bozulmalar, çökmeler ve ray alti bosalmalar meydana gelebilmektedir. Bu sebepten dolayi demiryolu güvenligini tehdit eden bu problemlerin tespiti daha da önem kazanmaktadir. Mevcut teknikte çogunlukla, demiryolu hatti belirli uzunlukta bölgelere ayrilarak bu bölgeler içerisinde raylar çevresine sensörler konumlandirilmakta ve bu sensörlerle zemin üzerindeki raylarin konum degistirmesi tespit edilmektedir. Afet bölgesinde ray alti bosalma vb. bir olay gerçeklestigi anda raylarin konumu degismekte ve bu sayede problem tespit edilmektedir. Ancak bu sistemlerde kullanilan teknolojinin maliyetinin yüksek olmasi ve sistemdeki elektronik cihazlarin sürekli dis ortamla irtibat halinde olmasi, cihazlar üzerinde tahribat yaratmakta ve sistemin dogru ölçümler yapmasini engellemektedir. Mevcut teknikte, ray alti bosalma vb. olaylarin tespitinde birçok zaman demiryolu yol kontrol görevlilerinden yararlanilmaktadir. Bu görevliler afet sonrasi gözlemleyerek kilometrelerce rayi adim adim kontrol etmektedirler. Tüm dünyada demiryolu hattinin milyonlarca kilometre uzunlukta olmasi ve bu islemin insan gücüyle yapilmasi, yöntemin çok kullanissiz oldugunu ispatlamaktadir. Yine ray alti bosalmalarin olasi varligi düsünüldügünde bu tür durumlarin zor tespiti ve aninda tespit edilememesi nedeniyle çok büyük demiryolu kazalari gerçeklesmekte ve birçok insan bu nedenle hayatini kaybetmektedir. Mevcut teknikte, ray alti bosalma vb. olaylarin tespitinde demiryolu çevresine belirli araliklarla konumlandirilmis kamera vb. görüntüleme cihazlari konumlandirilmaktadir. Bu cihazlar sayesinde dogal afet sonucu ortaya çikan tahribat görüntülenmeye çalisilmaktadir. Ancak bu cihazlarin görüntüleme alanlarinin kisitli olmasi, sis durumunda islevsiz kalmasi ve gece görüntüleme yapamamasi bu teknigin islevsiz kalmasina sebep olmaktadir. Mevcut teknikte yansima sinyalinin varligini kullanilarak gerçeklestirilen tespit yöntemi yine tarafimiza ait olan TR201405723 Patenttir. Bu Patent özeti su sekildedir: "Bulus, en genel haliyle kontrolün bir kontrol merkezinden saglandigi ve komutlarin, fiber optik hat üzerinden gönderildigi ve bu komutlari harekete dönüstürebilen komut kartlarini, bu komut kartlar tarafindan kontrol edilerek raya titresim sinyali uygulayan ray bloklarini ve ray üzerindeki titresimleri algilamayi saglayan sensörleri de içinde barindiran ray kirigi veya çatlagi algilama yöntemidir. Bulus, alicinin ve vericinin hat üzerinde hareket ettirilerek degil sabit bir noktada veri alisverisi yapmasina olanak sunan, yani sabit ayni noktadan sinyal gönderip islemi gerçeklestiren ve yine ayni noktada sinyallerin toplanmasini saglayan, gönderilen sinyalin kirik, çatlak ve hatta mikro çatlak vb. deformeyle karsilastiginda sinyal dalgasinin, ilgili deformeden yansimasi ve bu yansiyan sinyal dalgasinin aliciya iletilmesini saglayan ayni zamanda bu sinyali diger sabit noktalarda konumlandirilmis sensörlerin yardimiyla algilanan sinyal genligindeki azalma miktari üzerinden de dogrulayan bir ray kirigi veya çatlagi algilama yöntemidir." Bu patente konu tespit yönteminde ray üzerindeki kirik veya çatlagin yansiyan sinyalden tespiti gerçeklestirilmektedir. Ancak bu patent kapsaminda sel/toprak kaymasi ve ray alti bosalmalar tespit edilememektedir. Bu patentte izlenen yöntemle sadece rayda kirik ve çatlak olmasi durumunda ortaya çikan yansiyan sinyalin tespiti saglanmakta, raydaki kirik ve çatlak aninda tespit edilmektedir. Sonuç olarak, yukarida anlatilan dezavantajlari ortadan kaldirmak üzere benzerlerine göre çok daha güvenli ve çesitli avantajlara sahip çok islevli, ray alti bosalma tespit yöntemine duyulan gereksinim ve mevcut çözümlerin yetersizligi, ilgili teknik alanda bir gelistirme yapmayi zorunlu kilmistir. BU LUSUN AMACI Söz konusu bulus en genel haliyle rayli sistemler teknolojisi alaninda, demiryolu ray arizalarinin tespitinde kullanilabilen ray kirigi veya çatlagi algilama sistemindeki raylara bagli akustik sinyal üretici ve akustik sinyal algilayici modüllerini kullanarak demiryolu trafiginin güvenligini tehdit edebilecek hat üzerinde yogun yagis, sel, toprak kaymasi ve ray alti bosalmalarinin gerçek zamanli ve tren gelmeden önce algilanmasini saglayabilen akustik yöntemdir. Bulusun amaci, demiryolu hatti üzerinde dogal afet vb. durumlardan dolayi ortaya çikan yogun yagis, sel, toprak kaymasi ve ray alti bosalmayi sorunun olusumundan hemen sonra saptamasidir. Yöntem geregi hat belirli bölgelere ayrildigi için ve ayni zamanda sürekli sinyal ölçümü yapilabildigi için yagis, sel, toprak kaymasi ve ray alti bosalmanin yeri de kolaylikla saptanabilmektedir. Bunun yaninda, bu islemi gerçeklestirirken hiçbir demiryolu aracina ihtiyaç duyulmamasi ve böylece demiryolu hatti üzerindeki moloz yigini ve ray alti bosalmalarin önceden tespitinin saglanip ortaya çikabilecek büyük demiryolu kazalarinin önlenebilmesi mümkün olacaktir. Bulusun bir diger amaci, yapay zeka kullanilarak birkaç parametreyi ölçmesi ve bu parametrelerden çikan sonuçlara göre o bölgedeki yagis, sel, toprak kaymasi ve ray alti bosalmanin varliginin belirlenmesinin saglanmasidir. Bulusun bir diger amaci, kullanilan bu yöntem sayesinde, basta yüksek hizli demiryollari olmak üzere, tüm hatlar üzerindeki yagis, sel, toprak kaymasi ve ray alti bosalmalari gibi olumsuzluklari henüz yeni olusmusken tespit edip, tren bu sorunlu bölgeye ulasmadan önce merkezi uyarmasidir. BU LUSUN DETAYLI AÇIKLANMASI Sahada kurulu olan ray kirigi ve çatlagi algilama sisteminin raylara bagli akustik sinyal üretici ve akustik sinyal algilayici modüllerini kullanarak demiryolu trafiginin güvenligini tehdit edebilecek hat üzerinde yogun yagis, sel, toprak kaymasi ve ray alti bosalmalarinin gerçek zamanli ve tren gelmeden önce algilanmasini saglayacak akustik yöntemin tanimi söyledir: Yogun yagis algilama Ray Sicakligi Degisim Grafigi 50.00 ` 45.00 , I , , , Il* U 40.00 ` °_ 35.00 | ` 3" 30.00 , , ý-ý , ý-ý 6 20.00 ` i g 15.00 -- _`- °= 10.00 ýýýýýýr .00 ` F'"WDÜWQQHMEWQQNMQHÜNQI'RTEME H :-0 H N N N N m N'I m m (71 El' Cl' 1!' :r 3 d' m in In in LD LD ID Grafik-1: Ray sicakliginin yagmur durumunda zamana göre degisimi Raylara yaklasik her 2 Km'de bir baglanan akustik sinyal algilayicilarin içerisine yerlestirilmis olan ray sicakligi algilayicilari gerçek zamanli olarak ray gövdesinin sicakligini ölçer ve bu ölçüm degerlerinde, Grafik-1' de gösterildigi sekilde, normalden hizli bir degisimi tespit ederek bu hat kesiminde yogun bir yagisin oldugunu ortaya koyar. Sürekli birbirlerine kaynakli olan raylarin isil kapasitesinin çok yüksek olmasi nedeniyle bu normalin ötesindeki ani sicaklik degisimi sisteme ilk uyari sinyalini gönderir. Sematik Gösterim-1 'de üretilen sinyal ve algilanan sinyal Sinyal Sinyal Üretilir Ölçülür Sematik Gösterim-1: Kirik, çatlak, sel, toprak kaymasi ve ray alti bosalmasi yokken gönderilen sinyali ve ayni seviyelerde alinan sinyali gösteren semadir. Bu asamadan sonra raylardaki akustik sinyali gerçek zamanli olarak sürekli izleyen akustik sinyal algilayici, normalde hat üzerinde tren hareketi veya benzeri bir normal ve normal ötesi hareketlilik olmamasi durumunda Grafik-2' deki gibi hizli tepe degerleri görmemekte '0' seviyesine yakin akustik sinyal verileri almaya devam etmektedir. Ancak bu grafikte görülen yüksek akustik tepe degerler raylarin üzerinde hizli ve büyük taneli yagmur veya daha muhtemelen bir dolu yagisini isaretlemektedir. Gerçek Zamanli Ray Akustik Sinyal Seviye Grafigi 1000.00 900.00 800.00 700.00 600.00 500.00 400.00 300.00 200.00 100.00 11:17ii 11:35 11:50 12:00 12:21 12:36 12:51 13:06 13:21 :42 :57 16:19 16:34 Akustik Sinyal Seviyesi (m6) 14:36 Grafik-2: Akustik sinyal seviyesinin siddetli yagmur ve dolu durumunda zamana göre degisimi Bu ikinci alarm sinyali degerlendirme birimi tarafindan bir sel olusumu ve bunu takiben bir toprak kaymasi veya ray alti bosalmasinin ön kosulunun olusmaya baslamasi olarak algilanmaktadir. Bu asamadan sonra raylarin ve hattin durumunu takip etmek Için sistemin dinamik akustik sinyallerinin raylara uygulanmasi ve raylardan alinan akustik cevabin degerlendirilmesi önem kazanmaktadir. Sel Olusumu / Toprak Kaymasi I Ray Alti Bosalmasi Ray kirigi ve çatlagi algilama sisteminin en temel çalisma ve algilama metodu, bir noktadan raylara uygulanan akustik sinyalin, 2 Km'ye kadar sag ve sol taraflarda konumlandirilmis akustik sinyal algilayicilardan algilanmasi sonrasinda bu algilanan akustik sinyalin ray sicakligina bagli degisiminin incelenmesi, aradaki hat kesiminde raylarda olusabilecek fiziksel hasarlarin tespiti sürecinde ayni zamanda bu sinyal seviyesindeki düsmenin ray kirik veya kusurlarindan olup olmadigini anlamak içinde uygulama noktasindaki algilayiciya kirik veya kusurlu ray noktasindan yansiyip geri gelen akustik sinyal degerlendirmesi yapilmaktaydi. Sematik Gösterim-2' de kiriktan yansiyan sinyalin tespiti gösterilmistir. Kirik Çatlak Sinyal Sinyal sinyal Sinyal Ray Çatlagi ve Kirigindan Üretilir Ölçülür Uretil'ir Olçülür Vansiyan Sinyal Sematik Gösterim-2: Kirik ve çatlak durumunda gönderilen sinyalin yansiyarak tekrar geri döndügünü gösteren semadir. Ancak sel, toprak kaymasi veya ray alti bosalmasi durumunda olayin gerçeklestigi alana yakin algilayicilara gelen akustik sinyal seviyesi düserken, akustik sinyal uygulama noktasindaki algilayiciya herhangi bir akustik yansima sinyali gelmemektedir. Bu durum asagidaki grafikte olay yerine yakin algilayicilara gelen sinyal seviyesindeki azalma olarak izlenmektedir. Yansima sinyalinin olmamasi, ilgili hat kesiminde bir diger akustik sinyal bastirici etkene isaret etmektedir. Akustik Test Sinyal Seviyesi Degisim Grafigi Dolu yagisi nedeniyle olusan akustik sinyal seviyesi 1200.00 ` ` 1000.00 Normal akustik test '7 / . sinyal seviyesi Ü l beklenen seviye seviyesi 800.00 600-00 ? ý'ý ýi_i I I Raylarsuyagömülmüs.Molozlarhatn kr 1. s 200.00 . . i 1 Akustik Sinyal Seviyesi (mG) Grafik-3: Akustik sinyal seviyesinin degisimin sel, toprak kaymasi veya ray alti bosalmasi durumunda zamana göre degisimi Bu dinamik akustik yöntemle sel, toprak kaymasi veya ray alti bosalmasinin ortaya çiktigi bölgede sinyal uygulama noktasindan raylara akustik sinyal uygulanmaktadir. Sinyal uygulama noktasinin saginda ve solundaki belirli araliklarla raya konumlandirilmis algilayicilarin aldigi sinyalin analiz edilmesiyle, Grafik-3'de görüldügü gibi hem sinyal seviyesindeki azalma gözlemlenerek ray alti bosalma vb. bir olayin varligina dair bir tespit yapilmakta, hem de bu sinyallerin frekans bandinda da varligi net bir sekilde ortaya koyulmaktadir. Normal kosullarda ray kirigi ve çatlagi algilama sisteminin raylarda yarattigi sinyalin tepe degeri 1200 Hz civarinda olusurken hattin sel, toprak kaymasi veya ray alti bosalmasi durumunda 1200 ve 1800 Hz civarinda iki tepe degerin yani sira 0 - 1200 Hz arasinda da çok sayida ikincil seviyede tepe degerler izlenmektedir. Sel, Toprak Kaymasi veya Ray Alti Bosalmasi uuuuunQYWÜ-IW Sinyal Üretilir Sematik Gösterim-3: Sel, toprak kaymasi veya ray alti bosalmasi durumunda gönderilen sinyalin tepe seviyesinin düserek karsi sinyal alicisina ulasmasini gösteren semadir. Normal hat kesiminde raylara uygulanan akustik sinyalinin iki yandaki algilayicidan elde edilen veri setinin frekans bant analizindeki tepe degeri Grafik-4: Normal zamanda raylara uygulanan akustik sinyalinin frekans spektrumu Problem yokken klasik frekans bant tepe ikusîik sinyalin Frekans bant 1. ll' . ii,i.,i'i1 "lüks" _i ,. s Sel, toprak kaymasi, ray alti Josalmasi sonrasi Düsük Sinyal Seviyesi Algilanir Grafik-5: Sel/Toprak Kaymasi/Ray Alti Bosalmasi sonrasi raylara uygulanan akustik sinyalin frekans spektrumu Grafik-4 ve Grafik -5 ray alti bosalma yokken ve ray alti bosalma vb. olay varken ortaya çikan frekans spektrumlaridir. Grafik-4' teki frekans spektrumunda normal hat kesiminde raylara uygulanan akustik sinyalin en yakinindaki akustik sinyal algilayicidan elde edilen veri setinin frekans bant analizindeki tepe degeri gösterilmektedir. Grafik-5' de gösterilen frekans spektrumunda ise sel, toprak kaymasi, ray alti bosalmasi vb. olay sonrasi akustik sinyalin frekans bant tepeleri gösterilmektedir. Sonuç olarak raylara uygulanan akustik sinyalin her iki taraftaki algilayicilar tarafindan algilanan siddeti normal seviyenin çok altina inerken, ayni zamanda frekans bandinda da izlenen degisiklik bu aralikta sel, toprak kaymasi veya ray alti bosalmasi durumunun isareti olarak algilanmaktadir. TR TR DESCRIPTION ACOUSTIC METHOD TO DETECT FLOOD, LANDSLIDE AND UNDER-TRACK DISCHARGE PROBLEMS ARISING AS A RESULT OF NATURAL DISASTERS IN RAILWAYS TECHNICAL FIELD The invention, in the field of rail systems technology, includes acoustic signal generator and acoustic signal sensor modules connected to the rails in the rail break or crack detection system, which can be used in detecting railway rail malfunctions. It is about the acoustic method that can detect heavy rain, floods, landslides and under-rail discharges on the line that may threaten the safety of railway traffic by using acoustic signals in real time and before the train arrives. In particular, the invention is an original acoustic signal that allows the receiver and transmitter to exchange data between them, not by moving them on the line, but after they are fixed at certain points, that is, by sending a certain signal from a fixed point and starting the detection process, and again by undergoing a certain change both from the same point and from other points. It is about the acoustic method that enables the detection and evaluation of the signal and/or the acoustic signal resulting from heavy rain, floods, landslides and under-rail discharge. BACKGROUND ART Rail systems around the world are gaining importance day by day because they are fast, economical, environmentally friendly, safe and modern systems. One of the most important features of rail systems is that they are high security means of public transportation. Maintaining this feature can undoubtedly be achieved by regular maintenance of these systems. One of the factors affecting the safety of rails is the geographical conditions of the region where the rails are located. Flood, erosion etc. As a result of natural disasters, deteriorations, collapses and discharges under the rails may occur on the ground on which the rails are positioned. For this reason, the detection of these problems that threaten railway safety becomes even more important. In the current technique, the railway line is generally divided into regions of certain length, sensors are positioned around the rails within these regions, and the position change of the rails on the ground is detected with these sensors. Under-rail discharge etc. in the disaster area. When an event occurs, the position of the rails changes and thus the problem is detected. However, the high cost of the technology used in these systems and the fact that the electronic devices in the system are constantly in contact with the external environment cause damage to the devices and prevent the system from making accurate measurements. In the current technique, sub-rail discharge etc. Railway track control officers are often used to detect incidents. These officers observe and check kilometers of rails step by step after the disaster. The fact that the railway line all over the world is millions of kilometers long and that this process is done by human power proves that the method is very useless. Again, considering the possible existence of discharges under the rails, major railway accidents occur due to the difficulty in detecting such situations and their inability to be detected immediately, and many people lose their lives for this reason. In the current technique, sub-rail discharge etc. Cameras etc. positioned at regular intervals around the railway to detect incidents. imaging devices are positioned. Thanks to these devices, the destruction caused by natural disasters is tried to be visualized. However, the limited imaging areas of these devices, their inoperability in fog, and their inability to image at night cause this technique to remain dysfunctional. The detection method performed using the presence of the reflection signal in the current technique is TR201405723 Patent, which also belongs to us. This Patent summary is as follows: "In its most general form, the invention consists of command cards where control is provided from a control center and commands are sent over the fiber optic line and which can convert these commands into action, rail blocks that apply a vibration signal to the rail by being controlled by these command cards, and detection of vibrations on the rail." The invention is a method of detecting rail breaks or cracks, which also includes sensors providing It is a rail break or crack detection method that ensures that the signal wave is reflected from the relevant deformation when encountered with deformation such as cracks, cracks or even micro cracks, and that this reflected signal wave is transmitted to the receiver, while also verifying this signal through the amount of decrease in the detected signal amplitude with the help of sensors positioned at other fixed points. " In the detection method subject to this patent, the break or crack on the rail is detected from the reflected signal. However, within the scope of this patent, floods/landslides and discharges under the rails cannot be detected. With the method followed in this patent, the reflected signal that occurs only in case of a break or crack in the rail is detected, and the break and crack in the rail is detected instantly. As a result, the need for a multifunctional, under-rail discharge detection method that is much safer and has various advantages compared to its counterparts in order to eliminate the disadvantages described above and the inadequacy of existing solutions have made it necessary to make a development in the relevant technical field. PURPOSE OF THE INVENTION In its most general form, the invention in question is in the field of rail systems technology, by using the acoustic signal generator and acoustic signal sensor modules connected to the rails in the rail break or crack detection system, which can be used to detect railway rail malfunctions in case of heavy rain, flood, landslide on the line that may threaten the safety of railway traffic. and it is an acoustic method that can detect under-rail discharges in real time and before the train arrives. The purpose of the invention is to prevent natural disasters etc. on the railway line. It detects heavy rain, floods, landslides and under-rail discharges that occur due to situations immediately after the problem occurs. Since the line is divided into certain regions as required by the method and continuous signal measurement can be made, the location of rainfall, floods, landslides and discharges under the rails can be easily determined. In addition, there will be no need for a railway vehicle when performing this process, and thus, it will be possible to detect debris piles on the railway line and discharges under the rails in advance and prevent major railway accidents that may occur. Another purpose of the invention is to measure several parameters using artificial intelligence and to determine the presence of precipitation, floods, landslides and under-rail discharge in that region according to the results of these parameters. Another purpose of the invention is to detect negativities such as precipitation, floods, landslides and under-rail discharges on all lines, especially high-speed railways, while they have just occurred, and to warn the center before the train reaches this problematic area, thanks to this method used. DETAILED EXPLANATION OF THE INVENTION: The rail break and crack detection system installed in the field will use the acoustic signal generator and acoustic signal sensor modules attached to the rails to detect heavy rain, floods, landslides and under-rail discharges on the line that may threaten the safety of railway traffic in real time and before the train arrives. The definition of the acoustic method is as follows: Heavy rain detection Rail Temperature Change Graph 50.00 ` 45.00 , I , , , Il* U 40.00 ` °_ 35.00 | `3" 30.00 ,, ý-ý, ý-ý 6 20.00 `i g 15.00-_`- ° = 10.00 ýýýýýr. Cl' 1!' :r 3 d' m in In in LD LD ID Graph-1: Change of rail temperature over time in case of rain. Rail temperature sensors placed in acoustic signal sensors connected to the rails approximately every 2 Km monitor the rail temperature in real time. It measures the temperature of the body and detects a faster than normal change in these measurement values, as shown in Graph-1, and reveals that there is heavy rainfall in this line section. Due to the very high thermal capacity of the rails that are constantly welded to each other, this sudden temperature change beyond the normal is detected in the system. It sends the first warning signal. The signal produced and the detected signal in Schematic Representation-1. Signal Signal is Produced and Measured. Schematic Representation-1: It is the diagram showing the signal sent and the signal received at the same levels when there is no break, crack, flood, landslide or under-rail discharge. After this stage, the acoustic signal sensor, which constantly monitors the acoustic signal on the rails in real time, normally does not see rapid peak values as in Graph-2, unless there is a train movement or similar normal and extra-normal mobility on the line, and continues to receive acoustic signal data close to '0' level. It does. However, the high acoustic peaks seen in this graph indicate fast and large grained rain or, more likely, hail on the rails. Real Time Rail Acoustic Signal Level Graph 1000.00 900.00 800.00 700.00 600.00 500.00 400.00 300.00 200.00 100.00 11:17ii 11:35 11:50 12:00 12:21 12:36 1 2:51 13:06 13:21 :42 :57 16: 19 16:34 Acoustic Signal Level (m6) 14:36 Graph-2: Change of acoustic signal level over time in case of heavy rain and hail. This second alarm signal is determined by the evaluation unit as a precondition for a flood and subsequent landslide or under-rail discharge. It is perceived as the beginning of formation. After this stage, it becomes important to apply the dynamic acoustic signals of the system to the rails and evaluate the acoustic response received from the rails in order to monitor the condition of the rails and the line. Flood Formation / Landslide I Under-Rail Discharge The most basic working and detection method of the rail break and crack detection system is that the acoustic signal applied to the rails from a point is detected by acoustic signal sensors located on the right and left sides up to 2 Km, and then this detected acoustic signal is transferred to the rail temperature. In the process of examining the change in rails and detecting physical damage that may occur on the rails in the intermediate line section, at the same time, in order to understand whether the decrease in this signal level is due to rail breaks or defects, the acoustic signal reflected from the broken or defective rail point to the sensor at the application point was evaluated. In Schematic Representation-2, the detection of the signal reflected from the fracture is shown. Broken Crack Signal Signal signal Signal is produced from rail cracks and breaks. It is measured. It is produced. It is measured. However, in case of flood, landslide or under-rail discharge, the acoustic signal level reaching the sensors close to the area where the event occurs decreases, while no acoustic reflection signal reaches the sensor at the point of acoustic signal application. This situation is observed in the graph below as a decrease in the signal level reaching the sensors close to the scene. The absence of a reflection signal indicates another acoustic signal suppressing factor in the relevant line section. Acoustic Test Signal Level Change Graph Acoustic signal level due to hail 1200.00 ` ` 1000.00 Normal acoustic test '7 / . signal level Ü l expected level level 800.00 600-00 ? ý'ý ýi_i I I Rails buried in water. Rubble line 1. p. 200.00 . . i 1 Acoustic Signal Level (mG) Chart-3: Change of acoustic signal level over time in case of flood, landslide or under-rail discharge. With this dynamic acoustic method, an acoustic signal is applied to the rails from the signal application point in the region where flood, landslide or sub-rail discharge occurs. . By analyzing the signal received by the sensors positioned on the rail at certain intervals to the right and left of the signal application point, as seen in Graph-3, the decrease in the signal level is observed and discharge under the rail, etc. A determination is made regarding the existence of an event, and the existence of these signals in the frequency band is clearly revealed. While under normal conditions, the peak value of the signal created by the rail break and crack detection system on the rails occurs around 1200 Hz, in case of flood, landslide or under-rail discharge of the line, two peak values around 1200 and 1800 Hz, as well as many secondary peak values between 0 - 1200 Hz are observed. . Flood, Landslide or Under-Rail Discharge. QYWÜ-IW Signal is Generated Schematic Representation-3: This is the diagram showing how the peak level of the sent signal decreases and reaches the opposite signal receiver in case of flood, landslide or under-rail discharge. The peak value of the acoustic signal applied to the rails in the normal track section in the frequency band analysis of the data set obtained from the sensors on both sides. Graph-4: Frequency spectrum of the acoustic signal applied to the rails in normal time. When there is no problem, the classical frequency band peak of the acoustic signal. Frequency band 1. ll'. ii,i.,i'i1 "luxury" _i ,. s Low Signal Level Is Detected After Flood, Landslide, Under-rail Discharge. Graph-5: Frequency spectrum of the acoustic signal applied to the rails after Flood/Landslide/Under-Rail Discharge. Graph-4 and Graph-5 when there is no sub-rail discharge and under-rail discharge etc. These are the frequency spectra that occur when an event occurs. In the frequency spectrum in Graph-4, the peak value of the acoustic signal applied to the rails in the normal line section in the frequency band analysis of the data set obtained from the nearest acoustic signal sensor is shown. In the frequency spectrum shown in Graph-5, floods, landslides, discharges under rails, etc. Frequency band peaks of the post-event acoustic signal are shown. As a result, while the intensity of the acoustic signal applied to the rails, perceived by the sensors on both sides, drops well below the normal level, the change observed in the frequency band is perceived as a sign of flood, landslide or discharge under the rail in this range. TR TR

Claims (1)

STEMLERSTEMS 1. Bulus, rayli sistemler teknolojisi alaninda, demiryolu ray arizalarinin tespitinde kullanilabilen ray kirigi veya çatlagi algilama sistemindeki raylara bagli akustik sinyal üretici ve akustik sinyal algilayici modüllerini kullanarak demiryolu trafiginin güvenligini tehdit edebilecek, hat üzerinde yogun yagis, sel, toprak kaymasi ve ray alti bosalmalarinin gerçek zamanli ve tren gelmeden önce algilanmasini saglayabilen ray boyunca belirli araliklarla raya baglanan birden fazla akustik algilayicilar ve ray sicakligi algilayicilari ile gerçek zamanli olarak ray gövdesinin sicakliginin ölçülmesi, bu sicaklik ölçüm degerlerindeki normalden hizli degisimin tespit edilmesi, bu hat kesiminde raya etki eden yogun bir yagis ve/veya sel oldugunun tespit edilmesi, bu ani sicaklik degisiminin sisteme ilk uyari sinyalini göndermesi, normalde hat üzerinde tren hareketi veya benzeri bir normal ve normal ötesi hareketlilik olmamasi durumunda sifir seviyesine yakin akustik sinyal verilerini gerçek zamanli olarak sürekli izleyen akustik algilayici tarafindan, sel, hizli ve büyük taneli yagmur veya daha muhtemelen bir dolu yagisinin olusturdugu yüksek akustik sinyal seviye verilerinin tespit edilmesi, hem sicakliktaki degisim hem de yüksek seviyeli akustik sinyalin tespiti, degerlendirme birimi tarafindan bir sel olusumu ve bunu takiben bir toprak kaymasi veya ray alti bosalmasinin ön kosulunun olusmaya baslamasi olarak algilanmasi, bu asamadan sonra raylarin ve hattin durumunu takip etmek için sistemin dinamik akustik sinyallerinin raylara uygulanmasi ve raylardan alinan akustik cevabin degerlendirilmesi, ray kirigi ve çatlagi ile yogun yagis, sel, toprak kaymasi ve ray alti bosalma ayriminin yapilmasi için ray kirigi ve çatlagi durumunda ortaya çikan yansiyan bir akustik sinyalin olup olmadiginin tespiti, ray kirigi ve çatlagi olmamasi durumunda sel, toprak kaymasi veya ray alti bosalmanin olustugu bölgeye en yakin bölgedeki akustik sinyal uygulama noktasinda bulunan algilayiciya herhangi bir akustik yansima sinyalinin gelmemesi, - akustik sinyal uygulama noktasindan gönderilen, sag ve soldan belirli araliklarla konumlandirilmis en yakin algilayicilara gelen akustik sinyal seviyesinin düsmesi, o yansima sinyalinin olmamasina ragmen ilgili hat kesiminde bir diger akustik sinyal bastirici etkenin ortaya çikmasi, o sel, toprak kaymasi veya ray alti bosalmanin varliginin ve konumunun tespit edilmesi, islem adimlarini içermesiyle karakterize edilmesidir. istem-1' e uygun akustik yöntem olup, özelligi; akustik sinyal uygulama noktasindan gönderilen, sag ve soldan belirli araliklarla konumlandirilmis en yakin algilayicilara gelen akustik sinyal seviyesinin düsmesi ve yansima sinyalinin olmamasina ragmen ilgili hat kesiminde bir diger akustik sinyal bastirici etkenin ortaya çikmasindan sonra ölçüm yapilan aralikta sel, toprak kaymasi veya ray alti bosalmasi olustugunun ikinci kez teyit edilebilmesi için frekans bandina bakilmasi ve frekans bandinda birden fazla frekans araliginda tepe noktalarinin gözlemlenmesi ile karakterize edilmesidir.1. The invention is in the field of rail systems technology, by using the acoustic signal generator and acoustic signal sensor modules connected to the rails in the rail break or crack detection system, which can be used to detect railway rail malfunctions, to prevent heavy rain, floods, landslides and under-rail discharges on the line that may threaten the safety of railway traffic. Measuring the temperature of the rail body in real time with multiple acoustic sensors and rail temperature sensors connected to the rail at certain intervals along the rail, which can detect the train before it arrives, detecting faster than normal changes in these temperature measurement values, detecting a heavy rainfall affecting the rail in this line section. and/or it is detected that there is a flood, this sudden temperature change sends the first warning signal to the system, normally by the acoustic sensor that constantly monitors the acoustic signal data near zero level in real time, in case there is no train movement or similar normal and extra-normal mobility on the line, flood, Detection of high acoustic signal level data generated by rapid and large grained rain or, more likely, hail, both the change in temperature and the detection of the high level acoustic signal is determined by the evaluation unit to create a precondition for the occurrence of a flood and a subsequent landslide or sub-rail discharge. After this stage, the system's dynamic acoustic signals are applied to the rails to monitor the condition of the rails and the line, and the acoustic response received from the rails is evaluated, rail breaks and cracks are distinguished from heavy rain, floods, landslides and under-rail discharge. Determining whether there is a reflected acoustic signal in the event of a rail break or crack, in case there is no rail break or crack, no acoustic reflection signal is received by the sensor located at the acoustic signal application point in the area closest to the area where flood, landslide or under-rail discharge occurs, - sent from the acoustic signal application point, The process steps include the decrease in the acoustic signal level coming to the closest sensors positioned at certain intervals on the right and left, the emergence of another acoustic signal suppressing factor in the relevant line section despite the absence of that reflection signal, o detection of the presence and location of flood, landslide or under-rail discharge. is to be characterized. It is an acoustic method in accordance with claim-1 and its feature is; The decrease in the acoustic signal level sent from the acoustic signal application point and arriving at the closest sensors positioned at certain intervals on the right and left, and the emergence of another acoustic signal suppressing factor in the relevant line section despite the absence of a reflection signal, is the second indication that a flood, landslide or under-rail discharge has occurred in the measured range. It is characterized by looking at the frequency band to be confirmed twice and observing peaks in more than one frequency range in the frequency band.
TR2021/021656 2021-12-29 2021-12-29 ACOUSTIC METHOD DETECTING FLOODS, LANDSLIDES AND UNDER-TRAIL DISCHARGE PROBLEMS ARISING AS A RESULT OF NATURAL DISASTERS ON RAILWAYS TR2021021656A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/TR2022/051604 WO2023129052A2 (en) 2021-12-29 2022-12-26 Acoustic method for detecting flood, landslide and under-rail washout problems resulting from natural disasters in railways

Publications (1)

Publication Number Publication Date
TR2021021656A1 true TR2021021656A1 (en) 2023-07-21

Family

ID=

Similar Documents

Publication Publication Date Title
RU2743390C2 (en) Railway monitoring system for detecting partial or complete failure of railway roads
CA2447464C (en) Apparatus and method for detection of railroad wheel and bearing temperature
TR201405723A2 (en) System which senses rail fractures and cracks through the method of reflection
CN109515318A (en) A kind of test method and system monitored for assessing vehicle blind spot
KR101300010B1 (en) Monitoring system and method for railroad rail
CN105905133A (en) Automatic monitoring alarm method and system for railway line obstacle
US20220065690A1 (en) Statistical image processing-based anomaly detection system for cable cut prevention
Sharma et al. Railway security system based on wireless sensor networks: State of the art
KR101406135B1 (en) System for detecting defect of ultrasonic sound scan apparatus having electricity equipment
US10752273B2 (en) Train direction and speed determinations using laser measurements
Xia et al. Field trial of abnormal activity detection and threat level assessment with fiber optic sensing for telecom infrastructure protection
JP2023550091A (en) Vertical distance prediction of vibrations using distributed fiber optic sensing
TR2021021656A1 (en) ACOUSTIC METHOD DETECTING FLOODS, LANDSLIDES AND UNDER-TRAIL DISCHARGE PROBLEMS ARISING AS A RESULT OF NATURAL DISASTERS ON RAILWAYS
CN209486916U (en) A kind of evidence-obtaining system of inland navigation craft and small bridge collision
US11733070B2 (en) Street light operating status monitoring using distributed optical fiber sensing
KR20060025450A (en) Apparatus for water-level measurement and automatic water-level measurement system using it
WO2023129052A2 (en) Acoustic method for detecting flood, landslide and under-rail washout problems resulting from natural disasters in railways
CN114194256A (en) Train positioning method based on optical fiber detection technology
CN105976370A (en) Snow depth measurement method based on image contrast
CN113386825A (en) Monitoring processing system and method
JPH09282581A (en) Method and device for detecting vehicle accident inside tunnel
KR101902422B1 (en) Apparatus for detecting light obstruction
TR2023008183A2 (en) SYSTEM AND METHOD OF DETECTING DETERIORATIONS IN THE RAIL INFRASTRUCTURE BY DETECTING THE TRAVELER ANGLE
RU2774323C1 (en) Method for determining the state of the ground line, a control and alarm system for its implementation and a device for interrogation and collection of information on the state of the ground line for the control and alarm system
WO2021183080A1 (en) Method for detection of track leveling errors by vibration measurement from rails