TR2021012310A2 - DUAL SAMPLING DEVICE FOR CONTAMINANTS WITH PARTICLES AND VAPOR PHASE IN THE ATMOSPHERE - Google Patents

DUAL SAMPLING DEVICE FOR CONTAMINANTS WITH PARTICLES AND VAPOR PHASE IN THE ATMOSPHERE

Info

Publication number
TR2021012310A2
TR2021012310A2 TR2021/012310A TR2021012310A TR2021012310A2 TR 2021012310 A2 TR2021012310 A2 TR 2021012310A2 TR 2021/012310 A TR2021/012310 A TR 2021/012310A TR 2021012310 A TR2021012310 A TR 2021012310A TR 2021012310 A2 TR2021012310 A2 TR 2021012310A2
Authority
TR
Turkey
Prior art keywords
glass
denuder
air
sampling
particle
Prior art date
Application number
TR2021/012310A
Other languages
Turkish (tr)
Inventor
Karakaş Duran
Berberler Ercan
Original Assignee
Bolu Abant Izzet Baysal Ueniversitesi
Bolu Abant İzzet Baysal Üni̇versi̇tesi̇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bolu Abant Izzet Baysal Ueniversitesi, Bolu Abant İzzet Baysal Üni̇versi̇tesi̇ filed Critical Bolu Abant Izzet Baysal Ueniversitesi
Priority to TR2021/012310A priority Critical patent/TR2021012310A2/en
Publication of TR2021012310A2 publication Critical patent/TR2021012310A2/en

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

Buluş; amacı, atmosferde bulunan partikül organik karbonların (OK) örneklenirken her ortamda çok yüksek düzeylerde bulunan uçucu organik bileşiklerin (UOB), partikül OK ve yine örnek hava içerisinde bulunan gaz fazı PAH?ların, partikül fazı PAH sonuçları üzerinde oluşturdukları pozitif girişimleri ve ikinci olarak ta atmosferik ozonun örnek hava ile filtreden geçerken toplanmış olan partikül PAH bileşiklerini parçalaması sonucu oluşan negatif girişimi gidermek olan ikili örnekleme cihazı ile ilgilidir.Meet; The purpose of this study is to examine the positive interferences of particulate organic carbons (OCs) in the atmosphere, volatile organic compounds (VOCs), which are found at very high levels in every environment, particle OK and gas phase PAHs in the sample air on the particle phase PAH results, and secondly. It is related to the dual sampling device, which is to eliminate the negative interference caused by the atmospheric ozone decomposing the particulate PAH compounds while passing through the filter with the sample air.

Description

TARIFNAME ATMOSFERDE PARTIKÜL VE BUHAR FAZI BULUNAN KIRLETICILER içiN IKILI ÖRNEKLEME CIHAZI TEKNIK ALAN Bulus, atmosferik partikül madde (PM) ve bu PlVl" lerin buhar fazli fraksiyonlarinin örneklemelerinde kullanilmaktadir. Bu örnekleyici ile hem partikül hem de gaz fazi bulunan kirleticiler örneklenebilmekte ve gaz ve partikül faz miktarlari herhangi bir girisim olmadan örneklenebilmektedir. Bulus çalismalarinin baslangicinda yalnizca partikül organik karbonlardaki (OK) uçucu organik bilesiklerden (UOB) kaynaklanan pozitif girisimlerle, PAH'Iar üzerindeki ozon gazi kaynakli negatif girisimlerin giderilmesi hedeflenmisti. Ancak, ayni örnekleyicinin atmosferde hem partikül ve hem de buhar fazlarinda bulunan tüm organik ve inorganik kirleticilerin örneklenmesinde kullanilabilecegi görülmüstür. Gaz fazinda bulunan kirleticiler (örnegin; UOBiler, gaz fazi PAHllar, gaz fazi Civa ve uçucu özelligi olan diger metal ve bilesikler) için ayri bir örnekleme ve analiz sistemi gerektirmemektedir. TEKNIGIN BILINEN DURUMU Dünya genelinde hava kalitesi ve iklim degisikligi modellemelerinde girdi olarak kullanilmakta olan OK'Iarin ölçümlerinde örneklemeden kaynakli olarak yüksek düzeylerde girisimlerin oldugu bilinmektedir ancak günümüzde hala standart bir örnekleme yöntemi veya metodu bulunmamaktadir. Organik karbonlarla birlikte yari uçucu kirleticilerin (PAH, PCB ve Dioksin/Furan gibi) örneklenmesinde de tipki OK"da oldugu gibi çok büyük girisimler bulunmaktadir. Örnegin, dogrudan filtre üzerine örnek toplayan örnekleyicilerle toplanan örneklerde, toplanan partikül faz yari-uçucularin veya OK'Iarin ölçülen degerlerinin neredeyse %50'sinin aslinda partikül faz kirleticler olmadiklari, uçucu (gaz/buhar fazindaki) fraksiyonlarinin örnek üzerinde yogustugu/ absorplandigi anlasilmistir. Söz konusu bulus ile bu pozitif girisimler giderilmektedir. Ek olarak, PAH bilesiklerinin yüksek ozon konsantrasyonlarinda parçalandiklari ve bu nedenle de gerçek PAH miktarlarindan çok daha az PAH sonuçlari ölçüldügü anlasilmistir. Bu negatif girisim de yine bulusumuz ile OK'larla birlikte simultane olarak giderilebilmektedir.PAH'larda ozon nedeni ile karsilasilan negatif girisim giderilirken ayni zamanda, OK"Iarda oldugu gibi, gaz fazi PAH'larin filtrede toplanan partiküller üzerinde yogusmasi ile olusan pozitif girisimlerde giderilmektedir. Ek olarak, organik kirleticilerde oldugu gibi, atmosferde hem uçucu ve hem de partikül fazlari bulunan inorganik kirleticilerin örneklenmelerinde de ayni girisim problemi yasanmaktadir. Dolayisi ile gelistirilen ikili örnekleyici ile bu girisimlerde ortadan kaldirildigi gibi kirleticilerin gaz/buhar fraksiyonlarindaki ve partikül fraksiyonlarindaki miktarlari ek bir örnekleyici veya ölçüm cihazi gerekmeksizin belirlenebilmektedir. BULUSUN TANIMI Bulus; amaci, atmosferde bulunan partikül organik karbonlarin (OK) örneklenirken her ortamda çok yüksek düzeylerde bulunan uçucu organik bilesiklerin (UOB), partikül OK sonuçlari üzerinde olusturdugu pozitif girisimleri ve ikinci olarak ta atmosferik ozonun örnek hava ile filtreden geçerken toplanmis olan partikül PAH bilesiklerini parçalamasi sonucu olusan negatif girisimi gidermek olan ikili örnekleme cihazi ile ilgilidir. Bulusun amaci; atmosferde bulunan partikül organik karbonlarin (OK) örneklenirken her ortamda çok yüksek düzeylerde bulunan uçucu organik bilesiklerin (UOB), OK sonuçlari üzerinde olusturdugu pozitif girisimleri ve ikinci olarak atmosferik ozonun örnek hava ile filtreden geçerken toplanmis olan partikül PAH bilesiklerini parçalamasi sonucu olusan negatif girisimi ve yine, OK'larda oldugu gibi, gaz fazi PAHilarin partikül faz PAHilar üzerinde olusturdugu pozitif girisimi de gidermektir. Atmosferde bulunan OK'lar örneklenirken, örnek hava içerisinde bulunan UOB'ler örneklerin toplandigi filtre üzerinde yogusmakta ve filtre materyali tarafindan absorplanmaktadir. Bunun sonucu olarak OK degerleri ile gaz fazi bilesenlerin partikül fazi OK ve PAH'lar üzerinde olusturduklari pozitif girisimler ve ozonun PAH'Iar üzerinde olusturdugu negatif girisimler tamamen ortadan kaldirilmaktadir. Bulusun en önemli avantajlarindan bazilari: - Maliyetinin çok düsük olmasi, - Tasinabilir olmasi (yaklasik olarak 3,0 kg, kullanilacak pompaya bagli olarak 1- kg arasi), - Sebeke enerjisine ihtiyaç duyulmamasi, - Istenilen hava çekis hizinda ve partikül boyutlarinda atmosferik örneklemelerin yapilabilmesi, - Organik ve inorganik tüm kirleticilerin örneklemelerine uygun olmasi, - Atmosferik kirleticilerin gaz ve partikül fazlarini girisimlerden etkilenmeden ayri ayri ve ayni anda örnekleyebilmesi, - Atmosferik kirleticilerin gaz fazi bilesenlerini belirlemek için ek bir örnekleyiciye veya ek bir analiz metoduna ihtiyaç duyulmamasi, - Ozon'un örnekleme sirasinda organik bilesenler üzerindeki negatif girisimini tamamen ortadan kaldirmasi, - Dis ve iç ortam atmosferleri dahil hemen her ortamda örneklemelere uygun olmasi, - Pompa ve partikül boyut ayirici (siklon) hariç tamamen yerli olmasi. - Cihaz, bilinen standart çevresel satlarin (ortam sicakligi: -20 - +60 °C) saglanmasi durumunda istenilen her ortamda kullanilmaya uygun olmasi. Sekillerin Açiklanmasi: Bulus, ilisikteki sekillere atifta bulunularak anlatilacaktir, böylece bulusun özellikleri daha net anlasilacaktir. Ancak, bunun amaci bulusu bu belli düzenlemeler ile sinirlamak degildir. Tam aksine, bulusun ilisikteki istemler tarafindan tanimlandigi alani içine dâhil edilebilecek bütün alternatif, degisiklik ve denkliklerinin kapsanmasi da amaçlanmistir. Gösterilen ayrintilar, sadece mevcut bulusun tercih edilen düzenlemelerinin anlatimi amaciyla gösterildigi ve hem yöntemlerin sekillendirilmesinin, hem de bulusun kurallari ve kavramsal özelliklerinin en kullanisli ve kolay anlasilir tanimini saglamak amaciyla sunulduklari anlasilmalidir. Bu çizimlerde; Sekil- 1 Her bir örnekleyici için akis diyagrami, Sekil - 2 Cam denuder kesit görünümüdür, Sekil- 3 Cam denuder yan görünümüdür. Bu bulusun anlasilmasina yardimci olacak sekiller ekli resimde belirtildigi gibi numaralandirilmis olup isimleri ile beraber asagida verilmistir. Referanslarin Açiklanmasi: PM 2,5 siklon, Denuder koruma ünitesi, Cam denuder, Quickfit baglanti, Primer filtre, Backup filtre, Cam dis duvar, Adsorban kaplamali iç yüzey, O. Denuder yan görünüs. BULUSUN DETAYLI AÇIKLANMASI Bu detayli açiklamada bulus konusu yapilanmasinin tercih edilen alternatifleri, sadece konunun daha iyi anlasilmasina yönelik olarak ve hiç bir sinirlayici etki olusturmayacak sekilde açiklanmaktadir. Bulus; amaci, atmosferde bulunan partikül organik karbonlarin (OK) örneklenirken her ortamda çok yüksek düzeylerde bulunan uçucu organik bilesiklerin (UOB), partikül OK sonuçlari üzerinde ve yine örnek hava içerisinde bulunan gaz fazi PAH'Iarin, partikül faz PAH sonuçlari üzerinde olusturdugu pozitif girisimleri ve ikinci olarak ta atmosferik ozonun örnek hava ile filtreden geçerken toplanmis olan partikül PAH bilesiklerini parçalamasi sonucu olusan negatif girisimi gidermek olan ikili örnekleme cihazi ile ilgili olup, örneklenecek havanin girisinin saglandigi PM 2,5 siklon (1), cam denuderin (3) dis muhafazasini saglayan denuder koruma ünitesi (2), örneklenecek havanin içerisinden geçerek örnek havada bulunan OK"larin ölçülmesini saglayan cam denuder (3), primer filtre (5) ve backup filtrenin (6) giris ve çikisina ayri ayri yerlestirilen quickfit baglanti (4), örneklenen havanin içerisindeki partikülleri filtreleyen primer filtre (5), primer filtreden (5) geçmesi muhtemel gaz ve partikülleri tutmaya yarayan backup filtre (6), örnekleme islemi sirasinda örnek havanin istenen hava çekis hizinda sistemden geçmesini, örnek havadaki partiküllerin filtrelerde tutulmasini saglayan ve partiküllerin ayristirilma islemlerinden sonra sistemden geçen havanin kolay bir sekilde atmosfere salinimini saglayan pompa (7), cam denuderin (3) dis kismini olusturan cam dis duvar (8), cam denuderin (3) iç kismini olusturan adsorban kaplamali iç yüzey (9), cam denuderin (3) yan taraftan görümünün saglandigi denuder yan görünüm (10) içermektedir. Ikili örnekleyiciyi olusturan parçalara ait özellikler asagida sunulmaktadir; 1) 9-halkali multisorbent emprenyeli borosilikat cam denuder (3)içermektedir, 2) Gelistirilen esdeger iki cihazdan (ikisi tek cihaz seklinde, ikili örnekleyici olarak) elde edilen partikül OK miktarlari arasindaki fark dogrudan atmosferdeki uçucu organik bilesiklerin (UOB) miktarini vermektedir ki bu ölçüm için ek bir sistem gerekmemektedir. Ayni sonuçlar PAH vb yari uçucular ile inorganik kirleticiler için de geçerlidir, 3) Ikili örnekleyici ile toplanan örneklerde ölçülen partikül OKilarin dogrulugu örneklerde ölçülen Elementel Karbon (EK) ile dogrulanmakta ve toplam kütle ölçümü ile yapilan degerlendirmelerdeki yüksek belirsizlikler ortadan kalkmaktadir, 4) Ayni anda hem partikül OK ve hem de partikül PAH'Iar için girisim etkisi olmaksizin örneklemeler yapabilmektedir, ) Ayni örnekte, istenirse, simultane olarak hem partikül OK ve hem de partikül PAH'lar ve tüm inorganik kirletici bilesikler için girisim etkisi olmaksizin örneklemeler yapilabilmektedir, 6) Örnekleme sistemi, elektrik sebekesinin olmadigi örnekleme alanlarinda NiMH (nikel metal hidrür) pil sayesinde sekiz (8) saat süre ile kesintisiz örnekleme yapabilmekte ve gerekirse dogrudan sebeke hatti (220 V) ile 24 saat ve çok daha uzun süreler ile örneklemeler yapilabilmektedir, 7) Gelistirilen ikili örnekleme cihazi ile, organiklerde oldugu gibi, denuderin uygun kati faz adsorbanlarla emprenyelenmesi ile civa, kadmiyum, çinko, bakir, krom, nikel vb. hem uçucu ve hem de partikül fazda bulunan inorganik kirleticilerin de gaz faz ve kati faz (partikül) miktarlari girisimlerden etkilenmeden örneklenebilmektedir. Örnekleme sonuçlarinin dogrulugunu belirlemek amacina yönelik olarak ve sonuçlarin karsilastirilmalarinda kullanilmak üzere paralel ölçümler yapmak gerekli oldugundan 2 adet esdeger cihaz gelistirilmis ve bu nedenle "Ikili Örnekleyici cihaz" olarak isimlendirilmistir. Iki örnekleyici arasindaki tek farki kati faz adsorbanlarla emprenyelenmis cam denuder (3) olusturmaktadir. Bu nedenle emrenyeli cam denuder (3) içeren örnekleyici C örnekleyicisi ve emprenyesiz cam denuder (3) içeren paralel örnekleyici ise UC örnekleyicisi olarak isimlendirilmistir.Uçucu fraksiyonlarin miktarlarinin belirlenebilmesi ve denuderin uçucu bilesenlerle doyum noktasina ulasip ulasmadiginin anlasilmasi nedenleri ile iki cihazin paralel örneklemeler yapmasi gerekmektedir. Eger örneklemede amaç sadece partikül faz miktarlarin belirlenmesi ise, örnek sayisini azaltma amaçli olarak yalnizca C örnekleyicisi kullanilabilir, UC örnekleyicisi 10-15 örneklemede bir dahil edilerek C örnekleyicisinin uçucu bilesenlerle doygunluga ulasip ulasmadigi kontrol edilmelidir. Çalisma yöntemi: Örnek hava sitemin (Sekil 1) en son basamaginda bulunan vakum pompasi (7) tarafindan emilir. Emilen hava öncelikle örnek havada bulunan partikül maddelerin (PM) boyutlari 2,5 mikron ve altinda olan partikülleri seçerek cam denudere (3) yollayan PM 2,5 siklona (1) gelmektedir. PM 2,5 siklonda (1) istenilen boyutlarda seçilmis partikülleri ve uçucu bilesenleri içeren örnek hava cam denudere (3) ulasmaktadir. Cam Denuder (3) emprenyeli ise (C örnekleyicisi) örnek hava içerisindeki gaz fazi bilesenler ve ozon cam denuder (3) yüzeylerindeki adsorbanlar tarafindan tutulmakta ve yalnizca partikülller cam denuderden (3) çikabilmektedir. Eger cam denuder (3) emprenyesiz ise (UC örnekleyicisi) PM 2,5 siklondan (1) sonra hem partiküller, hem de gaz fazi bilesenleri ve ozon cam denuderden (3) çikarlar. Cam denuderden (3) çikan örnek hava filterpack kartusu içerisinde bulunan primer filtre (5) ve backup filtreler (6) üzerinde tutulmaktadirlar. Filtrelerden (5)(6) geçen hava pompa (7) vasitasi ile tekrar atmosfere salinmaktadir. Özetlenen bu örnekleme yönteminde C örnekleyicisi ile yalnizca partikül faz kirleticiler örneklenmis olurken, UC örnekleyicisi ile girisimleri içeren örnekler (gaz ve partikül faz birlikte) toplanmis olmaktadir. UC örneklerinde belirlenen miktarlardan, C örneklerinde belirlenen miktarlar çikartildiginda, o örnekteki uçucu fraksiyon miktarlari da ek bir örnekleme veya analiz cihazi gerektirmeksizin belirlenmis olmaktadir. Ikili Örnekleme cihazi dahilinde; 2 adet esdeger, PM2,5 toz örnekleme cihazlari modüler bir sekilde tasarlanmis ve gelistirilmistir. Gerekli durumlarda filtre paket sistemine istenilen sayida yeni kartuslar eklenebilmektedir. Örnegin bu çalismada tozlarin üzerinde toplandigi birincil kuvarz filtrenin (primer filtre(5)) arkasina backup filtre (6) olarak ikinci bir filtre kartusu takilip toplanan tozlardan UOB seklinde volatilize olarak veya primer filtreden (5) ultra ince partikül olarak herhangi bir OK kaybinin olup olmadigi test edilmis ve bu kayip belirlenebilmistir. Örnekleme cihazlarindan her birisi; 1 adet PM2,5 siklon (1), bir adet cam denuder (3) ve denuder koruma ünitesi (2), 1 veya 2 adet filtrepaket kartusu (5)(6) ve 1 adet 4 -12 L/dak arasi hava çekebilen programlanabilir pompadan (7) olusmaktadir. Yukarida bahsedildigi üzere, PM 2,5 siklon (1) ve pompalar (7) amaca uygun sekilde kolayca degistirilebilecek sekildedir. Örnekleme hava akis kontrolü ve pompa (7) göstergesinde gösterilen hava akis hizini her iki örnekleyici için de kontrol amaçli olarak 2 adet kalibreli flowmetreler de ek aksesuarlar olarak kullanilmaktadir. Bulusta, gelistirilen ve saha çalismalarinda kullanilmakta olan örnekleyicilerin örnekleme sirasindaki Hava akis hizina bagli partikül boyut kesim çizelgesi Grafik 1* de, cihazlarin teknik özellikleri Tablo 1' de verilmistir. Gelistirilen örnekleyiciler arasindaki tek fark cam denuderlerinin (3) emprenyeli olup olmamasi seklindedir. C ile tanimlanan örnekleyici emprenyeli cam denuder (3) içerirken, UC ile tanimlanan örnekleyici emprenyesiz, temiz cam denuder (3) içermektedir. 2.499 ;ini Aerodynamic Diameter. pm Cyclone Flow Rate - Lpm Grafik 1. Hava akis hizina bagli partikül boyut kesim çizelgesi Her iki örnekleme cihazinin hava girisinde 8,0 L/dak hava çekis hizinda 2,499 pm partikül boyut kesim noktasina sahip PM 2,5 siklonlar (1) kullanilmistir. Anodize alüminyumdan üretilmis ve yaklasik olarak 310 gr agirliktadir. Kolayca temizleme ve degistirme imkanlari saglamaktadir. Saha örneklemeleri sirasinda örnekleme cihazlarindan bir tanesi C ve esdeger ikinci cihaz ise UC olarak isimlendirilmistir. Burada C; coated (adsorbanlarla emprenye edilmis cam denuder (3) içeren cihaz), UC; uncoated (adsorban içermeyen bos cam denuderli (3) cihaz) cihazi temsil etmektedir. C ve UC örneklerinin OK, EK ve PAH sonuçlari karsilastirilarak örneklerin gerçekte hangi düzeylerde partikül OK ve partikül PAH içerdikleri belirlenmistir. Bu asamada adsorban içeren bir cam denuder (3) kullanilmadigi taktirde ölçülen partikül OK* larin % olarak ne kadarinin aslinda partikül OK degil de UOB olduklari net olarak ortaya konulabilmistir. Yine deneysel çalismalar sirasinda yari uçucu bilesiklerden PAH'larin gaz fazi ve partikül fazi miktarlari arasindaki farkliliklar da kolayca C ve UC örnekleme cihazlarina ait örneklerin analizleri ile belirlenebilmistir. Bu sonuçlar asagida detayli olarak ifade edilmektedir. Tablo 1. PM2,5 Örnekleme sistemi bilesenleri ve özellikleri PM2,5 siklon (1) 8,0 L/dak hava akis hizinda partikül boyut kesim noktasi 2,499 um. Anodize aluminyum Siklon.Pompa (7) 4,0 - 12,0 L/dak hava çekis hizi, sarj edilebilir Nikel-Metal- Hidrür (Ni-MH) pil ile 8 saat süreli örnekleme, güç kaynagi ile süre limiti olmaksizin örnekleme, akis kontrolürlü, programlanabilir ve hava akis hizi. toplam hacim ve süre kayit ve gösterme. Amaca bagli olarak daha düsük veya yüksek hacimlerde hava çekebilen pompalar (7) kullanilabilmektedir. Cam Denuder (3) Borosilikat cam, 9-halkali. Maliyeti biraz artirsa da kuvarz cam denuderler (3) de kullanilabilmektedir. Adsorbanlar Yalnizca OK ve PAH örneklemeleri için kullanilan kati faz adsorbanlar yazilmistir. Çok sayida ve türde adsorban uygulanabilmekte ve karsiliginda organik ve inorganik çok sayida kirleticinin gaz ve partikül faz fraksiyonlari toplanabilmektedir. Cam Denuderin emprenyelemelerinde kullanilan kati faz adsorbanlar (Basvuruda raporlanan ölçüm sonuçlari için); - Amberlite XAD-4 (Hidrofobik küçük moleküllü UOB" leri tutmak için), leri tutmak için), ~ (Aldehit ve keton gibi karbonil grubu içeren UOB' leri tutmak için), için)' den olusmustur. Örnek toplama filtresi 47 mm kuvarz fiber filtre. Her tür malzemeden yapilmis, PM örneklemelerinde yaygin olarak kullanilan filtreler kullanilabilmektedir. Ancak OK ve EK ölçümleri yapilacaksa, yaklasik 900 °C sicakliga dayanikli olan Örnekleme süresi Pil ile maksimum 8 saat; güç kaynagi ile 24 saat Denuder muhafaza ünitesi HD Polietilen. Gerekli olmasa da, daha inert bir ortam için, (2) Teflon türü malzemelerden de üretilebilmektedir. Ancak maliyette artisa sebep olmaktadir. Örnekleme alanlari Iç ve dis ortam havasi, yagisli havalar dahil her türlü ortam havasinda kullanima uygudur. Imisyon ve is sagligi içerikli örneklemeler için de kullanilabilir. 8,0 L/dak" lik hava çekis hizinda PM2.5 partikül madde (PM) örneklemelerinde kullanilacak olan bu cihaz, tam sarjli durumlarda elektrik enerjisi bulunmayan örnekleme alanlari için önemli bir avantaj saglamaktadir. Tam sarjli durumda yaklasik olarak 8 saat süre ile örneklemeler yapilabilmektedir. Uzun süreli örneklemeler yapilabilmesi için güç kaynagina veya sebeke hattina ihtiyaç duyulmaktadir. Pompanin (7) diger bir özelligi de programlanabilir olmasidir. Bu örnekleyiciler ile planlanan örneklemelerin baslama ve bitis zamanlari programlanabilmektedir. Gelistirilen cihazlar, organik fraksiyonlar disinda, uçucu bilesen içeren inorganik örneklemeler için kullanilabilecek özelliktedir. Farkli uygulamalar için yalnizca cam denuderin (3) uygun adsorbanlarla emprenyelenmesi yeterli olabilmektedir. 1. parça: PM2.5 Siklon (1) olup, örnek hava içerisinde bulunan partiküllerin (tozlarin) boyut seçimini yaparak, aerodinamik çaplari 2,5 mikrondan küçük olan parçaciklarin sisteme girmesini saglamaktadir. Örnekleyici inleti olarak veya boyut seçici baslik (size-selective inlet) olarak ta isimlendirilir. Bu parça yerli imkanlarla da üretilebilir ancak maliyeti dikkate alindiginda günümüz sartlarinda ticari firmalardan satin alinmasinin daha avantajli oldugu görülmektedir. 2. parça: Denuder koruma ünitesi (2) olarak kullanilmaktadir. Cam Denuderler (3) çok kirilgan ve hassas olduklarindan hem kirilmalara karsi ve hem de günes isiginin olumsuz etkilerinin giderilmesi amaci ile cam denuderlerin (3) içerisine sabitlenmesine yaramaktadir. 3. parça: Cam Denuderler (3) olarak isimlendirilmektedirler. Üzerlerindeki halka seklindeki yüzeyler kati faz adsorbanlarla emprenyelenerek (impregnation) örnek hava içerisinde bulunan gaz veya buhar fazindaki kirletici bilesenleri tutmaktadirlar. Bu sayede örnek havada birlikte bulunan partikül ve gaz/buhar fazi kirletici bilesenler bir birilerinden ayrilmis olurlar. Örnekleme sisteminin en önemli parçalarindan birisidir ve kaplandiklari kati faz adsorbanlarin analit türlerine göre çok dikkatle seçilmesi gerekmektedir. Burada amaç gaz veya buhar fazindaki bilesenlerin % 100 gibi bir verimle tutulmalarinin saglanmasidir. Bulusta kullanilan cam denuderler (3) kuvarz cam yerine, düsük maliyeti ve sicaklikla çok daha az genlesmesi nedeni ile borosilikat camdan üretilmistir.Uçucu fraksiyonlarla doyum noktasina ulasan cam denuderlerin (3) temizlenmesi asamalarinda (desorpsiyon islemi) 100-300 0C sicakliklara veya kis örneklemelerinde -20 °C`ye kadar olan sicakliklara maruz kaldiklarinda genlesme nedeni ile üzerlerinde kapli olan adsorbanlarin sökülmeleri muhtemeldir. Borosilikat cam malzeme kullanilarak bu olasilik minimum düzeye çekilmistir. Ikili örnekleyicilnin içerdigi örnekleyicilerden her birisi için akis diagrami Sekil 1 'de ölçeksiz olarak verilmistir. PM 2,5 Siklon'un (1) O-ringli yuvasi dogrudan bastirilarak denuder muhafaza ünitesinin (2) üzerindeki çikintiya sabitlenir. Denuder muhafaza ünitesi (2) içerisine cam denuder (3) O_ringlerle birlikte yuvasina yerlestirilir. Denuder koruma ünitesinin (2) alt tabani ise cam denuder (3) yerlestirildikten sonra yine 0- ring içeren vidali kapagi ile kapatilir. Denuder koruma ünitesinin (2) alt kapaginda bulunan quickfit baglanti (4) dogrudan filtrepaket kartusuna (5)(6) sabitlenir. Iki adet filtrepaket kartusuna O-ringleri ile birlikte birer adet filtre yerlestirilir (P ve B filtreleri(5)(6)) ve kartuslar üzerlerindeki vidali birlesim noktalarindan birbirilerine vidalanirlar. Filtrepaket ünitesinin sonunda bulunan quickfit baglanti (4) bu defa pompa (7) emis çikintisina sabitlenir. Kaçak testi olup olmadigini kontrol amaçli olarak kalibreli flow metre pompa (7) ve filterpack kartusu arasina quickfit baglantilarla (4) takilir ve 8,0 L/dak' lik hava çekis hizi pompa (7) ekranindaki deger ile karsilastirilir. Eger iki deger esit ise kaçak olmadigi tespit edilir ve sistem örneklemeye hazir hale getirilmis olur. Bulusumuz partikül organik karbonlar ve PAH'lar için farkli örnekleme alanlarinda çalistirilmis ve beklenenden daha basarili sonuçlar elde edilmistir. Elde ettigimiz sonuçlara göre Emprenyeli cam denuder (3) kullanilmadigi durumlarda, atmosferik partikül OK konsantrasyonlarinin ortalama olarak % 51,2 ± 11,2 düzeyinde hatalar içerecek sekilde yüksek degerlerde rapor edilecegi sonucuna ulasilmistir. Partikül PAH sonuçlarinda ise (Toplam PAH cinsinden) % 16,6 düzeyinde pozitif yönde hatali sonuçlarin raporlanabilecegi belirlenmistir. Bu hata bireysel PAH bilesiklerinde °/o araliginda degismistir. Atmosferik örneklemelerde, OK ve PAH' larda oldugu gibi, uçucu bilesenlere sahip kirleticilerin çalisildigi durumlarda primer filtreden (5) sonra mutlaka backup filtresinin (6) kullanilmasinin gerektigi belirlenmistir. Backup filtrelerde (6) ölçülen miktarlarin, negatif hatalari gidermek amaci ile mutlaka primer filtrede (5) ölçülen sonuçlara eklenmesinin gerekli oldugu ortaya konulmustur. OK sonuçlarinda, C ve UC örnekleyicilerinde kullanilan backup filtrelerinde (6), primer filtrede (5) ölçülen OK' larin % 25,4' ü kadar OK toplandigi (ortalama olarak oraninda OK toplandigi bulunmustur. Ayni oranlar toplam PAH bilesikleri için C ve Backup filtrede (6) ölçülen PAH" lar primer filtrede (5) ölçülen PAH miktarlarinin yaklasik olarak % 40' ini olustururken, OK backup filtrelerinde (6) bu oran yaklasik buharlasma kaynakli PAH ve OK kayiplari arasinda neredeyse 2 kat fark gözlemlenmistir. Bu sonuca göre, primer filtrede (5) toplanmis olan partikül PAH' larin, partikül OK' lara oranla örneklemeler sirasinda neredeyse 2 kat daha fazla buharlasma nedenli kayiplara maruz kaldigini göstermistir.Literatürde ilk defa, SEM-EDS analizleri ile, backup filtrelere (6) primer filtreden (5) ultra ince boyutlarda partiküllerin geçebildigi gösterilmistir. Böylece backup filtrelerde (6) ölçülen OK ve PAH' larin yalnizca primer filtredeki (5) buharlasmalardan kaynaklanmadiklari, primer filtreden (5) ultra ince partiküller seklinde geçislerin de oldugu ortaya konulmustur. Gelistirilen örnekleme sistemi ile yine Iitertürde ilk defa EK sonuçlari ile dogrulamalar yapilmistir. Literatürdeki çalismalarda, paralel örneklerde dogrulama amaçli olarak toplanan partikül madde kütle konsantrasyonlari kullanilmaktadir ki bu sonuçlar mikro-teraziler kullanilarak belirlendiginden ortamdaki çok küçük nem degisikliklerinde bile tartim sonuçlarinda çok ciddi hatalar olusabilmektedir. Bu çalismada dogrulama amaçli EK kullanimi ile tartim kaynakli yüksek belirsizlikler ortadan kaldirilmistir. Parelel C ve UC örnekleyicilerinden elde edilen örneklerde ölçülen EK' larin oranlarinin 1,01 ± 0,12 olarak bulunmasi ile örneklerde ölçülen OK degerlerinin dogruluklari ve örneklemeler sirasinda C örnekleyicisinde cam denuder (3) üzerine emprenyelenmis adsorbanlar nedeni ile herhangi bir partikül kaybinin olmadigi ispat edilmistir. Yapilan SEM-EDS analizleri ile gelistirilen cihazlarin PM 2,5 ve alti boyutlardaki partikülleri verimli bir sekilde topladiklari görülmüstür. 8,0 L/ dak' lik hava çekis hizinda toplanan filtre örnekleri üzerinde PM 2,5 boyutundan büyük partiküllere rastlanilmamistir. TR TR DESCRIPTION DUAL SAMPLING DEVICE FOR POLLUTANTS WITH PARTICULATE AND VAPOR PHASE IN THE ATMOSPHERE TECHNICAL FIELD The invention is used in the sampling of atmospheric particulate matter (PM) and the vapor phase fractions of these PlVl. With this sampler, both particle and gas phase pollutants can be sampled and gas and particle phase amounts can be sampled without any interference. At the beginning of the invention studies, it was aimed to eliminate only the positive interferences arising from volatile organic compounds (VOCs) in particulate organic carbons (OCs) and the negative interferences caused by ozone gas on PAHs. However, the same sampler was aimed to eliminate both particles and vapors in the atmosphere. It has been seen that it can be used in the sampling of all organic and inorganic pollutants in the phases. It does not require a separate sampling and analysis system for the pollutants in the gas phase (e.g. VOCs, gas phase PAHs, gas phase Mercury and other metals and compounds with volatile properties). KNOWN STATUS OF THE TECHNIQUE Worldwide. It is known that there are high levels of interference due to sampling in the measurements of OCs used as input in air quality and climate change modeling, but today there is still no standard sampling method or method. There are huge interferences in the sampling of semi-volatile pollutants (such as PAHs, PCBs and Dioxin/Furan) along with organic carbons, just like in OCs. For example, in samples collected with samplers that collect samples directly on the filter, the collected particle phase semi-volatiles or OCs are present. It has been understood that almost 50% of the measured values are not actually particulate phase pollutants, and their volatile (gas/vapour phase) fractions are condensed/absorbed on the sample. With the invention in question, these positive interferences are eliminated. In addition, PAH compounds are broken down in high ozone concentrations and therefore It has been understood that much less PAH results are measured than the actual PAH amounts. This negative interference can be eliminated simultaneously with OCs with our invention. While the negative interference encountered due to ozone in PAHs is eliminated, at the same time, as in OCs, gas phase PAHs are eliminated. Positive interferences caused by condensation on the particles collected in the filter are also eliminated. In addition, as with organic pollutants, the same interference problem occurs in the sampling of inorganic pollutants that have both volatile and particulate phases in the atmosphere. Therefore, with the developed dual sampler, these attempts are eliminated and the amounts of pollutants in gas/vapor fractions and particle fractions can be determined without the need for an additional sampler or measuring device. DESCRIPTION OF THE INVENTION Invention; Its purpose is to detect the positive interferences created by volatile organic compounds (VOCs), which are found at very high levels in every environment, on the particle OC results when sampling particulate organic carbons (OCs) in the atmosphere, and secondly, to detect the positive interference caused by atmospheric ozone, which is formed as a result of the breakdown of particulate PAH compounds collected while passing through the filter with the sample air. It is related to the binary sampling device whose purpose is to remove negative interference. The purpose of the invention; While sampling particulate organic carbons (OCs) in the atmosphere, the positive interferences caused by volatile organic compounds (VOCs), which are found at very high levels in every environment, on the OC results, and secondly, the negative interferences caused by atmospheric ozone breaking down the particulate PAH compounds collected while passing through the filter with the sample air, and again As with OCs, it also eliminates the positive interference created by gas phase PAHs on particle phase PAHs. While OCs in the atmosphere are sampled, VOCs in the sample air condense on the filter where the samples are collected and are absorbed by the filter material. As a result, with OC values, the positive interferences created by gas phase components on particle phase OCs and PAHs and the negative interferences created by ozone on PAHs are completely eliminated. Some of the most important advantages of the invention are: - Its cost is very low, - It is portable (approximately 3.0 kg, between 1- kg depending on the pump to be used), - No need for mains energy, - Atmospheric samples can be made at the desired air draft speed and particle sizes. , - It is suitable for sampling of all organic and inorganic pollutants, - It can sample the gas and particle phases of atmospheric pollutants separately and simultaneously without being affected by interference, - There is no need for an additional sampler or an additional analysis method to determine the gas phase components of atmospheric pollutants, - Ozone It completely eliminates the negative interference on organic components during sampling, - It is suitable for sampling in almost all environments, including outdoor and indoor atmospheres, - It is completely domestic, except for the pump and particle size separator (cyclone). - The device is suitable for use in any desired environment, provided that known standard environmental conditions (ambient temperature: -20 - +60 °C) are met. Explanation of Drawings: The invention will be explained by referring to the attached figures, so that the features of the invention will be understood more clearly. However, this is not intended to limit the invention to these particular embodiments. On the contrary, it is intended to cover all alternatives, modifications and equivalences that can be included within the scope of the invention as defined by the attached claims. It should be understood that the details shown are for the sole purpose of illustrating preferred embodiments of the present invention and are presented for the purpose of providing the most useful and easily understandable description of both the embodiment of the methods and the rules and conceptual features of the invention. In these drawings; Figure-1 is the flow diagram for each sampler, Figure-2 is the cross-sectional view of the glass denuder, Figure-3 is the side view of the glass denuder. The figures that will help understand this invention are numbered as indicated in the attached picture and are given below with their names. Explanation of References: PM 2.5 cyclone, Denuder protection unit, Glass denuder, Quickfit connection, Primary filter, Backup filter, Glass outer wall, Adsorbent coated inner surface, O. Denuder side view. DETAILED DESCRIPTION OF THE INVENTION In this detailed explanation, the preferred alternatives of structuring the subject of the invention are explained only for a better understanding of the subject and in a way that does not create any limiting effect. Meet; Its purpose is to examine the positive interferences created by volatile organic compounds (VOCs), which are found at very high levels in every environment, on the particle OC results, and by the gas phase PAHs in the sample air, on the particle phase PAH results, while sampling the particulate organic carbons (OCs) in the atmosphere, and the second It is related to the dual sampling device, which aims to eliminate the negative interference that occurs as a result of atmospheric ozone breaking down the particulate PAH compounds collected while passing through the filter with the sample air. The PM 2.5 cyclone (1) through which the air to be sampled enters is provided, and the denuder provides the outer casing of the glass denuder (3). protection unit (2), glass denuder (3), which passes through the air to be sampled and enables the measurement of OCs in the sample air, quickfit connection (4), which is placed separately at the inlet and outlet of the primary filter (5) and backup filter (6), the primary filter (5), which filters the particles, backup filter (6), which helps to keep the gases and particles that may pass through the primary filter (5), ensures that the sample air passes through the system at the desired air draft speed during the sampling process, ensures that the particles in the sample air are kept in the filters, and after the particles are separated, they are removed from the system. The pump (7), which allows the passing air to be easily released to the atmosphere, the glass outer wall (8) forming the outer part of the glass denuder (3), the adsorbent coated inner surface (9) forming the inner part of the glass denuder (3), the side panels of the glass denuder (3). It contains a denuder side view (10) that provides a side view. The features of the parts that make up the binary sampler are presented below; 1) It contains a 9-ring multisorbent impregnated borosilicate glass denuder (3), 2) The difference between the particle OC amounts obtained from the two equivalent devices developed (both as a single device, as a double sampler) directly gives the amount of volatile organic compounds (VOCs) in the atmosphere, which No additional system is required for measurement. The same results are valid for semi-volatiles and inorganic pollutants such as PAH etc., 3) The accuracy of the particle Ocs measured in the samples collected with a binary sampler is confirmed by the Elemental Carbon (EK) measured in the samples, and the high uncertainties in the evaluations made by total mass measurement are eliminated, 4) Both samples are collected at the same time. Sampling can be done for both particulate OCs and particulate PAHs without any interference effect, ) In the same sample, if desired, sampling can be done simultaneously for both particulate OCs and particulate PAHs and all inorganic pollutant compounds without any interference effect, 6) Sampling system , in sampling areas where there is no electricity network, it can perform uninterrupted sampling for eight (8) hours thanks to the NiMH (nickel metal hydride) battery, and if necessary, samples can be made for 24 hours or much longer with the direct mains line (220 V), 7) The developed dual sampling With the device, as in organics, mercury, cadmium, zinc, copper, chromium, nickel, etc. are removed by impregnating the denuder with suitable solid phase adsorbents. Gas phase and solid phase (particle) amounts of inorganic pollutants in both volatile and particle phases can be sampled without being affected by interference. Since it was necessary to make parallel measurements in order to determine the accuracy of the sampling results and to be used in comparison of the results, two equivalent devices were developed and therefore they were named "Dual Sampler device". The only difference between the two samplers is the glass denuder (3) impregnated with solid phase adsorbents. For this reason, the sampler containing an impregnated glass denuder (3) is called the C sampler, and the parallel sampler containing an unimpregnated glass denuder (3) is called the UC sampler. In order to determine the amounts of volatile fractions and to understand whether the denuder has reached the saturation point with volatile components, the two devices must perform parallel sampling. If the purpose of sampling is only to determine particle phase amounts, only the C sampler can be used to reduce the number of samples. The UC sampler should be included every 10-15 samples and it should be checked whether the C sampler has reached saturation with volatile components. Working method: The sample air is sucked in by the vacuum pump (7) located at the last step of the system (Figure 1). The sucked air first reaches the PM 2.5 cyclone (1), which selects particles with sizes of 2.5 microns and below in the sample air and sends them to the glass denuder (3). In the PM 2.5 cyclone (1), sample air containing selected particles of desired sizes and volatile components reaches the glass denuder (3). If the glass denuder (3) is impregnated (C sampler), the gas phase components and ozone in the sample air are retained by the adsorbents on the glass denuder (3) surfaces and only particles can come out of the glass denuder (3). If the glass denuder (3) is unimpregnated (UC sampler), both particles, gas phase components and ozone come out of the glass denuder (3) after the PM 2.5 cyclone (1). The sample air coming out of the glass denuder (3) is kept on the primary filter (5) and backup filters (6) in the filterpack cartridge. The air passing through the filters (5)(6) is released back into the atmosphere via the pump (7). In this summarized sampling method, only particle phase pollutants are sampled with the C sampler, while samples containing interferences (gas and particle phase together) are collected with the UC sampler. When the amounts determined in C samples are subtracted from the amounts determined in UC samples, the volatile fraction amounts in that sample are determined without requiring an additional sampling or analysis device. Within the Double Sampling device; Two equivalent PM2.5 dust sampling devices were designed and developed in a modular manner. When necessary, any number of new cartridges can be added to the filter package system. For example, in this study, a second filter cartridge was installed as a backup filter (6) behind the primary quartz filter (primary filter (5)) on which the dust was collected, and it was determined whether there was any OC loss from the collected dust as VOCs or as ultrafine particles from the primary filter (5). was tested and this loss could be determined. Each of the sampling devices; 1 PM2.5 cyclone (1), a glass denuder (3) and denuder protection unit (2), 1 or 2 filter package cartridges (5)(6) and 1 programmable unit that can draw air between 4 - 12 L/min It consists of pump (7). As mentioned above, the PM 2.5 cyclone (1) and pumps (7) can be easily replaced to suit the purpose. Two calibrated flowmeters are also used as additional accessories for sampling air flow control and control of the air flow rate shown on the pump (7) indicator for both samplers. The particle size cut-off chart depending on the air flow rate during sampling of the samplers developed in the invention and used in field studies is given in Chart 1*, and the technical specifications of the devices are given in Table 1. The only difference between the developed samplers is whether the glass denuders (3) are impregnated or not. While the sampler identified with C contains an impregnated glass denuder (3), the sampler identified with UC contains an unimpregnated, clean glass denuder (3). 2.499 in Aerodynamic Diameter. pm Cyclone Flow Rate - Lpm Graph 1. Particle size cut-off chart depending on air flow rate. PM 2.5 cyclones (1) with a particle size cut-off point of 2.499 pm at an air draft rate of 8.0 L/min were used at the air inlet of both sampling devices. It is made of anodized aluminum and weighs approximately 310 grams. It provides easy cleaning and replacement opportunities. During field sampling, one of the sampling devices was named C and the second equivalent device was named UC. Here C; coated (device containing glass denuder (3) impregnated with adsorbents), UC; It represents an uncoated device (empty glass denuder (3) device without adsorbent). By comparing the OC, EK and PAH results of C and UC samples, it was determined what levels of particle OC and particle PAH the samples actually contained. At this stage, if a glass denuder (3) containing adsorbent is not used, it can be clearly demonstrated what percentage of the measured particle OC*s are actually VOCs rather than particle OCs. Again, during experimental studies, the differences between the gas phase and particle phase amounts of PAHs, one of the semi-volatile compounds, could be easily determined by analyzing the samples of C and UC sampling devices. These results are expressed in detail below. Table 1. PM2.5 Sampling system components and features PM2.5 cyclone (1) Particle size cut-off point 2.499 um at 8.0 L/min air flow rate. Anodized aluminum Cyclone.Pump (7) 4.0 - 12.0 L/min air draft rate, 8-hour sampling with rechargeable Nickel-Metal-Hydride (Ni-MH) battery, sampling without time limit with power supply, flow controlled, programmable and air flow rate. Total volume and time recording and display. Depending on the purpose, pumps (7) that can draw lower or higher volumes of air can be used. Glass Denuder (3) Borosilicate glass, 9-ring. Quartz glass denuders (3) can also be used, although this increases the cost slightly. Adsorbents Only solid phase adsorbents used for OC and PAH sampling are written. Many numbers and types of adsorbents can be applied, and in turn, gas and particle phase fractions of many organic and inorganic pollutants can be collected. Solid phase adsorbents used in glass denuder impregnation (for measurement results reported in the application); - Amberlite filter. Filters made of all kinds of materials, which are commonly used in PM sampling, can be used. However, if OK and EK measurements are to be made, samples that are resistant to temperatures of approximately 900 °C. Sampling time: Maximum 8 hours with battery; 24 hours with power supply. Denuder housing unit HD Polyethylene. If not required For a more inert environment, (2) It can also be produced from Teflon type materials. However, it causes an increase in cost. Sampling areas It is suitable for use in all kinds of ambient air, including indoor and outdoor air and rainy weather. It can also be used for emissions and occupational health-related sampling. This device, which will be used for PM2.5 particulate matter (PM) sampling at an air intake speed of 8.0 L/min, provides a significant advantage for sampling areas where there is no electrical energy when fully charged. When fully charged, samples can be taken for approximately 8 hours. A power supply or mains line is needed to perform long-term sampling. Another feature of the pump (7) is that it is programmable. With these samplers, the start and end times of planned samples can be programmed. The developed devices can be used for inorganic samples containing volatile components, other than organic fractions. For different applications, simply impregnating the glass denuder (3) with suitable adsorbents may be sufficient. 1st part: PM2.5 Cyclone (1), which selects the size of the particles (dust) in the sample air and ensures that particles with aerodynamic diameters less than 2.5 microns enter the system. It is also called a sampler inlet or a size-selective inlet. This part can also be produced domestically, but considering the cost, it seems that it is more advantageous to purchase it from commercial companies in today's conditions. 2nd part: It is used as the Denuder protection unit (2). Since the glass denuders (3) are very fragile and sensitive, they are used to fix them inside the glass denuders (3) in order to prevent breakage and to eliminate the negative effects of sunlight. 3rd piece: They are called Glass Denuders (3). The ring-shaped surfaces on them are impregnated with solid phase adsorbents and retain the pollutant components in the gas or vapor phase in the sample air. In this way, particle and gas/vapor phase pollutant components found together in the sample air are separated from each other. It is one of the most important parts of the sampling system and the solid phase adsorbents they are coated with must be selected very carefully according to the analyte types. The aim here is to ensure that the components in the gas or vapor phase are retained with an efficiency of 100%. The glass denuders (3) used in the invention are produced from borosilicate glass instead of quartz glass, due to its low cost and much less expansion with temperature. During the cleaning stages of the glass denuders (3), which have reached saturation point with volatile fractions (desorption process), temperatures of 100-300 0C or in winter samples - When exposed to temperatures up to 20 °C, it is possible for the adsorbents coated on them to be removed due to expansion. This possibility is minimized by using borosilicate glass material. The flow diagram for each sampler included in the binary sampler is given without scale in Figure 1. The O-ring seat of the PM 2.5 Cyclone (1) is fixed to the protrusion on the denuder housing unit (2) by pressing directly. The glass denuder (3) is placed in the denuder housing unit (2) together with the O-rings. The bottom base of the denuder protection unit (2) is closed with a screw cap containing a 0-ring after the glass denuder (3) is placed. The quickfit connection (4) located on the bottom cover of the denuder protection unit (2) is fixed directly to the filter package cartridge (5)(6). One filter each with O-rings is placed in two filter package cartridges (P and B filters (5)(6)) and the cartridges are screwed to each other from the screwed joints on them. The quickfit connection (4) located at the end of the filter package unit is this time fixed to the suction protrusion of the pump (7). To check whether there is a leakage test, a calibrated flow meter is installed between the pump (7) and the filterpack cartridge with quickfit connections (4) and the air draft rate of 8.0 L/min is compared with the value on the pump (7) screen. If the two values are equal, it is determined that there is no leakage and the system is ready for sampling. Our invention was studied in different sampling areas for particulate organic carbons and PAHs and more successful results than expected were obtained. According to our results, it has been concluded that if an impregnated glass denuder (3) is not used, atmospheric particle OC concentrations will be reported at high values, with errors of 51.2 ± 11.2% on average. In particle PAH results, it was determined that 16.6% positive erroneous results (in terms of Total PAH) could be reported. This error varied in the range of °/o for individual PAH compounds. In atmospheric sampling, it has been determined that in cases where pollutants with volatile components are studied, such as OCs and PAHs, the backup filter (6) must be used after the primary filter (5). It has been demonstrated that the quantities measured in the backup filters (6) must be added to the results measured in the primary filter (5) in order to eliminate negative errors. In the OC results, it was found that 25.4% of the OCs measured in the primary filter (5) were collected in the backup filters (6) used in the C and UC samplers (on average, OCs were collected at the rate of 25.4%. The same rates were found in the C and Backup filters for total PAH compounds). While the PAHs measured in (6) constituted approximately 40% of the PAH amounts measured in the primary filter (5), this ratio was approximately in the OK backup filters (6). An almost 2-fold difference was observed between PAH and OC losses due to evaporation. According to this result, the primary It has been shown that the particulate PAHs collected in the filter (5) are exposed to almost 2 times more losses due to evaporation during sampling compared to the particulate OCs. For the first time in the literature, with SEM-EDS analyses, backup filters (6) are transferred from the primary filter (5). It has been shown that ultrafine particles can pass through. Thus, it has been revealed that the OCs and PAHs measured in the backup filters (6) do not only result from evaporation in the primary filter (5), but also pass through the primary filter (5) in the form of ultrafine particles. With the developed sampling system, verifications were made with EC results for the first time in the literature. In studies in the literature, particulate matter mass concentrations collected in parallel samples are used for verification purposes. Since these results are determined using micro-balances, serious errors may occur in the weighing results even with very small humidity changes in the environment. In this study, high uncertainties due to weighing were eliminated by using EK for verification purposes. The ratio of EKs measured in the samples obtained from the parallel C and UC samplers was found to be 1.01 ± 0.12, thus proving the accuracy of the OC values measured in the samples and that there was no particle loss due to the adsorbents impregnated on the glass denuder (3) in the C sampler during the sampling. . Based on the SEM-EDS analysis, it was seen that the developed devices efficiently collected particles of PM 2.5 and below size. No particles larger than PM 2.5 were found on the filter samples collected at an air draft rate of 8.0 L/min.TR TR

Claims (3)

ISTEMLER 1. Bulus; amaci, atmosferde bulunan partikül organik karbonlarin (OK) örneklenirken her ortamda çok yüksek düzeylerde bulunan uçucu organik bilesiklerin (UOB), partikül OK sonuçlari üzerinde, yine gaz fazi PAH'Iarin, partikül faz PAH'Iar üzerinde olusturdugu pozitif girisimleri ve ikinci olarak ta atmosferik ozonun örnek hava ile filtreden geçerken toplanmis olan partikül PAH bilesiklerini parçalamasi sonucu olusan negatif girisimi gidermek olan ikili örnekleme cihazi ile ilgili olup, özelligi; örneklenecek havanin girisinin saglandigi PM 2,5 siklon (1), cam denuderin (3) dis muhafazasini saglayan denuder koruma ünitesi (2), örneklenecek havanin içerisinden geçerek örnek havada bulunan UOB'lerin tutulmasini saglayan cam denuder (3), primer filtre (5) ve backup filtrenin (6) giris ve çikisina ayri ayri yerlestirilen quickfit baglanti (4), örneklenen havanin içerisindeki partikülleri filtreleyen primer filtre (5), primer filtreden (5) geçmesi muhtemel gaz ve partikül fazli analitleri tutmayi amaçlayan backup filtre (6), amaçlanan hava çekis hizinda örneklemenin yapilmasini ve örnekleme islemi neticesinde havanin partiküllerinin ayristirma islemlerinden sonra kolay bir sekilde atmosfere salinimini saglayan pompa (7), cam denuderin (3) dis kismini olusturan cam dis duvar (8), cam denuderin (3) iç kismini olusturan adsorban kaplamali iç yüzey (9), cam denuderin (3) yan taraftan görümünün saglandigi cam denuder yan görünüm (10) içermesi ile karakterize edilmesidir.1. Invention; Its purpose is to examine the positive interferences created by volatile organic compounds (VOCs), which are found at very high levels in every environment, on particle OC results, by gas phase PAHs on particle phase PAHs, and secondly, by sampling the particulate organic carbons (OCs) in the atmosphere. It is related to the dual sampling device, which aims to eliminate the negative interference that occurs as a result of ozone breaking down the particulate PAH compounds collected while passing through the filter with the sample air, and its feature is; PM 2.5 cyclone (1), which provides the entrance of the air to be sampled, denuder protection unit (2), which provides the external protection of the glass denuder (3), glass denuder (3), which passes through the air to be sampled and ensures the retention of VOCs in the sample air, primary filter (5). ) and quickfit connection (4), which are placed separately at the inlet and outlet of the backup filter (6), primary filter (5), which filters the particles in the sampled air, backup filter (6), which aims to retain gas and particle phase analytes that are likely to pass through the primary filter (5), The pump (7), which ensures sampling at the intended air draft speed and the easy release of air particles to the atmosphere after the separation processes as a result of the sampling process, the glass outer wall (8) forming the outer part of the glass denuder (3), the adsorbent forming the inner part of the glass denuder (3). It is characterized by the fact that the coated inner surface (9) contains a glass denuder side view (10) through which a side view of the glass denuder (3) is provided. 2. Istem 1'de ifade edilen ikili örnekleme cihazi olup, özelligi; cam denuderleri (3) hem kirilmalara karsi ve hem de günes isiginin olumsuz etkilerinin giderilmesi amaci ile cam denuderlerin (3) içerisine sabitlenmesine yarayan denuder koruma ünitesi (2) içermesi ile karakterize edilmesidir.2. It is the dual sampling device stated in claim 1, and its feature is; It is characterized by the fact that it contains a denuder protection unit (2) which is used to fix the glass denuders (3) inside the glass denuders (3) in order to prevent them from breaking and to eliminate the negative effects of sunlight. 3. Istem 1'de ifade edilen ikili örnekleme cihazi olup, özelligi; üzerlerindeki halka seklindeki yüzeylerin kati faz adsorbanlarla emprenyelenerek (impregnation) örnek hava içerisinde bulunan gaz veya buhar fazindaki kirletici bilesenleri tutan, bu sayede örnek havada birlikte bulunan partikül ve buhar fazi kirletici bilesenlerin bir birilerinden ayrilmasina yarayan cam denuderler (3) içermesi ile karakterize edilmesidir.3. It is the dual sampling device stated in claim 1, and its feature is; It is characterized by the fact that it contains glass denuders (3) that retain the gas or vapor phase pollutant components present in the sample air by impregnation of the ring-shaped surfaces on them with solid phase adsorbents, thus separating the particle and vapor phase pollutant components present together in the sample air from each other.
TR2021/012310A 2021-08-03 2021-08-03 DUAL SAMPLING DEVICE FOR CONTAMINANTS WITH PARTICLES AND VAPOR PHASE IN THE ATMOSPHERE TR2021012310A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TR2021/012310A TR2021012310A2 (en) 2021-08-03 2021-08-03 DUAL SAMPLING DEVICE FOR CONTAMINANTS WITH PARTICLES AND VAPOR PHASE IN THE ATMOSPHERE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2021/012310A TR2021012310A2 (en) 2021-08-03 2021-08-03 DUAL SAMPLING DEVICE FOR CONTAMINANTS WITH PARTICLES AND VAPOR PHASE IN THE ATMOSPHERE

Publications (1)

Publication Number Publication Date
TR2021012310A2 true TR2021012310A2 (en) 2021-09-21

Family

ID=83995860

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2021/012310A TR2021012310A2 (en) 2021-08-03 2021-08-03 DUAL SAMPLING DEVICE FOR CONTAMINANTS WITH PARTICLES AND VAPOR PHASE IN THE ATMOSPHERE

Country Status (1)

Country Link
TR (1) TR2021012310A2 (en)

Similar Documents

Publication Publication Date Title
CN102870059B (en) Flow control system and comprise the monitoring device for detecting airborne analysis thing of described flow control system
CN108414386B (en) Sampling equipment of no-clean particulate matter concentration
US20090081804A1 (en) Monitor and methods for characterizing airborne particulates
JP5372924B2 (en) β-ray dust concentration measuring apparatus and method for confirming validity of sample used therein
US7430893B2 (en) Systems and methods for detecting contaminants
US6475802B2 (en) Apparatus for and method of collecting gaseous mercury and differentiating between different mercury components
US8578796B2 (en) High volume sampling front end collection device
CN110441099B (en) Sampling device and sampling method for condensable particulate matters in pollution source
KR20120041920A (en) System for sampling and measuring particulated matters
CN106970182A (en) A kind of apparatus and method of on-line checking mixed gas concentration
CN206772932U (en) A kind of device of on-line checking mixed gas concentration
Speer et al. An instrument for measuring the liquid water content of aerosols
US20050120775A1 (en) Systems and methods for detecting contaminants
TR2021012310A2 (en) DUAL SAMPLING DEVICE FOR CONTAMINANTS WITH PARTICLES AND VAPOR PHASE IN THE ATMOSPHERE
Catrambone et al. Performance evaluation of a very-low-volume sampler for atmospheric particulate matter
CN109839247A (en) Bag detection device, leak detection system and method
KR20150012535A (en) Carbon particle sampling filter pack and method for measuring carbon mass using the same
CN209372639U (en) Acid mist droplet measurement device
CN113432932A (en) Catering oil smoke pollutant sampling device
Zuck et al. Detection of hazardous vapours in a dusty environment–development of a protective module for chemical sensor using a laboratory setup for systematically simulating realistic conditions
Thompson et al. Brick Kiln Emissions Sampling Protocol: Dilution sampling for climate-relevant particle emissions
Fan et al. The MMT bag for emission source sampling: Design and evaluation
Verma et al. Measurement of benzene in the workplace and its evolution process, part II: present methods and future trends
CN219815675U (en) Pressurized air filtering device for oil-containing steam and particles
JPH11223626A (en) Analytical method for organohalogen in combustion exhaust gas