TR202021080A2 - A METHOD AND AN ARTIFICIAL TISSUE SCAFFOLDING FOR THIEL-BEHNKE CORNEA DYSTROPHY (TBKD) - Google Patents

A METHOD AND AN ARTIFICIAL TISSUE SCAFFOLDING FOR THIEL-BEHNKE CORNEA DYSTROPHY (TBKD)

Info

Publication number
TR202021080A2
TR202021080A2 TR2020/21080A TR202021080A TR202021080A2 TR 202021080 A2 TR202021080 A2 TR 202021080A2 TR 2020/21080 A TR2020/21080 A TR 2020/21080A TR 202021080 A TR202021080 A TR 202021080A TR 202021080 A2 TR202021080 A2 TR 202021080A2
Authority
TR
Turkey
Prior art keywords
artificial tissue
solution
tissue scaffold
produced
production
Prior art date
Application number
TR2020/21080A
Other languages
Turkish (tr)
Inventor
Gündüz Oğuzhan
Ekren Nazmi̇
Şengör Mustafa
Ulağ Songül
Zeki̇ Şengi̇l Ahmet
Original Assignee
Istanbul Medipol Ueniversitesi
İstanbul Medi̇pol Üni̇versi̇tesi̇
Marmara Ueniversitesi
Marmara Üni̇versi̇tesi̇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Istanbul Medipol Ueniversitesi, İstanbul Medi̇pol Üni̇versi̇tesi̇, Marmara Ueniversitesi, Marmara Üni̇versi̇tesi̇ filed Critical Istanbul Medipol Ueniversitesi
Priority to TR2020/21080A priority Critical patent/TR202021080A2/en
Priority to PCT/TR2021/051324 priority patent/WO2022139749A2/en
Publication of TR202021080A2 publication Critical patent/TR202021080A2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/14Peptides containing saccharide radicals; Derivatives thereof, e.g. bleomycin, phleomycin, muramylpeptides or vancomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0663Bone marrow mesenchymal stem cells (BM-MSC)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0697Artificial constructs associating cells of different lineages, e.g. tissue equivalents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/252Polypeptides, proteins, e.g. glycoproteins, lipoproteins, cytokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • A61L2300/406Antibiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/16Materials or treatment for tissue regeneration for reconstruction of eye parts, e.g. intraocular lens, cornea
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2535/00Supports or coatings for cell culture characterised by topography

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Cell Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dermatology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Microbiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Ophthalmology & Optometry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Rheumatology (AREA)
  • Hematology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

Buluş, hasarlı dokunun iyileşmesi için üretilen ve Thiel-Behnke kornea distrofisi (TBKD) hasarı tedavisinde kullanılmak üzere; - Yapay doku iskelesinin (10) matriksini oluşturmak için önceden belirlenmiş oranlarda en az bir polimerin önceden belirlenmiş oranda en az bir organik bileşik içerisinde çözdürülmesi (101) - Farklı oranlarda en az bir etken maddenin solüsyon içerisine eklenmesi ve 3D yapay doku iskelesi üretiminde kullanılacak final solüsyonun elde edilmesi (102) adımlarına göre bir final solüsyon üretim yöntemi (100) ve siz konusu yöntem (100) ile 3D olarak üretilen bir yapay doku iskelesi (10) ile ilgilidir.The invention is produced for the healing of damaged tissue and to be used in the treatment of Thiel-Behnke corneal dystrophy (TBKD); - Dissolving at least one polymer in at least one organic compound at a predetermined rate in order to form the matrix of the artificial scaffold (10) (101) - Adding at least one active ingredient in different proportions into the solution and the final solution to be used in the production of 3D artificial scaffold It relates to a final solution production method (100) according to the steps of obtaining (102) and an artificial tissue scaffold (10) produced in 3D with the method (100) in question.

Description

TARIFNAME THIEL-BEHNKE KORNEA DISTROFISI (TBKD) IÇIN BIR YÖNTEM VE SÖZ KONUSU YÖNTEM ILE ÜRETILEN BIR YAPAY DOKU ISKELESI Teknik Alan Bulus, Thiel-Behnke Komea Distrofisini (TBKD) tedavi etmek üzere gelistirilmis bir yöntem ve söz konusu yönteme göre üretilen üç boyutlu yapay bir doku iskelesi ile ilgilidir. Önceki Teknik Bowman tabakasi eriskinlerde 8-12 um kalinliginda tip 1, tip III, tip V ve tip VII kollajen agindan olusmaktadir. TGFBI genindeki mutasyonlar bu tabakada iki farkli formda hiyalin yapida birikimle karakterize olan Reis-Bücklers kornea distrofisi (RBKD) ve Thiel-Behnke kornea distrofisine (TBKD) neden olurlar. Klinik olarak bu iki distrofiyi birbirinden ayirmak güçtür (Dr. Fulya YAYLACIOGLU TUNCAY Doktora Tezi, Hacettepe Üniversitesi 2019). TBKD, 10-20 yas arasinda ortaya çikan bal petegi görünümünde subepitelyal opasiteler ile karakterizedir. Birikimler Masson Trikrom ile boyanir. Bu fenotipten R555Q mutasyonu sorumludur (Dr. Fulya YAYLACIOGLU TUNCAY Doktora Tezi, Hacettepe Üniversitesi 2019). Teknigin bilinen durumunda yer alan US4014335A yayin numarali patent dokümaninda bir oküler ilaç verme cihazindan bahsedilmektedir. Söz konusu dokümanda kontrollü salim yapan bir ilaçtan, ve göze yerlestirilmek üzere sekillendirilmis sizdirrnaz bir kaptan bahsedilmektedirj ilacin uzun bir süre boyunca sürekli uygulanmasi için bir oküler uygulama cihazinin birkaç katmandan olustugu da anlatilmaktadir. Bulusnn Kisa Açiklamasi: Bulusun amaci, Thiel-Behnke Kornea Distrofisini (TBKD) tedavi etmek üzere gelistirilmis bir yöntem ve söz konusu yönteme göre üretilen kontrollü salim (controlled release) yapan üç boyutlu yapay bir doku iskelesi gerçeklestirrnektir. Söz konusu amaca yönelik olarak bulusta, bahsedilen hasarin boyutunu ve morfolojisini taklit eden üç boyutlu yapay bir doku iskelesi (veya yama) üretilmektedir. Bulusun avantaji, hastanin hasarli bölge boyutlari referans alinarak sadece o hastaya özgü hasarli bölgeyi tedavi edebilecek boyutlari ayarlanabilir 3 boyutlu doku iskelesi üretilebilmektedir. Karmasik geometrilerin 3 boyutlu yazici kullanilarak üretilmesi diger tekniklere göre avantajdir. 3D (üç boyutlu) yazici, dokularin tam sekillerini taklit etmek için idealdir. Diger yöntemlerle yapilarin kalinlik ve gözenek boyutu degerlerinin tam olarak ayarlanmasi kolay degildir. Bununla birlikte, 3D baski, karmasik geometrileri her katmani da taklit ederek olusturmak için islevsel bir tekni'ktir. Diger üretim tekniklerine göre yeni ve daha iyi bir yöntemdir ve doku iskelesinin gözenek boyutu, gözenekliligi ve karmasik sekillerinin kontrollü üretimini saglamaktadir. Thiel-Behnke hasarinin taklit edilmesi de geometri, por boyutlari, kalinlik gibi parametrelerin kolay ayarlanabilirligini gerektirir. Bu nedenle üç boyutlu yazici kullanmak avantajdir. Sekillerin açiklamasi Sekil 1. Antibiyotik katkili ve polimerik yapida yapay doku iskelesinin temsili görünümüdür. Sekil 2. Yapay doku iskelesi üretmek için kullanilan solüsyon üretim yönteminin akis diyagramidir. Sekil 3. Thiel Behnke distrofisinin insan korneasindaki görünümüdür. Sekil 4. Üç boyutlu, antibiyotik yüklü, bal petegi desenine sahip dokunun mikroskop görüntüleridir. Sekil 5. Taramali elektron mikroskop görüntüleridir. Sekil 6. Yapay doku iskelelerinin floresan mikroskop görüntüsüdür. Sekil 7. Hücrelerin iskeleler üzerindeki morfolojik görüntüsüdür. Sekil 8. Doku iskelelerinin S. aureous bakterisine karsi antibakteriyel aktivite sonucu: %0.l Van (1), % . Sekillerdeki Referanslarin Aciklanmasi Bulusun daha iyi anlasilabilmesi için sekillerdeki numaralarin karsiligi asagida verilmistir: . Yapay doku iskelesi l. Etken madde 2. Polimer HK. Hasarsiz Kisim 100.Yöntem Bulusun Detayli Açiklamasi: Bulus, Thiel-Behnke kornea distrofisi (TBKD) hasari tedavisinde kullanilmak üzere hasarli dokunun iyilesmesi için 3D olarak üretilen bir yapay doku iskelesi (10) ile ilgilidir. Söz konusu yapay doku iskelesi (10), kontrollü salim (controlled release) yaparak belli zaman araliklarinda ilaç etken maddesinin salimini saglamaktadir. Böylece ilaç, kontrollü bir sekilde hasarli dokuya salinmaktadir. Söz konusu hasarin tedavisinde kullanilmak üzere yapay doku iskelesini (10) meydana getirmek için kullanilan solüsyon; en az bir etken madde (1) ve/veya en az bir tasiyici polimer (2) içermektedir. Söz konusu sentetik polimer (2), tercihen Polimetilmetakrilatdir (PMMA), ancak uygulamada bununla sinirli degildir. Söz konusu PMMA polimeri, göz içi lenste özellikle kullanildigi için yani lenslerin ana malzemesi oldugu için tercih edilmistir. Söz konusu etken madde bir antibiyotik sinifinda olup, tercihen Vankomisindir, ancak uygulamada bununla sinirli degildir. Yapay doku iskelesi (10), % 0.] ila % 10 oraninda Vankomisinîn içermektedir. Yapay doku iskelesi (10), bulusun uygulamalarina göre, % 0.1 veya % 0.5 veya % 2 veya % 10 Vankomisin içermektedir. Söz konusu oranlarin kullanilma amaci, ilacin hem bakteriye karsi etkili olmasini saglamak hem de mümkün oldugunca etken madde miktarini düsük kullanmaktir. Vankomisin, kornea keratite neden olan S.aureus bakterisine karsi antibakteriyel etkisi oldugu için tercih edilmistir. Bulusta kullanilan vankomisin etken maddesi kullanimi ile; epitel iyilesme, stromal intiltratlarin çözülmesi ve ön kamara iltihabinin temizlenmesi açisindan sefazolin- gentamisin göz damlalarindan üstün oldugu bulunmustur. Yapay doku iskelesi (10), tercihen biyomimetik bal petegi fomiunda olup, biyoyazici ile üç boyutlu yazim teknigiyle üretilmektedir. Yapay doku iskelesi (10), normal nanotiber ya da düz film seklinde de üretilebilmektedir. Ancak, Thiel-Behnke distrofisinin özelligi bal petegi seklinde hasar olusturmasi sebebiyle bulusta biyomimetik bal petegi formu tercih edilmistir. Eger, form normal düz film ya da fiber form olarak kullanilirsa tüm bölgelere ilaç verilmis olmakta yani saglikli bölge de ilaca maruz kalmaktadir. Fakat bal petegi formundaki doku iskelesine yüklenen ilaç, sadece etken maddenin yüklendigi doku iskelesinin kapsadigi bölgelerde etkili olmaktadir. Thiel Behnke distrofisinin insan korneasindaki görünümü Sekil 3 "te verilmistir. Yapay doku iskelesi (10), önceden belirlenmis boyutlarda üretilebilmektedir. Söz konusu boyut, tercihen 20 x 20 x 0.3 mm3 olup , ancak uygulamada bununla sinirli degildir. Yapay doku iskelesinin (10) bal petegi (veya altigen) görünümlü formu Sekil-1`de temsili olarak verilmistir. Ayrica Sekil 4 ve Sekil 5"te üç boyutlu, antibiyotik yüklü, bal petegi desenine sahip yapay doku iskelesinin (10) optik mikroskop ve taramali elektron mikroskobu (Scanning Electron Microseopy, SEM) görüntüleri verilmistir. Bulus; söz konusu dokunun tasarimi, üretimi ve karakterizasyonu asamalarindan olusmaktadir. Üç boyutlu yapay doku iskelelerinin (10) üretiminin ilk kismi tasarimdir. Üç boyutlu yapay doku iskeleleri (10) önceden belirlenmis boyutlarda olup, tercihen 20 x 20 x 0.3 mm3 boyutlarindadir. Bulusun ilk asamasinda doku iskelesi modeli, bir 3D çizim programinda (örnegin Solidworks) olusturulmustur. Söz konusu programda önceden belirlenmis boyutlarda tasarlanan model bir dilimleme programi (örnegin Simplify) yardimiyla cihazin içerdigi bir kontrol birimi vasitasiyla üretilmistir. 3D yapay doku iskelelerinin (10) üretilebilmesi için kontrol birimi söz konusu yapay modeli bir koda dönüstürmektedir. Daha sonra olusturulan kod, üç boyutlu yaziciya bir haberlesme birimi örnegin bluetooth yardimiyla aktarilmistir. Üç boyutlu üretim yapan cihaza yüklenen kod ile cihazin içerdigi bir diger kontrol birimi tarafindan yapay doku iskelesi (10), 3D olarak üretilmektedir. Söz konusu yapay doku iskelesinin (10) eni ve boyu, üç boyutlu yazicinm X-Y eksenlerinde hareketini saglayan siringa baglantili baslik ile ve yüksekligi ise Z ekseni hareketini saglayan tabla hareketi ile üretilmistir. Bulus konusu yapay doku iskelesinin (10) üretimi için kullanilacak final solüsyonun üretim yönteminin (100) yöntem adimlari asagidaki gibidir: - Yapay doku iskelesinin (10) matriksini olusturmak için önceden belirlenmis oranlarda en az bir polimerin önceden belirlenmis oranda en az bir organik bilesik içerisinde çözdürülmesi (101) - Farkli oranlarda en az bir etken maddenin solüsyon içerisine eklenmesi ve 3D yapay doku iskelesi üretiminde kullanilacak final solüsyonun elde edilmesi (102) 101 . adimda söz edilen polimer PMMA"dir, ancak uygulamada bununla sinirli degildir. 101 . adimda söz edilen organik bilesikler Diklorometan/Tetrahidrofurari (50:50) karisimi olup, uygulamada bununla sinirli degildir. PMMA; siklohekzan, kloroform, diklorometan, benzen, etil asetat, formik asit gibi birçok çözücüde de çözünmektedir. Dolayisiyla, 101 . adimda söz edilen organik bilesikler siklohekzan, kloroform, diklorometan, benzen, etil asetat, forrnik asit olup, uygulamada bununla sinirli degildir. 101 . adimda söz edilen polimer ve Diklorometan/Tetrahidrofuran orani tercihen % 40 olup, ancak uygulamada bununla sinirli degildir. Söz konusu oranin tercih edilmesinin nedeni, akiskanlik ve üç boyutlu yazicida yazdirilabilirdik açisindan en etkili oran olmasidir. 102. adimda söz edilen etken madde tercihen Vankomisin olup, uygulamada bununla sinirli degildir. Yapay doku iskelesinin (10) transplantasyonunda herhangi bir bakteri kaynakli keratit olusumunu engellemek için vankomisin gibi gram pozitif bakteriye etki edebilecek herhangi bir ilaç ya da bitki ekstresi kullanilabilmektedir. 102. adimda etken madde oranlari % 0.1 ila % 10'dir, ancak uygulamada bununla sinirli degildir. uygulamada bununla sinirli degildir. 102 . adimda söz edilen etken madde oranlari daha tercihen %8 ila % 10"dur. 102 . Adimda elde edilen solüsyon, biyoyazim yapan üç boyutlu yazici haznesine konulmakta ve üç boyutlu yapay doku iskeleleri (10) olusturulmaktadir. Biyoyazim süresince, önceden belirlenmis bir dis çapa sahip bir igne kullanilmistir. Söz konusu ignenin dis çapi 0.3 mm olup, uygulamada bununla sinirli degildir. Kullanilan igne plastik olup, uygulamada bununla sinirli degildir. Yapay doku iskelesinin (10) üretimi için kullanilan parametreler, yazim hizi, solüsyon akis orani, igne çapi ve yazim sicakligidir. Söz konusu parametreler tercihen sirasiyla 6 mm/sn Bu parametreler farkli oranlarda antibiyotik yüklü solüsyonlarin fiziksel özelliklerine göre optimize edilmistir. Optimize parametreler; viskozite, yogunluk, yüzey gerilimi parametreleridir. Bu degerler tüm konsantrasyonlar için farkli olmakla birlikte Tablo-1 "de verilmistir. Doluluk orani (%60) ise tüm solüsyonlar için sabittir. Üretimden sonra floresan mikroskopta hücrelerin çekirdeklerini görüntülemek için DAPI (4',6-Diamidino-Z-phenylindole dihydrochloride) boyama kullanilmistir. Solüsyonlar Yogunluk (g/cm3) Yüzey gerilimi V'islgozLtg Tablo-1: Bulusta kullanilan PMMA ve/Veya Vankomisin oranlarina göre Viskozite, yogunluk, yüzey gerilim parametreleri Üretilen yapay doku iskelelerinin (10); l, 3, 7 günlük MTT testi sonucunda, tüm inkübasyon süreleri için, üretilen tüm doku iskelelerinin %100 canlilik degerinin üzerinde olduklari, proliferasyonu arttirdiklari söylenebilir (Grafik 1 (a)). Hücre yogunlugu, tutunmasi DAPI ile boyanan hücre çekirdeklerinin iskele üzerindeki dagilimi Iloresan mikroskobu (Sekil 6).ile incelenmistir. Kök hücrelerin doku iskeleleri üzerindeki morfolojisi taramali elektron mikroskop ile incelenmistir (Sekil 7). Grafik 1, mezenkimal kök hücrelerin, bulus ile üretilen yapay doku iskelesi (10) ile 1, 3, 7 gün kültürlendikten sonraki canlilik degerlerini göstermektedir. 2B kök hücre hatti olup kontrol grubu olarak seçilmistir. MTT testi sonucunda canlilik degerleri %50 oldugundan üretilen yapay doku iskeleleri (10) biyouyumludur. Tüm örnekler için canlilik degerleri %100 oldugundan üretilen doku iskelelerinin hücre çogalmasini, büyümesini arttirdigi söylenebilmektedir. Sekil 6°da, hücre çekirdek boyasi olan DAPI ile boyanan kök hücrelerin yapay doku iskelesi (10) üzerinde kültürlendikten sonraki dagilimi, yogunlugu görülmektedir. Görüldügü gibi hücreler, yapinin her tarafina yayilmis ve oldukça yogundur. Bu da kullanilan yapay doku iskelesinin (10) hücre ile ne kadar uyumlu oldugunu göstermektedir. Sekil ?de ise SEM ile hücrelerin yapay doku iskelesi (10) üzerindeki morfolojisi gösterilmektedir. Yapay doku iskelesi (10), hücre ile kültürlendikten sonra fikse edilmekte ve hücrenin fiksasyon sonrasi yapiya tutunma potansiyeline bakilmaktadir. Görüldügü gibi siyah kisim yapay doku iskelesini (10), beyaz yuvarlak toplu sekil ise hücreyi göstermektedir. Hücre yasavahlllrllgi ('36) Grafik 1. Yapay doku iskelelerinin (10) hücre canlilik grafigi (a), Üretilen yapay doku iskelelerinin (10) disk difüzyon yöntemi ile belirlenen antibakteriyel aktivite sonuçlarina göre, %10 Vankomisin içeren diskler S.aure0us bakterisine karsi antibakteriyel aktivite göstermistir ve ölçülen zon çapi 12 mm"dir (Sekil 8). Vankomisin, birçok Gram pozitif bakteriye karsi etkindir. S. Aureous, kornea keratite neden olan bakterilerden biri oldugu için bu bakteriye odaklanilmistir. Sekil 8"de, IV numarali kisim, %10 Vankomisinin aktivitesini göstermektedir. Görüldügü gibi diger ilaç yüklü örneklerde yapay doku iskelesi (10) etrafinda bakterinin yaklasmasini engelleyecek bir inhibisyon bölgesi olusmamis, sadece %10 Van içeren örnegin etrafinda 12 mm, lik zon çapi olusmustur. Bulusun Sanayiye Uygulanabilirligi: Bulus konusu yöntem (100) ve söz konusu yöntemle (100) üretilen bir yapay doku iskelesi (10), Thiel-Behnke teshisli hastalarinin tedavisinde kullanilmak üzere sanayiye uygulanabilir niteliktedir. Bulus yukaridaki örnek uygulamalar ile sinirli olmayip, teknikte uzman bir kisi kolaylikla bulusun farkli diger uygulamalarini ortaya koyabilir. Bunlar bulusun istemler ile talep edilen koruma kapsaminda de gerlendirilmelidir. Sekil 1H K Yapay doku iskelesinin (10) matriksini olusturmak için önceden belirlenmis 100 oranlarda en az bir polimerin önceden belirlenmis oranda en az bir organik bilesik içerisinde çözdürülmesi Farkli oranlarda en az bir etken maddenin solüsyon içerisine eklenmesi ve 3D yapay doku iskelesi (10) üretiminde kullanilacak final solüsyonun elde edilmesi TR TR TR DESCRIPTION A METHOD FOR THIEL-BEHNKE CORNEA DYSTROPHY (TBKD) AND AN ARTIFICIAL TISSUE SCAFFOLD PRODUCED BY SAID METHOD Technical Field The invention includes a method developed to treat Thiel-Behnke Corneal Dystrophy (TBKD) and a three-dimensional artificial structure produced according to said method. It is related to tissue scaffolding. Background Art Bowman's layer consists of type 1, type III, type V and type VII collagen networks with a thickness of 8-12 um in adults. Mutations in the TGFBI gene cause Reis-Bücklers corneal dystrophy (RBKD) and Thiel-Behnke corneal dystrophy (TBKD), which are characterized by two different forms of hyaline structure accumulation in this layer. It is difficult to distinguish these two dystrophies clinically (Dr. Fulya YAYLACIOGLU TUNCAY Doctoral Thesis, Hacettepe University 2019). TBKD is characterized by subepithelial opacities with a honeycomb appearance that appear between the ages of 10-20. Accumulations are stained with Masson Trichrome. R555Q mutation is responsible for this phenotype (Dr. Fulya YAYLACIOGLU TUNCAY PhD Thesis, Hacettepe University 2019). An ocular drug delivery device is mentioned in the state-of-the-art patent document with publication number US4014335A. The document describes a controlled-release drug, a sealed container shaped to be placed in the eye, and an ocular delivery device consisting of several layers for continuous administration of the drug over an extended period of time. Brief Description of the Invention: The purpose of the invention is to realize a method developed to treat Thiel-Behnke Corneal Dystrophy (TBKD) and a three-dimensional artificial tissue scaffold with controlled release produced according to the said method. For this purpose, in the invention, a three-dimensional artificial tissue scaffold (or patch) that mimics the size and morphology of the said damage is produced. The advantage of the invention is that, taking the patient's damaged area dimensions as a reference, a 3D tissue scaffold with adjustable dimensions that can treat only the damaged area specific to that patient can be produced. Producing complex geometries using 3D printing is an advantage over other techniques. A 3D (three-dimensional) printer is ideal for mimicking the exact shapes of tissues. It is not easy to precisely adjust the thickness and pore size values of the structures with other methods. However, 3D printing is a functional technique for creating complex geometries by mimicking each layer. It is a new and better method compared to other production techniques and provides controlled production of pore size, porosity and complex shapes of the tissue scaffold. Simulating Thiel-Behnke damage also requires easy adjustment of parameters such as geometry, pore sizes, and thickness. Therefore, using a 3D printer is an advantage. Explanation of the figures Figure 1. Representative view of the antibiotic-added and polymeric artificial tissue scaffold. Figure 2. Flow diagram of the solution production method used to produce artificial tissue scaffolds. Figure 3. The appearance of Thiel Behnke dystrophy in the human cornea. Figure 4. Microscope images of three-dimensional, antibiotic-loaded, honeycomb-patterned tissue. Figure 5. Scanning electron microscope images. Figure 6. Fluorescence microscope image of artificial tissue scaffolds. Figure 7. Morphological view of cells on scaffolds. Figure 8. Antibacterial activity result of tissue scaffolds against S. aureous bacteria: 0.1% Van (1), % . Explanation of References in the Figures In order to better understand the invention, the corresponding numbers in the figures are given below: . Artificial tissue scaffold l. Active ingredient 2. Polymer HK. Undamaged Part 100. Method Detailed Description of the Invention: The invention relates to an artificial tissue scaffold (10) produced in 3D for the healing of damaged tissue to be used in the treatment of Thiel-Behnke corneal dystrophy (TBKD) damage. The artificial tissue scaffold (10) in question ensures the release of the active pharmaceutical ingredient at certain time intervals by performing controlled release. Thus, the drug is released into the damaged tissue in a controlled manner. The solution used to create the artificial tissue scaffold (10) to be used in the treatment of the damage in question; It contains at least one active ingredient (1) and/or at least one carrier polymer (2). The synthetic polymer (2) in question is preferably Polymethylmethacrylate (PMMA), but in practice it is not limited to it. The PMMA polymer in question was preferred because it is used specifically in intraocular lenses, that is, it is the main material of lenses. The active ingredient in question is in a class of antibiotics, preferably Vancomycin, but in practice it is not limited to this. Artificial tissue scaffold (10) contains 0% to 10% Vancomycin. The artificial tissue scaffold (10) contains 0.1% or 0.5% or 2% or 10% Vancomycin, according to the applications of the invention. The purpose of using these ratios is to ensure that the drug is effective against bacteria and to use the amount of active ingredient as low as possible. Vancomycin was preferred because it has an antibacterial effect against S.aureus bacteria, which causes corneal keratitis. With the use of vancomycin active ingredient used in the invention; Cefazolingentamicin was found to be superior to eye drops in terms of epithelial healing, dissolution of stromal infiltrates, and clearance of anterior chamber inflammation. The artificial tissue scaffold (10) is preferably in the form of biomimetic honeycomb and is produced by three-dimensional printing technique with a bioprinter. Artificial tissue scaffold (10) can also be produced in the form of normal nanotiber or flat film. However, due to the characteristic of Thiel-Behnke dystrophy that it causes damage in the form of honeycomb, the biomimetic honeycomb form was preferred in the invention. If the form is used as a normal flat film or fiber form, the drug is administered to all areas, meaning the healthy area is also exposed to the drug. However, the drug loaded into the honeycomb-shaped tissue scaffold is effective only in the areas covered by the tissue scaffold where the active ingredient is loaded. The appearance of Thiel Behnke dystrophy in the human cornea is given in Figure 3. The artificial tissue scaffold (10) can be produced in predetermined dimensions. The size in question is preferably 20 x 20 x 0.3 mm3, but in practice it is not limited to this. The artificial tissue scaffold (10) can be produced in predetermined dimensions. Its honeycomb (or hexagonal) looking form is given representatively in Figure 1. Additionally, optical microscope and scanning electron microscopy (Scanning Electron Microseopy) of the three-dimensional, antibiotic-loaded, honeycomb patterned artificial tissue scaffold (10) is shown in Figure 4 and Figure 5. , SEM) images are given. Meet; It consists of the design, production and characterization stages of the tissue in question. The first part of the production of three-dimensional artificial tissue scaffolds (10) is the design. Three-dimensional artificial tissue scaffolds (10) have predetermined dimensions, preferably 20 x 20 x 0.3 mm3. In the first stage of the invention, the tissue scaffold model was created in a 3D drawing program (for example, Solidworks). The model, designed in predetermined dimensions in the program in question, was produced by a control unit included in the device with the help of a slicing program (e.g. Simplify). In order to produce 3D artificial tissue scaffolds (10), the control unit converts the artificial model in question into a code. The created code was then transferred to the 3D printer with the help of a communication unit, such as Bluetooth. The artificial tissue scaffold (10) is produced in 3D by the code loaded into the three-dimensional production device and another control unit included in the device. The width and length of the artificial tissue scaffold (10) in question were produced with the syringe-connected head that enables the movement of the three-dimensional printer in the X-Y axes, and the height was produced with the table movement that provides the Z-axis movement. The method steps of the production method (100) of the final solution to be used for the production of the artificial tissue scaffold (10) of the invention are as follows: - Dissolving at least one polymer in predetermined proportions into at least one organic compound in predetermined proportions to form the matrix of the artificial tissue scaffold (10). (101) - Adding at least one active ingredient in different proportions into the solution and obtaining the final solution to be used in the production of 3D artificial tissue scaffold (102) 101. The polymer mentioned in step 1 is PMMA, but it is not limited to it in practice. The organic compounds mentioned in step 101 are Dichloromethane/Tetrahydrofurary (50:50) mixture, but it is not limited to it in practice. PMMA; cyclohexane, chloroform, dichloromethane, benzene, ethyl acetate, It is also soluble in many solvents such as formic acid. Therefore, the organic compounds mentioned in step 101 are cyclohexane, chloroform, dichloromethane, benzene, ethyl acetate, fornic acid and are not limited to them in practice. The polymer mentioned in step 101 and the Dichloromethane/Tetrahydrofuran ratio are preferably % 40, but it is not limited to this in practice. The reason why this ratio is preferred is that it is the most effective ratio in terms of fluidity and printability on a three-dimensional printer. The active substance mentioned in step 102 is preferably Vancomycin, and it is not limited to this in practice. The artificial tissue scaffold (10) To prevent the formation of any bacterial keratitis during transplantation, any drug or plant extract that can affect gram-positive bacteria, such as vancomycin, can be used. In step 102, the active ingredient rates are 0.1% to 10%, but are not limited to this in practice. In practice, it is not limited to this. 102 . The active ingredient rates mentioned in step 102 are more preferably 8% to 10%. The solution obtained in step 102 is placed in the bioprinting three-dimensional printer chamber and three-dimensional artificial tissue scaffolds (10) are created. During the bioprinting process, they have a predetermined outer diameter. A needle is used. The outer diameter of the needle in question is 0.3 mm, and it is not limited to this in practice. The needle used is plastic, and it is not limited to this in practice. The parameters used for the production of the artificial tissue scaffold (10) are writing speed, solution flow rate, needle diameter and writing. temperature. The parameters in question are preferably 6 mm/sec, respectively. These parameters have been optimized according to the physical properties of solutions loaded with antibiotics at different rates. The optimized parameters are viscosity, density, surface tension parameters. Although these values are different for all concentrations, they are given in Table-1. The filling rate (60%) is constant for all solutions. After production, DAPI (4',6-Diamidino-Z-phenylindole dihydrochloride) staining was used to visualize the nuclei of the cells under a fluorescence microscope. Solutions Density (g/cm3) Surface tension V'islgozLtg Table-1: Viscosity, density, surface tension parameters according to the PMMA and/or Vancomycin ratios used in the invention. The artificial tissue scaffolds produced (10); As a result of the 1, 3, 7-day MTT test, it can be said that all tissue scaffolds produced were above 100% viability for all incubation periods and increased proliferation (Graph 1 (a)). Cell density, adhesion, and the distribution of DAPI-stained cell nuclei on the scaffold were examined by fluorescent microscopy (Figure 6). The morphology of stem cells on tissue scaffolds was examined with a scanning electron microscope (Figure 7). Graph 1 shows the viability values of mesenchymal stem cells after being cultured with the artificial tissue scaffold (10) produced with the invention for 1, 3, 7 days. It is a 2B stem cell line and was chosen as the control group. Since the viability values as a result of the MTT test were 50%, the artificial tissue scaffolds (10) produced are biocompatible. Since the viability values for all samples were 100%, it can be said that the tissue scaffolds produced increased cell proliferation and growth. Figure 6 shows the distribution and density of stem cells stained with DAPI, a cell nuclear dye, after they are cultured on the artificial tissue scaffold (10). As can be seen, the cells are spread throughout the structure and are quite dense. This shows how compatible the artificial tissue scaffold (10) used is with the cell. Figure shows the morphology of the cells on the artificial tissue scaffold (10) using SEM. The artificial tissue scaffold (10) is fixed after being cultured with cells, and the cell's potential to adhere to the structure after fixation is checked. As can be seen, the black part shows the artificial tissue scaffold (10) and the white round lumped shape shows the cell. Cell viability ('36) Graph 1. Cell viability graph of artificial tissue scaffolds (10) (a), According to the antibacterial activity results of the produced artificial tissue scaffolds (10) determined by the disk diffusion method, disks containing 10% Vancomycin are antibacterial against S.aure0us bacteria. activity and the measured zone diameter was 12 mm (Figure 8). Vancomycin is effective against many Gram-positive bacteria. S. Aureous was focused on this bacterium because it is one of the bacteria that causes corneal keratitis. In Figure 8, part IV, % 10 shows the activity of vancomycin. As can be seen, in other drug-loaded samples, no inhibition zone was formed around the artificial tissue scaffold (10) that would prevent the bacteria from approaching, but a zone diameter of 12 mm was formed around the sample containing only 10% Van. Industrial Applicability of the Invention: The method (100) of the invention and an artificial tissue scaffold (10) produced by the said method (100) are industrially applicable for use in the treatment of patients with Thiel-Behnke diagnosis. The invention is not limited to the sample applications above, and a person skilled in the art can easily reveal other applications of the invention. These should also be evaluated within the scope of the protection claimed by the invention's claims. Figure 1H K Dissolving at least one polymer at a predetermined ratio of 100 into at least one organic compound at a predetermined ratio to form the matrix of the artificial tissue scaffold (10). Adding at least one active ingredient at different ratios into the solution to be used in the production of 3D artificial tissue scaffold (10). obtaining the final solution TR TR TR

Claims (1)

1.ISTEMLER Hasarli dokunun iyilesmesi için üretilen ve Thiel-Behnke kornea distrofisi (TBKD) hasari tedavisinde kullanilmak üzere; - Yapay doku iskelesinin (10) matriksini olusturmak için önceden belirlenmis oranlarda en az bir polimerin önceden belirlenmis oranda en az bir organik bilesik içerisinde çözdürülmesi (101) - Farkli oranlarda en az bir etken maddenin solüsyon içerisine eklenmesi ve 3D yapay doku iskelesi (10) üretiminde kullanilacak final solüsyonun elde edilmesi (102) adimlarina göre yapay doku iskelesinin (10) üretimi için kullanilacak final solüsyonun üretilmesi ile karakterize edilen bir üretim yöntemi (100). 101 . adimda söz edilen polimerin PMMA olmasi ile karakterize edilen istem 17deki gibi bir yöntem (100). 101 . adimda söz edilen organik bilesiklerin Diklorometan/Tetrahidrofiiran (50:50) karisimi olmasi karakterize edilen istem ?deki gibi bir yöntem (100). 101 . adimda söz edilen organik bilesiklerin siklohekzan, kloroform, diklorometan, benzen, etil asetat, formik asit olmasi ile karakterize edilen istem 2”deki gibi bir yöntem (100). 101 . adimda söz edilen polimer ve Diklorometan/Tetrahidrofuran oraninin % 40 olmasi ile karakterize edilen istem ?deki gibi bir yöntem (100). 102. adimda söz edilen etken maddenin Vankomisin olmasi ile karakterize edilen istem 5`deki gibi bir yöntem (100). 102 . adimda etken madde oranlarinin % 0.1 ila % 10 ile karakterize edilen istem 6”daki gibi bir yöntem (100). ile karakterize edilen istem 7”deki gibi bir yöntem (100). 102 . adimda söz edilen etken madde oranlari daha tercihen %8 ila % 10 olmasi ile karakterize edilen istem 8”deki gibi bir yöntem (100). Antibiyotik ilaveli polimer yapidaki final solüsyonu ile 3D yazicida 3D olarak üretilmesi ile karakterize edilen yukaridaki istemlerden herhangi birindeki gibi bir yöntem (100) ile üretilen bir yapay doku iskelesi (10). Vankomisin ilaveli PMMA yapidaki Iinal solüsyonu ile 3D yazicida 3D olarak üretilmesi ile karakterize edilen istem 10”daki gibi bir yapay doku iskelesi (10). Biyomimetik bal petegi formunda olmasi ile karakterize edilen istem llideki gibi bir yapay doku iskelesi (10). 20 x 20 X 0.3 mm3 boyutlarda üretilmesi ile karakterize edilen istem 12°daki gibi bir yapay doku iskelesi (10). Kontrollü salim yapmasi ile karakterize edilen istem l3”daki gibi bir yapay doku Hasarli dokunun iyilesmesi için üretilen ve Thiel-Behnke kornea distrofisi (TBKD) hasari tedavisinde kullanilmak üzere; - en az bir etken madde (1) ve/veya en az bir polimer (2) içermesi ile karakterize edilen bir solüsyon. Polimetilmetakrilatdir (PMMA) olan sentetik polimer (2) ile karakterize edilen istem 15 ,deki gibi bir solüsyon. Vankomisin olan etken madde ile karakterize edilen istem lö'daki gibi bir solüsyon. bir solüsyon. istem 18°deki gibi bir solüsyon. . %8 ila % 10 Vankomisin içermesiyle karakterize edilen istem 19°daki gibi bir solüsyon. TR TR TR1. CLAIMS Produced for the healing of damaged tissue and to be used in the treatment of Thiel-Behnke corneal dystrophy (TBKD) damage; - Dissolving at least one polymer at predetermined rates in at least one organic compound at predetermined rates to form the matrix of the artificial tissue scaffold (10) - Adding at least one active ingredient at different rates into the solution and producing 3D artificial tissue scaffold (10). A production method (100) characterized by the production of the final solution to be used for the production of the artificial tissue scaffold (10) according to the steps of obtaining the final solution to be used (102). 101 . A method (100) as in claim 17, characterized in that the polymer mentioned in the step is PMMA. 101 . A method as in claim (100), characterized in that the organic compounds mentioned in the step are a mixture of Dichloromethane/Tetrahydrofuran (50:50). 101 . A method as in claim 2, characterized in that the organic compounds mentioned in the step are cyclohexane, chloroform, dichloromethane, benzene, ethyl acetate and formic acid (100). 101 . A method as in the claim (100), characterized by the polymer mentioned in the step and the Dichloromethane/Tetrahydrofuran ratio being 40%. A method (100) as in claim 5, characterized in that the active substance mentioned in step 102 is Vancomycin. 102 . A method (100) as in claim 6, characterized by active ingredient ratios of 0.1% to 10% in the first step. A method (100) as in claim 7, characterized by. 102 . A method (100) as in claim 8, which is characterized by the active ingredient ratios mentioned in the step being more preferably 8% to 10%. An artificial tissue scaffold (10) produced by a method (100) as in any of the above claims, characterized by its production in 3D on a 3D printer with a final solution of antibiotic-added polymer structure. An artificial tissue scaffold (10) as in claim 10, characterized by being produced in 3D on a 3D printer with Iinal solution in PMMA structure with the addition of vancomycin. An artificial tissue scaffold as in claim 1, characterized by its biomimetic honeycomb form (10). An artificial tissue scaffold (10) as in claim 12, characterized by its production in dimensions of 20 x 20 x 0.3 mm3. An artificial tissue as in claim 13, characterized by controlled release, produced for the healing of damaged tissue and to be used in the treatment of Thiel-Behnke corneal dystrophy (TBKD) damage; - a solution characterized by containing at least one active ingredient (1) and/or at least one polymer (2). A solution as in claim 15, characterized by the synthetic polymer (2) which is polymethylmethacrylate (PMMA). A solution as in claim 10, characterized by the active ingredient being vancomycin. a solution. A solution as in claim 18. . A solution according to claim 19, characterized in that it contains 8% to 10% Vancomycin. TR TR TR
TR2020/21080A 2020-12-21 2020-12-21 A METHOD AND AN ARTIFICIAL TISSUE SCAFFOLDING FOR THIEL-BEHNKE CORNEA DYSTROPHY (TBKD) TR202021080A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TR2020/21080A TR202021080A2 (en) 2020-12-21 2020-12-21 A METHOD AND AN ARTIFICIAL TISSUE SCAFFOLDING FOR THIEL-BEHNKE CORNEA DYSTROPHY (TBKD)
PCT/TR2021/051324 WO2022139749A2 (en) 2020-12-21 2021-12-01 A method for thi̇el-behnke corneal dystrophy (tbcd) and an artificial tissue scaffold produced by said method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2020/21080A TR202021080A2 (en) 2020-12-21 2020-12-21 A METHOD AND AN ARTIFICIAL TISSUE SCAFFOLDING FOR THIEL-BEHNKE CORNEA DYSTROPHY (TBKD)

Publications (1)

Publication Number Publication Date
TR202021080A2 true TR202021080A2 (en) 2022-07-21

Family

ID=82160035

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2020/21080A TR202021080A2 (en) 2020-12-21 2020-12-21 A METHOD AND AN ARTIFICIAL TISSUE SCAFFOLDING FOR THIEL-BEHNKE CORNEA DYSTROPHY (TBKD)

Country Status (2)

Country Link
TR (1) TR202021080A2 (en)
WO (1) WO2022139749A2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2403908B (en) * 2003-07-17 2007-03-28 I O Internat Ltd Artificial cornea
WO2019191525A1 (en) * 2018-03-29 2019-10-03 Ovid Therapeutics Inc. Use of (1s,3s)-3-amino-4-(difluoromethylidene) cyclopentane-1-carboxylic acid and (s)-3-amino-4-(difluoromethylenyl)cyclopent-1-ene-1-carboxylic acid in the treatment of eye disorders
CN109847109A (en) * 2018-09-11 2019-06-07 滕宇池 A kind of contact lens carrying medicine

Also Published As

Publication number Publication date
WO2022139749A2 (en) 2022-06-30
WO2022139749A3 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
Liu et al. Ciprofloxacin-loaded sodium alginate/poly (lactic-co-glycolic acid) electrospun fibrous mats for wound healing
Alavarse et al. Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing
Dias et al. Advances in electrospun skin substitutes
Warnke et al. Primordium of an artificial Bruch’s membrane made of nanofibers for engineering of retinal pigment epithelium cell monolayers
Liu et al. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography
CN109985279B (en) Micro-patterned nanofiber material compounded with drug-loaded MOF (Metal organic framework), and preparation method and application thereof
US9410267B2 (en) Methods and devices for the fabrication of 3D polymeric fibers
Kim et al. Fabrication and characterization of 3-dimensional PLGA nanofiber/microfiber composite scaffolds
Wray et al. Recreating the microenvironment of the native cornea for tissue engineering applications
Hotaling et al. Nanofiber scaffold-based tissue-engineered retinal pigment epithelium to treat degenerative eye diseases
Maghdouri-White et al. Mammary epithelial cell adhesion, viability, and infiltration on blended or coated silk fibroin–collagen type I electrospun scaffolds
US20140193466A1 (en) Silk compositions and methods of using same
US20090087469A1 (en) Alginate-based nanofibers and related scaffolds
Lim et al. In vitro biological evaluation of electrospun polycaprolactone/gelatine nanofibrous scaffold for tissue engineering
Niu et al. Biomimetic electrospun tubular PLLA/gelatin nanofiber scaffold promoting regeneration of sciatic nerve transection in SD rat
CN102481389A (en) Three-dimensional nanostructured hybrid scaffold and manufacture thereof
Aigner et al. Nerve guidance conduit design based on self-rolling tubes
KR20080091827A (en) Biomimetic scaffolds
Vashaghian et al. Electrospun matrices for pelvic floor repair: effect of fiber diameter on mechanical properties and cell behavior
Klicova et al. Novel double-layered planar scaffold combining electrospun PCL fibers and PVA hydrogels with high shape integrity and water stability
Permlid et al. Unique animal friendly 3D culturing of human cancer and normal cells
Himmler et al. Optimization of polycaprolactone-based nanofiber matrices for the cultivation of corneal endothelial cells
Pázmány et al. Ultrasound induced, easy-to-store porous poly (amino acid) based electrospun scaffolds
CN114855365A (en) Drug-loaded metal-organic framework composite electrostatic spinning fiber membrane and preparation method and application thereof
TR202021080A2 (en) A METHOD AND AN ARTIFICIAL TISSUE SCAFFOLDING FOR THIEL-BEHNKE CORNEA DYSTROPHY (TBKD)