TR2021015079A2 - POLYMERIC FIBER PRODUCTION METHOD - Google Patents

POLYMERIC FIBER PRODUCTION METHOD

Info

Publication number
TR2021015079A2
TR2021015079A2 TR2021/015079 TR2021015079A2 TR 2021015079 A2 TR2021015079 A2 TR 2021015079A2 TR 2021/015079 TR2021/015079 TR 2021/015079 TR 2021015079 A2 TR2021015079 A2 TR 2021015079A2
Authority
TR
Turkey
Prior art keywords
fibers
healing
production method
fiber production
zone
Prior art date
Application number
TR2021/015079
Other languages
Turkish (tr)
Inventor
Avci Huseyi̇n
Demi̇r Ali̇
Kilic Ali̇
Erdem Ureyen Mustafa
Polat Yusuf
Seyhan Aybeni̇z
Nur Gunaydin Beyza
Original Assignee
Erzurum Tekni̇k Üni̇versi̇tesi̇
Eski̇şehi̇r Osmangazi̇ Üni̇versi̇tesi̇
Eski̇şehi̇r Tekni̇k Üni̇versi̇tesi̇
İstanbul Tekni̇k Üni̇versi̇tesi̇
Filing date
Publication date
Application filed by Erzurum Tekni̇k Üni̇versi̇tesi̇, Eski̇şehi̇r Osmangazi̇ Üni̇versi̇tesi̇, Eski̇şehi̇r Tekni̇k Üni̇versi̇tesi̇, İstanbul Tekni̇k Üni̇versi̇tesi̇ filed Critical Erzurum Tekni̇k Üni̇versi̇tesi̇
Publication of TR2021015079A2 publication Critical patent/TR2021015079A2/en

Links

Abstract

Buluş, eriyik polimerlerden mono ve multifilament iplik üretimi sırasında, liflerin performans ve işlevlerinin geliştirilmesi için modifiye edilmesini sağlayan bir lif üretim yöntemi ile ilgilidir. Buluş ile, polimer zinciri yönelimlerinin etkin biçimde düzenlenmesine olanak tanıyarak, düşük yoğunluklu ve geri dönüşüm kaynaklı olanlar da dahil çeşitli termoplastik polimerlerden yüksek mekanik performans ve fonksiyonel özellik gösteren liflerin üretilebilmesini sağlamaktadır.The invention relates to a fiber production method that enables the fibers to be modified to improve their performance and functions during the production of mono and multifilament yarns from molten polymers. By allowing effective regulation of polymer chain orientations, the invention enables the production of fibers with high mechanical performance and functional properties from various thermoplastic polymers, including low-density and recycling-sourced ones.

Description

TARIFNAME POLIMERIK LIF ÜRETIM YÖNTEMI Teknik Alan Bulus, eriyik polimerlerden mono ve multifilament iplik üretimi sirasinda, liflerin performans ve islevlerinin gelistirilmesi için modifiye edilmesini saglayan bir lif üretim yöntemi ile ilgilidir. Önceki Teknik Teknigin bilinen durumunda, eriyikten polimer lif üretimi sirasinda, düzeden püskürtülen lifler yag bazli sivi banyosundan geçirilerek mekanik performanslari gelistirilmektedir. Mekanik performansin etkin biçimde düzenlenebilmesi için 2000 m/dak üzerindeki yüksek sarim hizlarindan yararlanilmakta, bunun için de pahali donanimlar kullanilmaktadir. Yeterli mekanik performans elde edilebilmesi için, yüksek yogunluklu veya yüksek moleküler agirlikli polimerler seçilmesi gerekmekte ve geri dönüsüm kaynakli polimerlerden etkin biçimde yararlanilamamaktadir. Yag bazli sivi banyolarinin kullanimi nedeni ile çalisanlar koruyucu giysi kullanmakta, hat çevresinde yogun temizlik çalismasi yapilmakta ve maliyetli atik kontrol yöntemlerinden yararlanilmasi gerekmektedir. Mekanik performanslari gelistirilmis liflere fonksiyonel (islevsel) özellikler kazandirilmasi için sarim sonrasinda ayrica islenmeleri gerekmektedir. Bu durum, hem üretim sürecinin karmasikligini ve dolayisiyla üretim maliyetlerini arttirmakta hem de sarim sonrasinda tüm lif yüzeyi etkin biçimde islenemediginden etkileri sinirli kalmaktadir. Yag bazli sivi banyosundan yararlanilarak yüksek kristalinite ve düzenli zincir yönelimi sayili dokümanlar ile açiklanmistir. Daha bu alanda gerçeklestirilen bazi gelistirmeler (2009) [6] tarafindan gerçeklestirilen çalismalarla açiklanmistir. Eriyikten polimer lif üretiminde birden fazla sivi banyosu kullanimina yönelik bazi çözümler de teknikte bilinmektedir. U86238608B1 sayili dokümanda, eriyikten elde edilen liflerin birbirini izleyen sogutma amaçli iki su banyosundan geçirildigi bir yöntem açiklanmistir. CN106521688A sayili dokümanda ise, eriyikten elde edilen liflerin sirasiyla bir sulu sogutma banyosundan ve bir sulu gerdirme banyosundan geçirildigi bir yöntem açiklanmistir. Bu dokümanlarin her ikisi de su bazli banyolarin kullanimi da açiklanmistir. eriyikten elde edilen liflerin ardisik iki banyodan geçirilerek matris olusturan polimerler, polimer bilesenleri gibi unsurlar ile emprenye edilmesi açiklanmistir. Banyolarin farkli U88188206B2 sayili dokümanlar ise, eriyikten elde edilen liflerin sivi banyosu öncesinde gaz fazdaki bir ortamda islendigi çözümler açiklanmaktadir. Bulusun Amaçlari Bu bulusun amaci, eriyikten polimer lif` üretimi sirasinda, liflere mekanik ve farkli fonksiyonel özellikler kazandirilmasina yönelik bir yöntemin gelistirilmesidir. Bu bulusun baska bir amaci da, liflerin mekanik ve fonksiyonel özelliklerinin tek adimda, yani düzeden çikan liflerin sarimi öncesinde kazandirilmasini saglayan bir yöntemin gelistirilmesidir. Bu bulusun daha baska bir amaci da, düsük yogunluklu polimerler veya geri dönüsüm kaynakli polimerlerin kullanilmasina olanak taniyan bir yöntemin gelistirilmesidir. Bu bulusun daha baska bir amaci da, düsük sarim hizlari ile yüksek mekanik performans elde edilebilmesine olanak taniyan `bir yöntemin gelistirilmesidir. Bu bulusun daha baska bir amaci da, çevresel etkileri ve çalisan sagligina etkileri en aza indirilmis, çevre dostu su bazli ortamlarin kullanilmasina olanak taniyan bir yöntemin gelistirilmesidir. Bulusun Ayrintili Açiklamasi Bu bulusun amaçlarina ulasmak için gerçeklestirilen yöntem ekli sekiller ile açiklanmistir. Sekill Bulus konusu yöntemin uygulanmasina yönelik bir düzenegin sematik görünümüdür. Sekillerde yer alan parçalar tek tek numaralandirilmis olup, bu numaralarin karsiliklari asagida verilmistir. . Birinci iyilestirme bölgesi . Ikinci iyilestirme bölgesi 4. Sarici . Godet 6. Huni 7. Ekstrüder Eriyik polimerlerden mono ve multifilament iplik üretimi sirasinda liflerin performans ve islevlerinin gelistirilmesi için modifiye edilmesini saglayan bulus konusu lif üretim yöntemi, temelde, termoplastik polimer eriyiginin hazirlanmasi, eriyigin düzeden (1) lifler olusturacak biçimde püskürtülmesi, liflerin birden fazla iyilestirme bölgesinden geçirilmesi ve iyilestirilmis liflerin sarimi adimlarini içermektedir. Düzeden (1) eriyik halde püskürtülen lifler, önce bir veya daha fazla birinci iyilestirme bölgesinden (2) geçirilmektedir. Lifler birinci iyilestirme bölgesinden (2) çiktiklarinda yalnizca kismen katilasmis durumdadir. Bunun için birinci iyilestirme bölgesinin (2) sicakligi, ilgili polimer için kristalizasyon sicakliginin üzerinde, bozunma sicakliginin altindadir. Birinci iyilestirme bölgesinin (2) sicakligi tercihen ilgili polimerin yumusama sicakliginin 10 °C üzerindedir. Yalnizca kismen katilasmis durumdaki lifler, birinci iyilestirme bölgesinin (2) ardindan katilastiklari bir ikinci iyilestirme bölgesinden (3) geçirilmektedir. Bulusun tercih edilen bir uygulamasinda, birinci iyilestirme bölgesindeki (2) ortamin Viskozitesi, ikinci iyilestirme bölgesindeki (3) ortamin Viskozitesine göre düsüktür. Düze (1), granül halde polimerler malzemenin yüklendigi bir huni (6) ile huniden (6) alinan granüllerin kademeli olarak isitildigi, bir vida ve kovandan olusan bir ekstrüder (7) tarafindan beslenmektedir. Eriyik polimerin düzeden (l) püskürtülmesi için ekstrüder (7) tarafindan saglanan basinçtan yararlanilabilecegi gibi, düze (l) öncesinde ayri bir pompa da bulunabilir. Iyilestirme bölgelerinden geçirilen lifler, bir veya daha fazla sarici (4) tarafindan sarilmaktadir. Sarici (4), liflerin iyilestirilme bölgelerinden geçirildikleri sirada maruz kaldiklari hiz, gerilim ve burulmanin düzenlenmesine de yardimci olmaktadir. Söz konusu hiz, gerilim ve burulma, saricinin (4) yanisira, iyilestirme bölgeleri ile sarici (4) arasinda veya iyilestirme bölgelerinin aralarinda bulunan godetler(5) yardimi ile de düzenlenebilmektedir. Birinci iyilestirme bölgesinde (2), 10'6 7 10'2 mPa-s viskozite degerine sahip kuru hava, azot, argon gibi gaz halde veya 1 7 100 mPa-s viskozite degerine sahip sulu çözeltiler, sulu karisimlar, sulu emülsiyon ve süspansiyonlardan olusan sivi halde bir ortam kullanilmaktadir. Birinci iyilestirme bölgesinde (2), polimer yalnizca kismen katilastigi için polimer zincirleri tamamen immobilize olmamaktadir. Ortam Viskozitesine bagli olarak olusan sürüklenme ve kesme kuvvetleri ile polimer zincirlerinin yönelimleri ve dolayisiyla da liflerin mekanik özellikleri etkin biçimde ayarlanabilmektedir. Ikinci iyilestirme bölgesinde (3), 0,3 - 2 mPa's viskozite degerine sahip sivi halde bir ortam kullanilmaktadir. Ikinci iyilestirme bölgesinin (3) sicakligi, oda sicakligi ile 150 °C arasinda, boyunca maruz birakilmaktadir. Ikinci iyilestirme bölgesinde (3), polimerlerin katilasmasi tamamlanarak liflerin iç yapisi optimize edilerek liflerin mekanik özellikleri gelistirilmektedir. Ikinci iyilestirme bölgesinde (3), liflerin mekanik özelliklerinin gelistirilmesi ile ayni anda liflere, aleV geciktiricilik, iyilestirilmis adezyon, antibakteriyel veya antiviral etki, koku vericilik, dolgunluk, morötesi isinim dayanimi, renk, hidrofillik, bozunurluk, iletkenlik de dahil çesitli fonksiyonel özellikler de kazandirilabilmektedir. Bu fonksiyonel özellikler, ortam içeriginin seçilmesi ile belirlenmektedir. Ikinci iyilestirme bölgesinde (3), tercihen sulu çözeltiler, sulu karisimlar, sulu emülsiyon ve süspansiyonlardan olusan bir ortam kullanilmaktadir. Bulusun bir uygulamasinda lifler, ikinci iyilestirme bölgesinin (3) ardindan katilasmis durumda iken islendikleri bir veya daha fazla üçüncü iyilestirme bölgesinden de geçirilebilir. Üçüncü iyilestirme bölgesinin sicakligi, oda sicakligi ile 150 °C arasinda, tercihen de 50 - 100 °C arasindadir. Üçüncü iyilestirme bölgesi tercihen bir sivi banyosundan olusmaktadir. Liflerin üçüncü iyilestirme bölgesine maruz birakilma süresi banyo uzunluguna ve lif sarim hizina baglidir. Liflerin banyo ile etkilesim uzunlugu 30 cm-300 cm araliginda, tercihen de 50 cm-100 cm araligindadir. Banyo içerigi, kazandirilan yeni ekstra özellige göre nötr, asidik m/dak'dan 1500 rn/dak"ya kadar olmasi gerekmektedir. Üçüncü iyilestirme bölgesinde, liflere daha önce kazandirilan mekanik ve fonksiyonel özellikler korunurken, yeni fonksiyonel özellikler kazandirilabilmekte ve var olan fonksiyonel özellikler gelistirilebilmektedir. Üçüncü iyilestirme bölgesinde önceki iyilestirme bölgelerinin etkisi ile olusan pH degerinin nötrlenmesi, kalintilarin uzaklastirilmasi gibi islevler de gerçeklestirilebilmektedir. Üçüncü iyilestirme bölgesinde, tercihen sulu çözeltiler, sulu karisimlar, sulu emülsiyon ve süspansiyonlardan olusan bir ortam kullanilmaktadir. Iyilestirme bölgeleri içinde liflerin özellikleri viskozite ile birlikte, sicaklik, içerik, pH, liflerin izledigi yol ve liflerin hizi gibi degiskenler araciligi ile kontrol edilebilmektedir. Bulus ile, basta polietilen, polipropilen, poliamit ve poliester olmak üzere çesitli termoplastik polimerlerden lifler elde edilebilmektedir. Üstün mekanik ve fonksiyonel özellikler kazandirilabilmesi için yüksek moleküler agirlikli polimer kullanimi gerekmemekte ve geri dönüstürülmüs polimerlerden yararlanilabilmektedir. Bulus, düsük sarim hizlari ile uygulanabildigi için, geleneksel eriyikten üretim hatlarinda kolaylikla uygulanabilmektedir. Sulu ortam kullanimi sayesinde de üretimin çevresel ve çalisan sagligina etkileri sinirlandirilabilmektedir. Bulusun örnek bir uygulamasinda, polietilen lifler, düsük viskoziteye sahip birinci iyilestirme bölgesi (2) ve daha yüksek vizkoziteli ikinci iyilestirilme bölgesinden (3) 750 m/dak hiz ile geçirilmistir. Ikinci iyilestirme bölgesinde (3), agirlikça en fazla %10 oraninda Arabik gam (akasya sakizi) içeren sulu çözelti kullanilmistir. Bu uygulama ile yüksek mekanik performans ve ek bir islem uygulanmaksizin yüksek islanabilirlik ile yüzeye tutunma egilimi gösteren lifler elde edilmistir. Bu liflerin modülü 1,4 GPa olarak ölçülmüstür. Buna karsin geleneksel yöntemler kullanilarak ayni polietilen ile elde edilen modül degeri 262 MPa olarak ölçülmüs, literatürde anilan benzer polietilen lifler için ise 100 elde edilen numune için 605 MPa [11] olarak bulunmustur. Bulusun bu uygulamasi ile elde edilen liflerde temas açisi 37,8O olarak ölçülmüstür. Buna karsin geleneksel yöntemler kullanilarak üretilen liflerde temas açisi 101,3o olarak ölçülmüstür. Bulusun baska bir örnek uygulamasinda polietilen lifler, düsük viskoziteye sahip birinci iyilestirme bölgesi (2) ve daha yüksek vizkoziteli ikinci iyilestirilme bölgesinden (3) 1000 m/dak hiz ile geçirilmistir. Ikinci iyilestirme bölgesinde (3), agirlikça %1 ,5 oraninda organik fosfor katkisi içeren sulu çözelti kullanilmistir. Bu uygulama ile yüksek mekanik performans ve ek bir islem uygulanmaksizin yüksek isil dayanim ile alev geciktiricilik gösteren liIler elde edilmistir. Bu liflerin modülü 109 MPa olarak ölçülmüstür. Buna karsin geleneksel yöntemlere göre ayni polietilen ile elde edilen modül degeri 56 MPa olarak ölçülmüstür. Bulusun bu uygulamasi ile elde edilen liflerde LOI (limiting oxygen index) degeri 21,5, olarak, MCC (micro-combustion calorimeter) testi sonucu isi salimi (pHRR - peak heat release rate) 1209 W/g olarak ölçülmüstür. Buna karsin geleneksel yöntemler kullanilarak üretilen liflerde LOI degeri `19,8 olarak, MCC testi sonucu isi salimi `1523 W/g olarak ölçülmüstür. TR TR TR DESCRIPTION POLYMERIC FIBER PRODUCTION METHOD Technical Field The invention relates to a fiber production method that allows fibers to be modified to improve their performance and functions during the production of mono and multifilament yarn from molten polymers. Prior Art In the state of the art, during the production of polymer fiber from melt, the fibers sprayed from the spinneret are passed through an oil-based liquid bath to improve their mechanical performance. In order to effectively regulate mechanical performance, high winding speeds over 2000 m/min are used, and expensive hardware is used for this. In order to obtain sufficient mechanical performance, high density or high molecular weight polymers must be selected and recycling-sourced polymers cannot be used effectively. Due to the use of oil-based liquid baths, employees wear protective clothing, intensive cleaning work is carried out around the line, and costly waste control methods must be used. In order to provide functional properties to fibers with improved mechanical performance, they must be further processed after winding. This situation increases the complexity of the production process and therefore production costs, and its effects remain limited since the entire fiber surface cannot be processed effectively after winding. High crystallinity and regular chain orientation using an oil-based liquid bath have been explained in numbered documents. Some developments in this field have been explained in the studies carried out by (2009) [6]. Some solutions for the use of more than one liquid bath in the production of polymer fibers from melt are also known in the art. In the document numbered U86238608B1, a method is described in which the fibers obtained from the melt are passed through two water baths for successive cooling purposes. In the document numbered CN106521688A, a method is described in which the fibers obtained from the melt are passed through an aqueous cooling bath and an aqueous stretching bath, respectively. Both of these documents also describe the use of water-based baths. It has been explained that the fibers obtained from the melt are passed through two consecutive baths and impregnated with elements such as matrix-forming polymers and polymer components. Documents numbered U88188206B2, where the baths are different, describe solutions in which the fibers obtained from the melt are processed in a gas phase environment before the liquid bath. Purposes of the Invention The purpose of this invention is to develop a method for providing mechanical and different functional properties to fibers during the production of polymer fiber from melt. Another aim of this invention is to develop a method that enables the mechanical and functional properties of fibers to be imparted in a single step, that is, before the winding of the fibers coming out of the spinneret. Another aim of this invention is to develop a method that allows the use of low density polymers or recycling-sourced polymers. Another purpose of this invention is to develop a method that allows high mechanical performance to be achieved with low winding speeds. Another purpose of this invention is to develop a method that allows the use of environmentally friendly water-based environments with minimized environmental impacts and effects on employee health. Detailed Description of the Invention The method implemented to achieve the objectives of this invention is explained with the attached figures. The figure is a schematic view of a mechanism for the implementation of the method subject to the invention. The parts in the figures are numbered one by one, and the equivalents of these numbers are given below. . First healing zone. Second healing zone 4. Wrapper. Godet 6. Funnel 7. Extruder The fiber production method of the invention, which enables the fibers to be modified to improve their performance and functions during the production of mono and multifilament yarn from melt polymers, is basically the preparation of the thermoplastic polymer melt, spraying the melt from the spinneret (1) to form fibers, the fibers being mixed more than once. It includes the steps of passing it through the healing area and winding the healed fibers. The fibers sprayed in molten form from the spinneret (1) are first passed through one or more first healing zones (2). The fibers are only partially solidified when they exit the first healing zone (2). For this, the temperature of the first healing zone (2) is above the crystallization temperature and below the decomposition temperature for the relevant polymer. The temperature of the first healing zone (2) is preferably 10 °C above the softening temperature of the relevant polymer. The fibers, which are only partially solidified, are passed through the first healing zone (2) and then through a second healing zone (3) where they solidify. In a preferred embodiment of the invention, the Viscosity of the medium in the first improvement zone (2) is lower than the Viscosity of the medium in the second improvement zone (3). The nozzle (1) is fed by a funnel (6) into which granulated polymer materials are loaded, and by an extruder (7) consisting of a screw and a barrel, where the granules taken from the funnel (6) are gradually heated. The pressure provided by the extruder (7) can be used to spray the molten polymer from the nozzle (1), or a separate pump can be located before the nozzle (1). The fibers passed through the healing areas are wrapped by one or more winders (4). The winder (4) also helps regulate the speed, tension and torsion to which the fibers are exposed as they pass through the healing areas. In addition to the winder (4), the speed, tension and torsion in question can also be regulated with the help of godets (5) located between the healing zones and the winder (4) or between the healing zones. In the first improvement zone (2), dry air with a viscosity value of 10'6 7 10'2 mPa-s, gaseous such as nitrogen and argon, or aqueous solutions, aqueous mixtures, aqueous emulsions and suspensions with a viscosity value of 1 7 100 mPa-s. A liquid medium is used. In the first healing zone (2), the polymer chains are not completely immobilized because the polymer is only partially solidified. The orientations of the polymer chains and therefore the mechanical properties of the fibers can be effectively adjusted by the drag and shear forces that occur depending on the medium viscosity. In the second improvement zone (3), a liquid medium with a viscosity value of 0.3 - 2 mPa is used. The temperature of the second healing zone (3) is maintained between room temperature and 150 °C throughout. In the second improvement zone (3), the solidification of the polymers is completed and the internal structure of the fibers is optimized and the mechanical properties of the fibers are improved. In the second improvement zone (3), by improving the mechanical properties of the fibers, various functional properties can also be imparted to the fibers, including flame retardancy, improved adhesion, antibacterial or antiviral effect, fragrance, fullness, ultraviolet radiation resistance, color, hydrophilicity, degradability and conductivity. . These functional features are determined by selecting the media content. In the second improvement zone (3), a medium consisting of aqueous solutions, aqueous mixtures, aqueous emulsions and suspensions is preferably used. In an embodiment of the invention, the fibers can also be passed through one or more third healing zones, where they are processed while they are in a solidified state, following the second healing zone (3). The temperature of the third healing zone is between room temperature and 150 °C, preferably between 50 and 100 °C. The third healing zone preferably consists of a liquid bath. The time the fibers are exposed to the third healing zone depends on the bath length and fiber winding speed. The interaction length of the fibers with the bath is between 30 cm and 300 cm, preferably between 50 cm and 100 cm. The bath content should be from neutral to acidic m/min to 1500 rn/min, depending on the new extra feature gained. In the third improvement zone, while the mechanical and functional properties previously given to the fibers are preserved, new functional properties can be gained and existing functional properties can be improved. In the third healing zone, functions such as neutralizing the pH value formed by the effect of the previous healing zones and removing residues can also be carried out. In the third healing zone, a medium consisting of aqueous solutions, aqueous mixtures, aqueous emulsions and suspensions is used, along with the properties of the fibers, viscosity. It can be controlled through variables such as temperature, content, pH, the path followed by the fibers and the speed of the fibers. With the invention, fibers can be obtained from various thermoplastic polymers, especially polyethylene, polypropylene, polyamide and polyester, to provide superior mechanical and functional properties. There is no need to use it and recycled polymers can be used. Since the invention can be implemented with low winding speeds, it can be easily implemented in traditional melt production lines. Thanks to the use of aqueous media, the effects of production on the environment and employee health can be limited. In an exemplary application of the invention, polyethylene fibers were passed through the first healing zone (2) with low viscosity and the second healing zone (3) with higher viscosity at a speed of 750 m/min. In the second healing area (3), an aqueous solution containing a maximum of 10% by weight of gum Arabic (acacia gum) was used. With this application, fibers with high mechanical performance, high wettability and a tendency to adhere to the surface without any additional processing were obtained. The modulus of these fibers was measured as 1.4 GPa. On the other hand, the modulus value obtained with the same polyethylene using traditional methods was measured as 262 MPa, while for similar polyethylene fibers mentioned in the literature, it was found to be 605 MPa for 100 samples obtained [11]. The contact angle of the fibers obtained with this application of the invention was measured as 37.8°. On the other hand, the contact angle of fibers produced using traditional methods was measured as 101.3o. In another exemplary application of the invention, polyethylene fibers were passed through the first healing zone (2) with low viscosity and the second healing zone (3) with higher viscosity at a speed of 1000 m/min. In the second improvement zone (3), an aqueous solution containing 1.5% organic phosphorus additive by weight was used. With this application, fibers with high mechanical performance, high thermal resistance and flame retardancy were obtained without any additional processing. The modulus of these fibers was measured as 109 MPa. On the other hand, the modulus value obtained with the same polyethylene according to traditional methods was measured as 56 MPa. In the fibers obtained with this application of the invention, the LOI (limiting oxygen index) value was measured as 21.5, and the heat release (pHRR - peak heat release rate) as a result of the MCC (micro-combustion calorimeter) test was measured as 1209 W/g. On the other hand, the LOI value of fibers produced using traditional methods was measured as `19.8, and the heat release as a result of the MCC test was measured as `1523 W/g. TR TR TR

Claims (1)

1.ISTEMLER . Eriyik polimerlerden mono ve multifilament iplik üretimi sirasinda liflerin performans ve islevlerinin gelistirilmesi için modifiye edilmesini saglayan, termoplastik polimer eriyiginin hazirlanmasi, eriyigin düzeden (1) lifler olusturacak biçimde püskürtülmesi, liflerin birden fazla iyilestirme bölgesinden geçirilmesi ve iyilestirilmis liflerin sarimi adimlarini içeren ve düzeden (1) eriyik halde püskürtülen liflerin önce yalnizca kismen katilasmis durumda çiktilari bir veya daha fazla birinci iyilestirme bölgesinden (2) geçirilmesi ile karakterize edilen bir lif üretim yöntemi. . Birinci iyilestirme bölgesinin (2) sicakliginin ilgili polimer için kristalizasyon sicakliginin üzerinde, bozunma sicakliginin altinda olmasi ile karakterize edilen istem 1”deki gibi bir lif üretim yöntemi. . Birinci iyilestiime bölgesinin (2) sicakliginin polimerin yumusama sicakliginin 10 0C üzerinde olmasi ile karakterize edilen istem 2°deki gibi bir lif üretim yöntemi. . Yalnizca kismen katilasmis durumdaki liflerin birinci iyilestirme bölgesinin (2) ardindan katilastiklari bir ikinci iyilestirme bölgesinden (3) geçirilmesi ile karakterize edilen istem 17deki gibi bir lif üretim yöntemi. . Katilasmis durumdaki liflerin bir veya daha fazla üçüncü iyilestirme bölgesinden geçirilmesi ile karakterize edilen istem 4lteki gibi bir lif üretim yöntemi. TR TR TR1.CLAIMS. It includes the steps of preparing the thermoplastic polymer melt, spraying the melt to form fibers through the spinneret (1), passing the fibers through more than one healing area, and winding the cured fibers, which allows the fibers to be modified to improve their performance and functions during the production of mono and multifilament yarn from molten polymers. A fiber production method characterized in that the melt-blown fibers are first passed through one or more first curing zones (2) from which they emerge only in a partially solidified state. . A fiber production method as in claim 1, characterized in that the temperature of the first healing zone (2) is above the crystallization temperature and below the degradation temperature for the relevant polymer. . A fiber production method as in claim 2, characterized in that the temperature of the first healing zone (2) is 10 0C above the softening temperature of the polymer. . A fiber production method as in claim 17, characterized by passing the fibers that are only partially solidified through a first healing zone (2) followed by a second healing zone (3) where they solidify. . A fiber production method as in claim 4, characterized by passing the solidified fibers through one or more third recovery zones. TR TR TR
TR2021/015079 2021-09-27 POLYMERIC FIBER PRODUCTION METHOD TR2021015079A2 (en)

Publications (1)

Publication Number Publication Date
TR2021015079A2 true TR2021015079A2 (en) 2023-04-24

Family

ID=

Similar Documents

Publication Publication Date Title
WO1996026232A1 (en) Dimensionally stable fibers and non-woven webs
WO2018045476A1 (en) Isotropized "ready-to-use" plastic pellets with highly entangled nanofibrils and method of production
AU2008351678A1 (en) Colored high strength polyethylene fiber and preparation method thereof
CN105917039B (en) Fypro
Ziabicki et al. Studies on the orientation phenomena by fiber formation from polymer melts. IV. Effect of molecular structure on orientation. Polyethylene and polystyrene
WO2008125298A1 (en) Method for the production of highly oriented polyolefin ribbons, textiles and technical flexible sheet materials produced therefrom, and the use thereof in protective bodies for the protection from ballistic projectiles and the like
TR201815465T4 (en) The meltblown nonwoven web comprising the recovered polypropylene component and the recovered sustainable polymer component and the method of making the same.
CN108728921A (en) A kind of production method of antimicrobial form polyester industrial yarn
Richardson et al. Production and properties of fibers spun from nylon 6/lithium chloride mixtures
CN107723838A (en) A kind of hot melt adhesive composite fibre and preparation method thereof
KR20160029758A (en) Method for producing a synthetic yarn with high moisture regain and yarn obtained
US5762840A (en) Process for making microporous fibers with improved properties
KR20190133243A (en) Additives for Fiber Reinforcement
TR2021015079A2 (en) POLYMERIC FIBER PRODUCTION METHOD
JP6838282B2 (en) Polypropylene fiber and manufacturing method of polypropylene fiber
US10870929B2 (en) Polypropylene fiber and method for manufacturing polypropylene fiber
KR100477954B1 (en) Laminated spanbond non-woven fabric having high rewet efficiency and manufacturing method thereof
JP6676895B2 (en) Method for producing polypropylene fiber and polypropylene fiber obtained by the same method
KR101982375B1 (en) Para-type wholly aromatic copolyamide drawn fiber and production method therefor
US8293664B1 (en) Process for producing polyvinyl alcohol articles
CN108138378B (en) Core-sheath composite cross-section fiber having excellent moisture absorption and wrinkle resistance
Zhang et al. Partial carbonization of aramid fibers
CN109477248B (en) Polyolefin fiber and method for producing same
KR101965471B1 (en) Thermoplastic fibres with reduced surface tension
Najafi Improving Mechanical Properties of Nylon and Polyester Yarns by Horizontal Isothermal Bath Method