TR2021020210A2 - NANOCOMPOSITE BASED INTELLIGENT SWING SYSTEMS USABLE IN AGROBIOTECHNOLOGY - Google Patents

NANOCOMPOSITE BASED INTELLIGENT SWING SYSTEMS USABLE IN AGROBIOTECHNOLOGY

Info

Publication number
TR2021020210A2
TR2021020210A2 TR2021/020210A TR2021020210A TR2021020210A2 TR 2021020210 A2 TR2021020210 A2 TR 2021020210A2 TR 2021/020210 A TR2021/020210 A TR 2021/020210A TR 2021020210 A TR2021020210 A TR 2021020210A TR 2021020210 A2 TR2021020210 A2 TR 2021020210A2
Authority
TR
Turkey
Prior art keywords
fertilizers
fertilizer
release
slow
soil
Prior art date
Application number
TR2021/020210A
Other languages
Turkish (tr)
Inventor
Çağlar Özketen Ahmet
Andaç Özketen Ayşe
Öztürk Kemaloğullari Berk
Forough Mehrdad
Javan Kouzegaran Vahi̇d
Original Assignee
Nanografi Nano Teknoloji Anonim Sirketi
Nanografi̇ Nano Teknoloji̇ Anoni̇m Şi̇rketi̇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanografi Nano Teknoloji Anonim Sirketi, Nanografi̇ Nano Teknoloji̇ Anoni̇m Şi̇rketi̇ filed Critical Nanografi Nano Teknoloji Anonim Sirketi
Priority to TR2021/020210A priority Critical patent/TR2021020210A2/en
Publication of TR2021020210A2 publication Critical patent/TR2021020210A2/en

Links

Landscapes

  • Fertilizers (AREA)
  • Cultivation Of Plants (AREA)

Abstract

Tarımsal üretimde büyüyen nüfusun gereksinim duyduğu gıda ihtiyacını karşılamak ve verimliliği artırmak için kullanılan gübre miktarları da artmaktadır. Fakat bu gübrelerin çoğu toprakta sulama veya yağmur suyuyla yıkanmakta ve bitkiler tarafından verimli bir şekilde alınamamaktadır. Bu da hem gübre maliyeti açısından ekonomik kayıplara hem de doğada kirliliğe neden olmaktadır. Bu yüzden özel geliştirilen yavaş/kontrollü salınımlı gübrelerin kullanılması gerekmektedir. Yavaş/kontrollü salınımlı gübreler, normal gübrelere göre birçok yönden avantaj sağlamaktadır. Yavaş/kontrollü salınım yaptıkları için toprakta suyla kaybolmaz böylece doğada kalıntı bırakmazlar. Ayrıca, sürekli uygulamaya gerek kalmayacağı için normal gübrelerden daha az maliyetlidirler.The amount of fertilizer used to meet the food needs of the growing population in agricultural production and to increase productivity is also increasing. However, most of these fertilizers are washed away by irrigation or rain water in the soil and cannot be taken up efficiently by plants. This causes both economic losses in terms of fertilizer cost and pollution in nature. Therefore, specially developed slow/controlled release fertilizers should be used. Slow/controlled release fertilizers provide many advantages over normal fertilizers. Since they are slow/controlled release, they are not lost in the soil with water, so they do not leave any residue in nature. They are also less costly than regular fertilizers as there is no need for continuous application.

Description

TARIFNAME AGROBIYOTEKNOLOJI ALANINDA KULLANILABILIR NANOKOMPOZIT TABANLI AKILLI SALINIM SISTEMLERI Teknik Alan Bulus, tarimsal alan olarak nitelendirilebilen tarla, bag, bahçe, zeytinlik, sera, çim ve peyzaj alanlari gibi yerlerde kullanilabilen nanokompozit tabanli akilli salinim sistemleri ile ilgilidir. Bulus, tarimsal alanda kullanilmak üzere gelistirilen azot, fosfat. potasyum gibi (Gübre özellikli mikro elementler) gübre içeriklerinin kontrollü salinimini gerçeklestirecek olan agrobiyoteknoloji alaninda kullanilabilir nanokompozit tabanli akilli salinim sistemleri ile Teknigin Bilinen Durumu Dünyadaki insan nüfusu arttikça gidaya duyulan ihtiyaç gittikçe artmaktadir. Bu ihtiyaci karsilamak için tarimsal üretimin arttirilmasi gerekmektedir. Tarim yapilacak mevcut alanlarin kisitli olmasi, birim alandan alinacak ürün miktarinin artirilmasini gerektirir. Gübrelerin topraga uygulanmasindan sonra bitkiler tarafindan etkili sekilde kullanilabilmesi ve bu sayede tarimda verimin artirilabilmesi için birçok çalisma yapilmaktadir. Bunlar gübre içeriginin topraga yavas veya kontrollü salinimini gerçeklestirmeye yönelik çalismalardir. Yavas salinim nitrifikasyonu engellemeye yönelik uygulamalarla gerçeklestirilirken, kontrollü salinim kaplama veya matriks sistemleri gelistirilerek gerçeklestirilir. Konu ile ilgili olarak literatürde asagidaki çalismalar bulunmustur. oksit filmler filmler kullanilarak gübrenin yavas salinimi gerçeklestirilmistir. Basvuruda potasyum nitrat (KNOs) kullanilarak yavas salinimli gübre formülasyonu ve üretim teknigi paylasilmistir. Kullanilan tuzlar grafen oksitin sicaklikla indirgenmesini saglayan ajanlar olarak islev görürken, indirgenmis grafen oksit ise gübre parçacigi etrafinda sürekli bir kaplama saglar. gerçeklestirilmistir. Gelistirilen kaplama tatli oshmantus için özel gelistirilmis olup Çinide ekonomik degeri olan tatli Oshmantus çiçeginin yetistirilmesinde kullanilarak azotun kontrollü salinimini gerçeklestirmek amaciyla olusturulmustur. Bahsedilen buluslarda kaplama malzemesi kullanilarak gübrenin topraga karismasi yavaslatilsa da daha yavas bir salinim için malzeme içerigi anlaminda gelistirmelere gerek oldugu görülmüstür. Mevcut çözümlerin konu hakkindaki yetersizligi nedeniyle ilgili teknik alanda bir gelistirme yapilmasi gerekli görülmüstür. Bulusun Amaci Tarimda uygulanan üç makro besinden (nitrojen, fosfor ve potasyum) bitkilerin en fazla gereksinim duydugu element nitrojendir ve en çok kullanilan nitrojen kaynagi ekonomik ve azot içerigi yüksek olmasindan dolayi üredir. Uygulanan azotlu gübreler bitkiler tarafindan verimli bir sekilde alinamamakta, uygulanan azotun çogu toprak mikroorganizmalari tarafindan bir sekilde amonyaga dönüstürülmektedir; ayrica azotlu gübreler toprakta çok hareketli oldugundan suyla birlikte yikanmakta ve gaz halinde uçarak sera gazi etkisini artirmaktadir. Bitkilere kimyasal gübrelerin dogrudan uygulanmasinin, besinlerin sadece %30-35'i emildigi için düsük kullanim verimine sahip oldugu gösterilmistir. En yaygin olarak kullanilan azotlu gübre olan ürenin sadece %50'Iik besin kullanim seviyelerine sahip oldugu rapor edilmis, %2-20'si buharlasma yoluyla, süzülerek kaybolmaktadir. Üre içindeki azot, topraktaki üreaz enzimleri tarafindan mineralizasyon yoluyla amonyaga dönüstürülür, daha sonra nitrifikasyon islemi ile nitrit ve nitrat iyonlarina çevrilir. Sulamadan veya yogun yagistan kaynaklanan asiri su nedeniyle toprak üreyi tutamadiginda, nitrat iyonlari yer ve yüzey su kütlelerine sizacaktir. Sonuç olarak, bitkilerde ve içme suyunda yogunlasan nitrat iyonlari insan sagligi için yüksek riskler olusturabilir. Su kirliliginin yani sira nitrojen de buharlasma yoluyla sirasiyla tam ve eksik denitrifikasyon süreçleriyle N2 ve N20 olarak kaybolur. Amonyum, buharlasma yoluyla NHs olarak da kaybolabilir. Azot bazli gübrelerin de 21. yüzyilda dünya çapinda ozon tabakasinin incelmesinin birincil maddesi olan N20'nun Gübrelerin bitkiler tarafindan daha verimli kullanilmasi ve çevreye olan etkilerini azaltmak için özel gübre formlari gelistirilmeye baslanmistir. Bu özel gübrelerin topraga uygulanmasiyla gübreler bitkiler tarafindan gerektigi kadar alinir. Bu sayede hem verimlilik artar hem de gübrenin kalani toprakta kaybolmaz. Simdiye kadar gelistirilen gübreler; stabil gübreler, yavas salinimli gübreler ve kontrollü salinimli gübreler olarak üçe ayrilmaktadir. Stabil gübreler içine nitrifikasyon inhibitörleri (örnegin; dimethylpyrazole phosphate) eklenen, nitrifikasyonu geciktirmeyi saglayan gübrelerdir. Yavas salinimli gübreler, nitrojen kaynaginin kimyasal olarak aldehit ile birlestirilmesi ile elde edilen uzun zincirli moleküllerin olusturdugu gübrelerdir ve en bilinen formu ise metilen üredir. Bu uzun zincirli moleküller topraktaki nitrifikasyon bakterileri tarafindan parçalanmayi zorlastirarak azotun gecikmeli salinimini saglar. Yavas salinimli gübrelerde, salinim hizi kontrol edilememekte, bakterilerin parçalama hizina göre degismektedir. Kontrollü salinimli gübreler ise suda çözünür besinlerin organik polimer veya inorganik maddelerle kaplanmasiyla olusturulan gübrelerdir. Bu kaplamalar gübrelerin hemen çözünmesini engelleyerek belirli bir zamanda belirli bir miktar salinmasini saglamaktadir ve bu süreyi de kaplamanin özellikleri belirlemektedir. Bu tür kontrollü salinim yapan akilli gübrelerin normal gübrelere göre birçok avantaji vardir. Bitkiler gerektigi kadar besini zamaninda alabildikleri için daha verimli büyüme saglanir ve besinler toprakta kaybolmaz. Daha etkin bir sekilde uygulama yapilabilecegi için daha az maliyetli ve isçilik için harcanan zaman daha kisa olacaktir. Tarimda besin olarak en çok kullanilan ve bitkilerin gelismek için ihtiyaci olan azotlu gübrelerdir. Kontrollü salinimli azotlu gübre için ilk kullanilan inorganik materyal sülfürdür. Sülfür ile kaplanmis üre Tennessee Vadisi Otoritesi (Tenesse Valley Authority- TVA) tarafindan 40 yil kadar öncesinde gelistirilmis ve nitrojenin topraga salinmasini kontrol edebildigi görülmüstür; fakat suyla birlestiginde ürenin üçte birini hemen saldigi gözlemlendigi için performansi etkin olarak bulunmamistir. Sülfürün yeterince esnek olmamasindan dolayi kaplama tam yapilamamaktadir. Kontrollü salinim için kaplama materyali olarak hem organik polimerlerle (nisasta, Iignin, kitosan vb.) hem de inorganik maddelerle (sülfür, bentonit, zeonit vb.) çalismalar yapilmistir. Organik polimerlerle kaplanan üreler 30 güne kadar 75%'inin salinim yaptigi, hatta bazi polimerler ile (aljinat, biobazli poliüretan) 70 güne kadar çiktigi gözlemlenmistir. Fakat inorganik maddeler ile kaplanan ürenin en fazla 10 günde 75%inin salindigi gözlemlenmis ve etkin bir kaplama olarak bulunmamistir. Grafen, karbonun tek katmanli olarak diziliminden elde edilen ve bal petegi görünümüne sahip bir formudur. Bulusta kaplama malzemesi olarak kullanilan grafen oksit ise ölçeklenebilir ve düsük maliyetli üretimi nedeni ile grafen bazli ürünler içinde en uygun materyaldir. Grafen oksit grafenin bir türevi olup, su ile dispersiyon olmaktadir. Grafen oksit yüksek yüzey alanlarina ve özel 2 boyutlu yapilarina sahip olduklari için besin yüklemesi ve yavas/kontrollü salinan gübre üretiminde kullanilmasi için ideal bir yapiya sahiptir. Ayrica, yesil yöntemlerle üretilen grafen oksit çevreci bir üründür ve dogada bulunabilen peroksidaz enzim ailesi (miyeloperoksidazlar ve Iignin peroksidaz) tarafindan bozunduklari için dogada kalinti birakmaz. Bulusun ana konusu kontrollü salinim olmakla beraber kompozite eklenen fungisit etken maddesi sayesinde, hem bitki besleme hem de fungisit etkinliginin saglanmasi mümkündür. Bulusun yapisal ve karakteristik özellikleri ve tüm avantajlari asagida verilen sekiller ve bu sekillere atiflar yapilmak suretiyle yazilan detayli açiklama sayesinde daha net olarak anlasilacaktir. Bulusun Detayli Açiklamasi Bu detayli açiklamada, bulusun tercih edilen yapilanmalari, sadece konunun daha iyi anlasilmasina yönelik olarak ve hiçbir sinirlayici etki olusturmayacak sekilde açiklanmaktadir. Bulusta, gübre bilesenlerinden azot, fosfor, potasyum, kalsiyum, magnezyum, kükürt, bor, bakir, demir, mangan, molibden ve çinkodan birini veya birkaçini içeren amonyum sülfat, amonyum molibdat, boraks, borik asit, kalsiyum silikat, kalsiyum klorür, bakir asetat, bakir nitrat, bakir oksalat, bakir oksit, bakir sülfat, EDDHA-Fe, EDTA-Fe, kükürt, demir sülfat, amonyum demir fosfat, amonyum demir sülfat, demir sülfat, alçi tasi, hümik asit, selatli demir, sönmüs kireç, amonyum fosfat, amonyum klorür, amonyak, sodyum nitrat, kalsiyum nitrat, mangan sülfat, magnezyum sülfat, mangan klorür, mangan oksit, mono amonyum fosfat, mono potasyum fosfat, polihalit, potasyum bromür, potasyum klorür, potasyum sülfat, potasyum polifosfat, potasyum nitrat, amonyum nitrat, kalsiyum amonyum nitrat, amonyum sülfat nitrat, süperfosfat, sodyum klorür, sodyum metasilikat, çinko oksit, çinko sülfat, çinko karbonat, çinko fosfat, selatli çinko, sodyum molibdat, üre, üre formaldehit ve kalsiyum sinamid gibi bitki besini çesitlerinden biri kullanilarak çekirdek yapi olusturulacaktir. Kontrollü salinim için organik moleküllerden kaplama materyali olarak poliüretan, polietilen, poliester, poliamidi polietilen, polifenilen sülfid, polipropilen sentetik polimerleri ve/veya kitosan, nisasta, dekstran, kitin, selüloz, albümin, pullulan, Iignin, algin, pektin, hyalüronik asit, kolajen gibi dogal polimerleri kullanilacaktir. Nanokompozit kaplamada, fungisit olarak triazol, karboksamid, benzimidazol, strobilurin gruplarindan birini içeren malzeme ve nanomalzeme olarak grafen, grafen oksit. indirgenmis grafen. karbon nanotüp veya bunlarin modifikasyonlarindan biri kullanilacaktir. Nanokompozit kaplamanin akilli salinim sisteminin agirlik olarak %10 - 90 'ini olusturmasi beklenmektedir. Bulusa konu olan kontrollü salinimli gübrenin, organik molekül olarak kitosan ve nano malzeme olarak grafen oksit içeren nanokompozit kullanilarak kaplanmasi islemini içeren deneysel tasarim örnek olarak asagida verilmistir. Kitosan kitinin bir formu olup dogada en bol bulunan dogal ve biyolojik olarak parçalanabilen bir polimerdir ayrica biyopestisit özelligi de tasimaktadir. Biyoçözünür ve biyouyumlu özelliklerine sahip olmasi kitosani ideal bir kaplama malzemesi yapmaktadir ve kontrollü salinimli gübrelerde potansiyel uygulamasi çalisilmistir. Yapilan çalismalarda kitosanin su tutma özelliginin iyi oldugu görülmüstür, fakat yüksek nem geçirgenligi ve mekanik problemlere sahip olmasi kontrollü salinimli gübre kalitesini düsürmüstür. Bu yüzden kitosanin grafen oksitle birlestirilmesi kontrollü salinim özelligi için kitosan grafen oksite esneklik kazandirir ve grafen oksit kitosanin mekanik dayanikliligini artirir. Üre granüllerinin CS-GO çözeltisine batirilmasini ve ardindan bunlarin NaOH/etanol çözeltisine daldirilmasini içeren basit damlatma yöntemi, üre üzerinde CS-GO kaplamasi olusturur. Ayrica düzlemsel yapisindaki hidroksil, epoksi ve karboksil gruplari gibi fonksiyonel gruplar sadece CS ile çapraz bag olusturmaz, ayni zamanda kullanildigi kompozitlerin mekanik mukavemetini de arttirabilir. Akilli çift katmanli kaplama çözeltisi, temel katalizli sol-jel teknigine göre hazirlanir. Ilk olarak, kitosan bazli sol çözeltisinin hazirlanmasi için, kitosan (~ formik asit veya asetik asit solüsyonlarinda (ayri ayri) sürekli sabit çalkalama ile çözülür. GO çözeltileri, ultrason sonikasyonu yoluyla DI suya veya potasyum fosfat tampon çözeltisinde farkli miktarlarda GO eklenerek hazirlanir. CS ve GO çözeltileri, agirlik bazinda %0.01-O.2'lik farkli (30 yüklemelerine sahip CS-GO kompozitlerini elde etmek için karistirilir. Ikinci olarak, CS-GO'ya amonyak ve distile su eklenecek ve manyetik karistirma altinda karistirilir. Daha sonra karisima TEOS (eklenir. Ardindan alkali katalizör olarak Tris (distile suda %5 v/v) ilave edilir ve karisim hidroliz islemi için sonikasyona tabi tutulacaktir. Bu kosullar altinda, bilesenler, temel katalizli sol-jel prosedürüne göre reaksiyona girecektir. Daha sonra sol, oda sicakliginda karistirilacak ve dispersiyon, gliseroI/sorbitol ile desteklenir. Son olarak, plastisizer olarak sorbitol gliserol eklenir ve karistirilir. Granül gübrenin kaplanmasi, hazirlanan sol-jel çözeltisine daldirilarak ve ardindan etanol içinde 2 mol/L NaOH'ye aktarilarak gerçeklestirilir. Bu islem sirasinda gübre granüllerinin içine hapsedildigi bir tabaka (kabuk) olusturulur. CS- GO kapli gübre daha sonra çikarilacak ve doymus sulu bir sodyum bromür çözeltisi içeren bir desikatörde kurutulur. Gübre taneciklerinin tamamen CS-GO filmi ile kaplanmasi için islem ertesi gün ikinci bir kaplama için tekrarlanir. Ikinci havada kurutmadan sonra, 08-80 kapli gübre taneleri tartilir. Bununla birlikte, ilk hafta boyunca istenen %25'Iik salinim kontrolünü saglamak için üçüncü bir kaplamaya gerek duyulabilir. Gelistirilen tüm filmler, mekanik mukavemet, sisme ve suda çözünürlük testleri, FTlR ve SEM teknikleri kullanilarak karakterize edilir. Asetik asit ile hazirlanan GO-kitosan çözeltisinin pH'i, 1N NaOH eklenerek 5'e yükseltilir. Agregasyonu önlemek için sol solüsyona Tween 80 (% 0.5) eklenir. Daha sonra, kompozite eklenecek olan fungisitten oranlari 267% Boscalid ve/veya %6.? Pyraclostrobin olacak sekilde saf suda çözülür ve yukaridaki GO-kitosan çözeltisine eklenerek ve ortam kosullarinda karistirilir. Daha sonra, sürekli manyetik karistirma varliginda GO-kitosan çözeltisine yavas yavas sodyum tripolifosfat (TPP) çözeltisi eklenir. GO-Kitosan-TPP çözeltisi, sonikasyona tabi tutulur. Sonra ayni kurutma islemi yapilarak yine karakterize testleri yapilir. Olusturulacak akilli salinimli gübrenin kati, sivi veya yari kati formda olmasi planlanmaktadir. TR TR TR DESCRIPTION NANOCOMPOSITE BASED SMART OSCULATION SYSTEMS THAT CAN BE USED IN THE FIELD OF AGROBIOTECHNOLOGY Technical Field The invention is related to nanocomposite based smart release systems that can be used in places such as fields, vineyards, gardens, olive groves, greenhouses, lawns and landscape areas, which can be described as agricultural areas. The invention is nitrogen and phosphate developed for use in agricultural areas. Known State of the Technique With nanocomposite-based smart release systems that can be used in the field of agrobiotechnology, which will realize the controlled release of fertilizer contents such as potassium (fertilizer-specific microelements) As the human population in the world increases, the need for food increases. To meet this need, agricultural production needs to be increased. The limited available areas for agriculture require increasing the amount of product to be purchased per unit area. Many studies are carried out to ensure that fertilizers can be used effectively by plants after they are applied to the soil and thus increase productivity in agriculture. These are studies aimed at realizing the slow or controlled release of fertilizer content into the soil. While slow release is achieved through practices aimed at preventing nitrification, controlled release is achieved by developing coating or matrix systems. The following studies were found in the literature on the subject. Slow release of fertilizer was achieved using oxide films. In the application, slow-release fertilizer formulation and production technique using potassium nitrate (KNOs) were shared. While the salts used act as agents that enable the reduction of graphene oxide with temperature, the reduced graphene oxide provides a continuous coating around the fertilizer particle. has been carried out. The developed coating was specially developed for sweet oshmantus and was created in order to achieve controlled release of nitrogen by using it in the cultivation of sweet Oshmantus flowers, which have economic value in tiles. Although the mixing of fertilizer into the soil is slowed down by using coating material in the mentioned inventions, it has been seen that improvements in terms of material content are needed for a slower release. Due to the inadequacy of existing solutions on the subject, it was deemed necessary to make a development in the relevant technical field. Purpose of the Invention: Of the three macronutrients (nitrogen, phosphorus and potassium) applied in agriculture, the element that plants need most is nitrogen, and the most used nitrogen source is urea due to its economical nature and high nitrogen content. Applied nitrogenous fertilizers cannot be taken up efficiently by plants, and most of the applied nitrogen is somehow converted into ammonia by soil microorganisms; In addition, since nitrogenous fertilizers are very mobile in the soil, they are washed with water and volatilize in gaseous form, increasing the greenhouse gas effect. Direct application of chemical fertilizers to plants has been shown to have low utilization efficiency as only 30-35% of the nutrients are absorbed. Urea, the most widely used nitrogen fertilizer, is reported to have nutrient utilization levels of only 50%, with 2-20% lost through evaporation and leaching. The nitrogen in urea is converted into ammonia through mineralization by urease enzymes in the soil, and then converted into nitrite and nitrate ions through the nitrification process. When soil cannot retain urea due to excess water from irrigation or heavy rainfall, nitrate ions will leach into ground and surface water bodies. As a result, nitrate ions concentrated in plants and drinking water can pose high risks to human health. In addition to water pollution, nitrogen is also lost through evaporation as N2 and N20 through complete and incomplete denitrification processes, respectively. Ammonium can also be lost as NHs through evaporation. Special fertilizer forms have begun to be developed to ensure more efficient use of fertilizers by plants and to reduce their impact on the environment. By applying these special fertilizers to the soil, the fertilizers are taken up by the plants as needed. In this way, productivity increases and the remaining fertilizer is not lost in the soil. Fertilizers developed so far; They are divided into three groups: stable fertilizers, slow-release fertilizers and controlled-release fertilizers. Stable fertilizers are fertilizers to which nitrification inhibitors (e.g. dimethylpyrazole phosphate) are added, allowing them to delay nitrification. Slow-release fertilizers are fertilizers formed by long-chain molecules obtained by chemically combining the nitrogen source with aldehyde, and the most well-known form is methylene urea. These long-chain molecules make it difficult to break down by nitrifying bacteria in the soil and provide delayed release of nitrogen. In slow-release fertilizers, the release rate cannot be controlled and varies according to the degradation rate of bacteria. Controlled-release fertilizers are fertilizers created by coating water-soluble nutrients with organic polymers or inorganic substances. These coatings prevent the immediate dissolution of fertilizers and allow them to be released in a certain amount at a certain time, and this time is determined by the properties of the coating. Such controlled-release smart fertilizers have many advantages over normal fertilizers. Since plants can get as much nutrients as they need on time, more efficient growth is achieved and nutrients are not lost in the soil. Since it can be applied more effectively, it will be less costly and the time spent on labor will be shorter. Nitrogenous fertilizers are the most commonly used nutrients in agriculture and are needed by plants to grow. The first inorganic material used for controlled-release nitrogen fertilizer was sulfur. Sulfur-coated urea was developed by the Tennessee Valley Authority (TVA) about 40 years ago and was shown to be able to control the release of nitrogen into the soil; However, its performance was not found to be effective since it was observed that it immediately released one-third of the urea when combined with water. Since the sulfur is not flexible enough, the coating cannot be completed completely. Studies have been conducted with both organic polymers (starch, lignin, chitosan, etc.) and inorganic substances (sulphur, bentonite, zeonite, etc.) as coating materials for controlled release. It has been observed that ureas coated with organic polymers release 75% for up to 30 days, and even up to 70 days with some polymers (alginate, biobased polyurethane). However, it was observed that 75% of the urea coated with inorganic substances was released in a maximum of 10 days and it was not found to be an effective coating. Graphene is a form of carbon obtained from a single layer arrangement and has a honeycomb appearance. Graphene oxide, which is used as the coating material in the invention, is the most suitable material among graphene-based products due to its scalable and low-cost production. Graphene oxide is a derivative of graphene and is dispersed with water. Graphene oxide has an ideal structure for use in nutrient loading and slow/controlled release fertilizer production, as it has high surface areas and special 2-dimensional structures. In addition, graphene oxide produced by green methods is an environmentally friendly product and does not leave residue in nature as it is degraded by the peroxidase enzyme family (myeloperoxidases and Ignin peroxidase) that can be found in nature. Although the main subject of the invention is controlled release, it is possible to provide both plant nutrition and fungicide effectiveness thanks to the fungicide active ingredient added to the composite. The structural and characteristic features and all the advantages of the invention will be understood more clearly thanks to the figures given below and the detailed explanation written by making references to these figures. Detailed Description of the Invention In this detailed description, the preferred embodiments of the invention are explained only for a better understanding of the subject and in a way that does not create any limiting effect. In the invention, ammonium sulfate, ammonium molybdate, borax, boric acid, calcium silicate, calcium chloride, copper acetate containing one or more of the fertilizer components nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, boron, copper, iron, manganese, molybdenum and zinc. , copper nitrate, copper oxalate, copper oxide, copper sulfate, EDDHA-Fe, EDTA-Fe, sulfur, ferrous sulfate, ammonium iron phosphate, ammonium ferrous sulfate, ferrous sulfate, gypsum, humic acid, chelated iron, slaked lime, ammonium phosphate, ammonium chloride, ammonia, sodium nitrate, calcium nitrate, manganese sulfate, magnesium sulfate, manganese chloride, manganese oxide, mono ammonium phosphate, mono potassium phosphate, polyhalite, potassium bromide, potassium chloride, potassium sulfate, potassium polyphosphate, potassium nitrate, Using one of the plant nutrients such as ammonium nitrate, calcium ammonium nitrate, ammonium sulfate nitrate, superphosphate, sodium chloride, sodium metasilicate, zinc oxide, zinc sulfate, zinc carbonate, zinc phosphate, chelated zinc, sodium molybdate, urea, urea formaldehyde and calcium cinnamide. The core structure will be created. Polyurethane, polyethylene, polyester, polyamide polyethylene, polyphenylene sulfide, polypropylene synthetic polymers and/or chitosan, starch, dextran, chitin, cellulose, albumin, pullulan, lignin, algin, pectin, hyaluronic acid, collagen are used as coating materials from organic molecules for controlled release. Natural polymers such as will be used. In the nanocomposite coating, material containing one of the triazole, carboxamide, benzimidazole, strobilurin groups as fungicides and graphene and graphene oxide as nanomaterials. reduced graphene. carbon nanotube or one of their modifications will be used. The nanocomposite coating is expected to constitute 10 - 90% by weight of the smart release system. The experimental design, which includes the coating process of the controlled release fertilizer that is the subject of the invention, using a nanocomposite containing chitosan as an organic molecule and graphene oxide as a nano material, is given below as an example. Chitosan is a form of chitin and is the most abundant natural and biodegradable polymer in nature. It also has biopesticide properties. Its biodegradable and biocompatible properties make chitosan an ideal coating material, and its potential application in controlled-release fertilizers has been studied. Studies have shown that chitosan has good water retention properties, but its high moisture permeability and mechanical problems have reduced the quality of controlled-release fertilizer. Therefore, combining chitosan with graphene oxide gives flexibility to chitosan graphene oxide for its controlled release feature, and graphene oxide increases the mechanical strength of chitosan. The simple dropping method, which involves soaking urea granules in CS-GO solution and then dipping them in NaOH/ethanol solution, forms CS-GO coating on urea. In addition, functional groups such as hydroxyl, epoxy and carboxyl groups in its planar structure not only form cross-links with CS, but can also increase the mechanical strength of the composites in which they are used. The smart bilayer coating solution is prepared according to the basic catalyzed sol-gel technique. First, for the preparation of chitosan-based sol solution, chitosan (~) is dissolved in formic acid or acetic acid solutions (separately) with continuous constant shaking. GO solutions are prepared by adding different amounts of GO in DI water or potassium phosphate buffer solution via ultrasound sonication. CS and GO solutions are mixed to obtain CS-GO composites with different loadings of 0.01-0.2% (30 wt%). Secondly, ammonia and distilled water will be added to CS-GO and mixed under magnetic stirring. Then TEOS is added to the mixture. (is added. Then, Tris (5% v/v in distilled water) is added as alkaline catalyst and the mixture will be subjected to sonication for hydrolysis. Under these conditions, the components will react according to the basic catalyzed sol-gel procedure. The sol is then heated at room temperature. to be mixed and the dispersion is supported with glycerol/sorbitol. Finally, sorbitol glycerol is added as plasticizer and the coating of the granular fertilizer is carried out by dipping it into the prepared sol-gel solution and then transferring it to 2 mol/L NaOH in ethanol. During this process, a layer (shell) is created in which the fertilizer granules are trapped. The CS-GO coated fertilizer is then removed and dried in a desiccator containing a saturated aqueous solution of sodium bromide. The process is repeated the next day for a second coating to completely cover the fertilizer particles with the CS-GO film. After the second air drying, 08-80 coated fertilizer grains are weighed. However, a third coating may be required to achieve the desired 25% release control during the first week. All developed films are characterized using mechanical strength, swelling and water solubility tests, FTIR and SEM techniques. The pH of the GO-chitosan solution prepared with acetic acid is increased to 5 by adding 1N NaOH. Tween 80 (0.5%) is added to the sol solution to prevent aggregation. Then, the proportions of the fungicide to be added to the composite are 267% Boscalid and/or 6%.? It is dissolved in pure water to form pyraclostrobin and added to the above GO-chitosan solution and mixed under ambient conditions. Then, sodium tripolyphosphate (TPP) solution is slowly added to the GO-chitosan solution in the presence of continuous magnetic stirring. The GO-Chitosan-TPP solution is subjected to sonication. Then, the same drying process is performed and characterization tests are performed again. The smart release fertilizer to be created is planned to be in solid, liquid or semi-solid form. TR TR TR

TR2021/020210A 2021-12-16 2021-12-16 NANOCOMPOSITE BASED INTELLIGENT SWING SYSTEMS USABLE IN AGROBIOTECHNOLOGY TR2021020210A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TR2021/020210A TR2021020210A2 (en) 2021-12-16 2021-12-16 NANOCOMPOSITE BASED INTELLIGENT SWING SYSTEMS USABLE IN AGROBIOTECHNOLOGY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2021/020210A TR2021020210A2 (en) 2021-12-16 2021-12-16 NANOCOMPOSITE BASED INTELLIGENT SWING SYSTEMS USABLE IN AGROBIOTECHNOLOGY

Publications (1)

Publication Number Publication Date
TR2021020210A2 true TR2021020210A2 (en) 2022-02-21

Family

ID=85117524

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2021/020210A TR2021020210A2 (en) 2021-12-16 2021-12-16 NANOCOMPOSITE BASED INTELLIGENT SWING SYSTEMS USABLE IN AGROBIOTECHNOLOGY

Country Status (1)

Country Link
TR (1) TR2021020210A2 (en)

Similar Documents

Publication Publication Date Title
Campos et al. Polysaccharides as safer release systems for agrochemicals
CN104311253B (en) A kind of chitosan sustained-release fertilizer microballoon and preparation method thereof
CN110198779B (en) Method for granulating polyhalite
CN102264218A (en) Fertiliser composition
EP2882825A1 (en) . product and process for the intensification of plant cultivation and increase plant fertillity
AU2008312121A1 (en) Improvements in and relating to soil treatments
CN106396886B (en) Slow release fertilizer and preparation method thereof
JP2003171196A (en) Complex fertilizer
Ganetri et al. Controlling factors of slow or controlled-release fertilizers
Ribeiro et al. Why nonconventional materials are answers for sustainable agriculture
Karthik et al. Smart fertilizer strategy for better crop production
Firmanda et al. Biopolymer-based slow/controlled-release fertilizer (SRF/CRF): Nutrient release mechanism and agricultural sustainability
TR2021020210A2 (en) NANOCOMPOSITE BASED INTELLIGENT SWING SYSTEMS USABLE IN AGROBIOTECHNOLOGY
WO2011114221A1 (en) Fertilizer composition
US20220281781A1 (en) Binders for hydroscopic substrates
US11802094B2 (en) Dispersible particles containing soluble humics and biochar
CN109988580B (en) Cold-resistant drought-resistant fertilizer-preserving water-retaining modifier for loose soil
JPH0823013B2 (en) Soil amendment activator and method for producing the same
CN106922654A (en) One-step synthesis prepare hydroxyapatite pesticide, fertilizer slow release complex
CN114874781B (en) Sustained-release soil conditioner and preparation method thereof
WO2017110385A1 (en) Artificial soil medium
CN106866310A (en) A kind of potassium fulvate urea and preparation method thereof
JP2014193148A (en) Artificial soil medium
Annapurna et al. Review on sustained fertilizers releases for agriculture systems
CN109942330A (en) A kind of chesson type a great number of elements Water soluble fertilizer