TR202020611A1 - Helicoverpa armigera nucleopolyhedrovirus-based bioinsecticide that can be used against agricultural pest heliothis species. - Google Patents

Helicoverpa armigera nucleopolyhedrovirus-based bioinsecticide that can be used against agricultural pest heliothis species.

Info

Publication number
TR202020611A1
TR202020611A1 TR2020/20611A TR202020611A TR202020611A1 TR 202020611 A1 TR202020611 A1 TR 202020611A1 TR 2020/20611 A TR2020/20611 A TR 2020/20611A TR 202020611 A TR202020611 A TR 202020611A TR 202020611 A1 TR202020611 A1 TR 202020611A1
Authority
TR
Turkey
Prior art keywords
hearnpv
bioinsecticide
sequence
virus
oil
Prior art date
Application number
TR2020/20611A
Other languages
Turkish (tr)
Inventor
Demi̇rbağ Zi̇hni̇
Büşra Eroğlu Gözde
Original Assignee
Karadeniz Teknik Ueniversitesi
Karadeni̇z Tekni̇k Üni̇versi̇tesi̇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karadeniz Teknik Ueniversitesi, Karadeni̇z Tekni̇k Üni̇versi̇tesi̇ filed Critical Karadeniz Teknik Ueniversitesi
Priority to TR2020/20611A priority Critical patent/TR202020611A1/en
Priority to PCT/TR2020/051324 priority patent/WO2022132065A1/en
Publication of TR202020611A1 publication Critical patent/TR202020611A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/40Viruses, e.g. bacteriophages
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P7/00Arthropodicides
    • A01P7/04Insecticides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/14011Baculoviridae
    • C12N2710/14111Nucleopolyhedrovirus, e.g. autographa californica nucleopolyhedrovirus
    • C12N2710/14131Uses of virus other than therapeutic or vaccine, e.g. disinfectant

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Environmental Sciences (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Insects & Arthropods (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Dentistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Buluş, bir tarım zararlısı olan Heliothis türlerine karşı geliştirilen çevre dostu bir biyokontrol gerçekleştirilmesi amacıyla hazırlanmış Helicoverpa armigera (H.Armigera) nükleopolihedrovirüs (NPV) bazlı bir biyoinsektisit (biyopreparat) ile ilgilidir. Söz konusu biyoinsektisit tercihen HearNPV-TR (veya HearNPV-TR saf PIB?si), ayçiçek yağı, emülgatör, tatlandırıcı, kıvam arttırıcı, sürfaktan, böcek bağırsağını parçalayıcı ajan, fizyolojik stres oluşturucu ajan olarak borik asit ve su içermektedir.The invention relates to a bioinsecticide (biopreparation) based on Helicoverpa armigera (H. Armigera) nucleopolyhedrovirus (NPV) developed for the purpose of performing an environmentally friendly biocontrol against Heliothis species, an agricultural pest. Said bioinsecticide preferably contains HearNPV-TR (or HearNPV-TR pure PIB), sunflower oil, emulsifier, sweetener, thickener, surfactant, insect gut breaking agent, boric acid as physiological stressor, and water.

Description

TARIFNAME TARIM ZARARLISI HELIOTHIS TÜRLERINE KARSI KULLANILABILECEK HELICOVERPA ARMIGERA NÜKLEOPOLIHEDROVIRÜS TABANLI BIYOINSEKTISIT Bulusun Ilgili Oldugu Teknik Alan Bulus, bir tarim zararlisi olan Heliothis türlerine karsi gelistirilen çevre dostu olan biyokontrol gerçeklestirilmesi amaciyla hazirlanmis Helicoverpa armigera (H. Armigera) nükleopolihedrovirüs (NPV) bazli bir biyoinsektisit (biyopreparat) ile ilgilidir. Teknigin Bilinen Durumu Polifag bir zararli olan yesil kurt (Heliothis/Helicoverpa) türleri dünyanin hemen hemen her tarafina yayilmis olup; basta domates, pamuk, marul, misir, biber, karpuz, ayçiçegi ve tütün gibi pek çok tarim ürünü ile beslenerek bu ürünlere zarar vermektedir. Tarim zararlisi böceklerden özellikle toprak üstünde yasayan türler, önemli derecede mahsul kaybina ve ekonomik zarara neden olmaktadir. Bu böceklerin ekonomik zarar esigini kontrol altinda tutmak için üreticiler tarafindan yogun bir sekilde kimyasal pestisit kullanilmaktadir. Ancak, son yillarda pek çok ülkede yesil kurtlarin kimyasal ilaçlara karsi direnç gelistirdigi bildirilmistir. Larvalara uygulanan ilaç miktari gittikçe artmakta ve kimyasal ilaçlarin tarim ürünleri üzerindeki kalintisi daha fazla olmaktadir. Kullanilan kimyasal maddeler, hedef alinmayan organizmalarin da zarar görmesine, ekolojik dengenin bozulmasina, zararlilarda direnç gelismesine ve insan sagliginin tehdit edilmesine yol açmaktadir. Bu durum hem ülkemizde hem de dünyada yesil kurtlara karsi çevre dostu alternatif kontrol sistemlerinin gelistirilmesine ihtiyaç dogurmustur. Yesil kurtlarin mücadelesi için gelismis birçok ülkede, kimyasal pestisitler yerine mikrobiyal mücadele etmenleri olan biyoinsektisitlerin kullanimi tercih edilmektedir. Mikrobiyal mücadele etmeni olarak, yesil kurtlara karsi su an yaygin olarak kullanilan 2 farkli entomopatojen biyoinsektisit grubuna ait ticari preperat bulunmaktadir. Bunlar; Bacillus thrungiensis ve bakülovirüs grubundan nükleopolihedrovirüs (NPV)'lere ait ürünlerdir. Ancak, yesil kurtlarin Bacillus thrungiensis ürünlerine karsi da direnç gelistirdigi bilinmektedir. Bakülovirüsler ise hedef zararliya özel olup, sadece belirli böcek gruplarini enfekte ederler. Bakulovirüsler, böcek patojeni virüsler arasinda en yaygin olan ve üzerinde en çok çalisilan virüs familyasini olusturmaktadir. Bakülovirüsler dar konak çesitliligi, çevrede kalicilik, çevre dostu olma ve yüksek virülansa sahip olmalari nedeniyle tarimdaki böcek zararlilarina karsi kullanilan önemli biyokontrol ajanlaridir. Bakülovirüsler polihedrin ve granül morfolojilerine göre nükleopolihedrovirüsleri (NPV) ve granüloz virüsleri (GV) olarak iki gruba ayrilir. Bakülovirüslerin moleküler siniflandirmasi polh, lef8 ve Ief9 korunmus gen bölgelerinin kullanimina dayanmaktadir. Bakülovirüs ailesinin bir parçasi olan nükleopolihedrovirüsler (NPV), basta güveler ve kelebekler olmak üzere böcekleri etkileyen bir virüs olup, pestisit olarak kullanilmaktadir. Yesil kurtlara karsi üretilen ilk ticari bakülovirüs ürünü 1975 yilinda, Elcar firmasi tarafindan üretilmistir. Daha sonra çesitli ülkelerden bazi firmalar ticari olarak Diplomata, Gemstar, Biotrol, Heliokill, Helinash ve Helicovex gibi NPV tabanli ticari ürünler üretmistir. Heliothis türlerinden simdiye kadar pek çok bakülovirüs izole edilmistir. Ayni konaktan elde edilen izolatlarin virülansi ve konak spektrumlari farklilik göstermektedir. Helicoverpa NPV genomlari arasindaki farkliliklarin genellikle baculovirus repeat ORF (bro) genleri ve homolog bölgelerinden (homologous regions (hrs)) kaynaklandigi belirtilmektedir [1-6]. Önceki teknikte H. armigera ve H. zea'dan izole edilmis bakülovirüs izolatlarini içeren kati veya sivi bazli formülasyonlar yer almaktadir [7-10]. Literatürde, bakülovirüslerden üretilen yag tabanli formülasyonlarin çevresel faktörlere (UV, isi, rüzgâr ve yagmur) karsi yüksek tolerans gösterdigi ve daha uzun raf ömrüne sahip oldugu bildirilmistir. Literatürdeki yag tabanli bakülovirüs formülasyonlarinda pamuk tohumu yagi ve misir yagi kullanilmistir [11-12]. Önceki teknikte yer alan Mehrvar ve arkadaslarinin bir makalesinde, bitkisel yaglarin Helicoverpa armigera (HearNPV) nükleopolihedrovirüs verimine etkisi incelenmistir. Burada larvalar, virüs asilamali standart diyet ile veya bitkisel katkili virüs asilamali standart diyet beslenmistir. Bu beslenmeler sonucunda, ayçiçegi yagi katkili beslenmenin larva ölümlerini artirdigi görülmüstür [13]. Ancak, bu çalismada kullanilan ayçiçek yagi ve diger yaglar Iarvalarin besinine direkt olarak eklenmektedir. Burada herhangi bir viral bir formülasyon hazirlanmamis olup, ayçiçek yagi karistirilmis virüs daha sonradan ham bir halde besin üzerine bulastirilmaktadir. Yapay besin ile yapilan bu uygulama sadece laboratuvar sartlarinda uygulanabilecek bir çalisma olup, tarim alanlarinda uygulanabilecek nitelikte degildir. Bunlara ek olarak, yabanci virüs izolatlarinin kullaniminin yerel suslarin biyolojik etkinligi üzerinde olumsuz bir etkiye sahip olabilecegi ve yerel zararli türlerin, cografi olarak farkli izolatlara karsi daha az duyarlilik gösterebilecegi bilinmektedir. Mevcut teknikte Heliothis türü tarim zararlilarina karsi gelistirilen insektisitlerin kontrol verimi ve zararlilar üzerindeki etkisi bakimindan yetersiz olmasi, mevcut yöntemlerin kullanildigi uygulamalarda kimyasal ilaçlara karsi zararlilarin zamanla direnç kazanmasi, bu kimyasal ilaçlarin tarim ürünleri üzerinde birikmesi ve bu kalintilarin artmasiyla zararli olmayan organizmalarin ve insan sagliginin olumsuz etkilenmesi gibi sebepler dolayisiyla, Heliothis türü tarim zararlilarina karsi kullanilmak üzere biyoinsektisit formülasyonlarinin gelistirilmesi ihtiyaci bulunmaktadir. Bulusun Kisa Açiklamasi ve Amaçlari Mevcut bulusta, morfolojik ve moleküler olarak tanimlanan ve hedef böcekler için yüksek oranda enfektivitesinin oldugu belirlenen bakülovirüs izolati Helicoverpa armigera nükleopolihedrovirüs (HearNPV-TR) kullanilarak tarim zararlilarindan biri olan Heliothis türlerinin biyolojik mücadelesinde kullanilmak üzere, etkili ve çevre dostu bir mikrobiyal biyopestisit açiklanmaktadir. Bulusun ilk amaci, tarimda kimyasal kullanimi olmadan etkili bir sekilde Heliothis türleri ile mücadele saglamaktir. Bulusta kullanilan HearNPV-TR izolatin yalnizca hedef zararli olan Heliothis türlerine özgü olmasi sayesinde, bu türlerin biyokontrolü saglanirken, zararli olmayan organizmalarin mücadele sürecinde olumsuz etkilenmesinin önüne geçilmektedir. Ayni zamanda söz konusu biyoinsektisitin viral içerikli olmasi sayesinde kimyasal ilaçlara karsi gelistirilen direnç engellenmektedir. Bulusun bir diger amaci, tarimda kullanilacak insektisitin uzun süre etkili olmasi ve sürekli uygulama gerektirmeksizin etkisinin devam etmesidir. Bulusta, HearNPV-TR izolatini çevre sartlarina karsi korumak, dogada inaktive olmasini önlemek ve uygulanan biyoinsektisitin uzun süreli etki göstermesi amaciyla yag temelli formülasyonlar kullanilmaktadir. Bulusun bir diger amaci, Heliothis türlerine karsi çevre dostu bir biyokontrol saglanmasidir. Bunun için söz konusu biyoinsektisitlerde dogal içerikler kullanilmakta ve tarim ürünlerindeki kimyasal kalintilarin insanlara ve hayvanlara verdigin zararin önüne geçilmektedir. Bulusa konu biyoinsektisitlerde kullanilan yerel izolatlar sayesinde, bu biyoinsektisitlerin kullanildigi bölgelerdeki yerel suslarin biyolojik etkinliginin bozulmadan devam etmesinin saglanmasidir. Kimyasal ilaçlarin olumsuz etkileri ve yüksek maliyetlerinin aksine; bulus ile, çevre dostu, düsük maliyetli ve dogal sartlara (yüksek sicaklik ve UV) dayanikli viral orijinli bir biyoinsektisit gelistirilmesi saglanmaktadir. Sekillerin Açiklamasi Sekil 1: Bro-a genlerinin aminoasit dizisine göre karsilastirilmasi Sekil 2: HearNPV-TR izolatinin yesil kurt larvalari üzerindeki doz denemeleri Sekil 3: Bakülovirüslere ait gömülü yapilarin (Polihedral inklüzyon yapi (PlB)) 100 X aydinlik alan isik mikroskobu görüntüsü Sekil 4: Saflastirma sonrasi Bakülovirüslere ait gömülü yapilarin (PIB) 40X karanlik alan görüntüsü Sekil 5: Saflastirma sonrasi Bakülovirüslere ait gömülü yapilarin (PIB) 100 X aydinlik alan görüntüsü Sekil 6: Taramali elektron mikroskobunda Bakülovirüslere ait PIB yapilari görüntüsü Sekil 7: Transmisyon elektron mikroskobu Bakülovirüslere ait nükleokapsit yapilari görüntüsü Bulusun Ayrintili Açiklamasi Bulus, bir tarim zararlisi olan Heliothis türlerine karsi gelistirilen ve çevre dostu bir biyokontrol gerçeklestirilmesi amaciyla hazirlanmis Helicoverpa armigera nükleopolihedrovirüs (NPV) bazli bir biyoinsektisit ile ilgilidir. Bulusa konu biyoinsektisit, HearNPV (veya HearNPV PlB'si), yag, emülgatör, tatlandirici, kivam arttirici, sürfaktan, böcek bagirsagini parçalayici ajan, fizyolojik stres olusturucu ajan ve distile su içermektedir. Bulusa konu formülasyonun içerigi sayesinde formülasyonda bulunan aktif madde olan virüs izolati yerine farkli bir Heliothis NPV izolati kullanilarak formülasyon hazirlanabilir. Ancak tercihen, en yüksek virülans etkisine sahip oldugu görülen HearNPV-TR izolati (SEKANS ID N03 ile temsil edilen hr3, SEKANS lD NO.4 ile temsil edilen hr5 ve SEKANS lD N05 ile temsil edilen bro-a gen dizilimlerini içeren izolat) kullanilmaktadir. Bulusa konu biyoinsektisit, tercihen HearNPV-TR (veya HearNPV-TR saf PlB'si), yag, emülgatör, tatlandirici, kivam arttirici, sürfaktan, böcek bagirsagini parçalayici ajan, fizyolojik stres olusturucu ajan ve distile su içermektedir. Bulusun tercih edilen bir uygulamasinda, HearNPV bazli biyoinsektisit; hacimce %20- HearNPV-TR; hacimce %5, %7,5, %10 yag; hacimce %4-6 emülgatör, hacimce sürfaktan, hacimce %0,1-0,2 böcek bagirsagini parçalayici ajan, hacimde agirlikça Bulusun tercih edilen bir uygulamasinda, HearNPV bazli biyoinsektisit; hacimce %25 HearNPV-TR; hacimce %5 yag; hacimce %5 emülgatör, hacimce %5 tatlandirici, hacimde agirlikça %1 kivam arttirici, hacimce %0,5 sürfaktan, hacimce %0,2 böcek bagirsagini parçalayici ajan, hacimde agirlikça %1 fizyolojik stres Olusturucu ajan ve hacimce %50 distile su içermektedir. Bulusun bir uygulamasinda biyoinsektisit, HearNPV-TR, yag olarak rafine ayçiçek yagi, emülgatör olarak soya lesitini, tatlandirici olarak Gliserin, kivam arttirici olarak ksantan gum, sürfaktan olarak Silwet L-T?, böcek bagirsagini parçalayici ajan olarak Kalkoflor M2R, fizyolojik stres Olusturucu ajan olarak borik asit ve distile su içermektedir. Biyoinsektisit içerigindeki yag, aktif içerik olan HearNPV izolatini dis etkilerden korumak ve verimini arttirmak amaciyla kullanilmaktadir. Söz konusu biyoinsektisitlerde nispeten maliyeti düsük olan ayçiçek yagi kullanimi tercih edilmektedir. Ancak formülasyon içeriginde tüm yag çesitleri (misir yagi, findik yagi, pamuk yagi vb.) kullanilabilir. Kullanilan yag oraninin, bitki fotosentezini etkilemeyecek düzeyde olmasina dikkat edilmis ve etki düzeyini saptamak amaci ile üç farkli yag oraninda çalisilmistir (%5, %7,5, %10). Emülgatör ise yag-su-virüs süspansiyonunun homojen olarak karismasi, yüzey geriliminin azaltilmasi ve emülsiyonu stabilize eden ara yüzeyde faz dengesinin olusturulmasi amaciyla kullanilmaktadir. Emülgatör olarak, tercihen soya lesitini kullanilmaktadir; ancak soya lesitini yerine alternatif olarak birçok emülgatör kullanilabilir. Bulusun bir diger uygulamasinda; emülgatör olarak gliserin monostearat veya poligliserolün yogunlastirilmis kastor yagi kullanilmaktadir. Preparat içerigindeki gliserin nem tutucu, beslenme arttirici ve tat verici özellikte kullanilmaktadir. Gliserin yerine yine böceklerin ürünü severek tüketmesi için sekerli bir tat veren sükroz kullanilabilir. Kivam arttirici olarak tercihen ksantan gum kullanilmaktadir, ancak ksantan gum yerine pektin, guar gum, arabik gum vb. birçok ürün kullanilabilir. Sürfaktan olarak; yüzey gerilimini azaltici görevde tercihen Silwet L-77 kullanilmakta olup, bu ürün polialkilen oksit modifiye heptametil trisiloksan ve alliloksipolipropilen glikol metileterin bir kopolimeridir. Böcek bagirsagini parçalayici ajan ise virüsün etkinligini arttirarak böceklerde görülecek ölüm zamaninin kisalmasina yardimci olmaktadir. Böylece zararli böcek larvalari tarim ürünlerinde fazla hasar olusturamadan ölmüs olacaklardir. Fomülasyonda böcek bagirsagini parçalayici ajan olarak Kalkoflor M2R/ Kalkoflor boyasi, blankofor (blankophor) veya lökofor (leucophor) kulanilmaktadir. Fizyolojik stres Olusturucu ajan olarak tercihen borik asit kullanilmaktadir. Bakülovirüs formülasyonlarinin raf ömrünün uzun olabilmesi için pH derecesinin 4-7 arasinda olmasi gereklidir. Söz konusu biyoinsektisit formülasyonunun tercih edilen uygulamasinda optimum pH 4,8'dir. Tablo 1'de viral süspansiyonu hem daha dayanikli hale getirmek hem de ticari olarak satilan diger ürünler kadar etkili kilmak için kullanilan biyoinsektisit içerikleri görevleri ile birlikte sunulmaktadir. Burada özellikle bazi dogal katki maddelerinin kullanimi bulus formülasyonun çevre dostu olmasini saglamaktadir. Tablo 1. Bulusun bir uygulamasinda hazirlanan biyoinsektisit içerigi. Içindekiler Görevi Miktari Aktif i erik HearNPV-TR saf PlB'si . ç" . %20-25 v/v (viral suspansiyon) Rafine ayçiçek yagi UV koruyucu Emülsifiye madde, yag ve su-virüs E323 Soya lesitini süspansiyonunun %4-6 v/v homojen karismasini Buharlasmayi önlemek E422 Gliserin ve beslenme arttirici, tat %4-6 v/v E415 Ksantan gum Kivam arttirici %Üi5'1 W/V Silwet L-77 Yüzey gerilimini azaltici %051'05 V/V Böcek ba"irsa"ini parçalayici E284 Borik asit Fizyolojik stres Olusturucu %0i5'1 W/V Son hacim tamamlanana Distile su ~ %50 v/v kadar eklenir Biyoinsektisit hazirlanirken, steril bir cam sise içerisine tüm malzemeler ölçülerek eklenir. Tüm malzemeler eklendikten sonra 1 dakika homojenizatörde en düsük hizda (rpm ayari yok) karistirilir. Son olarak pH metre'de pH ölçülür. Bulus ürünün laboratuvar sartlarinda Heliothis türleri (H. armigera, H. peltigera, H. nubigera ve H. viriplaca) üzerindeki insektisidal aktiviteleri belirlenmistir. Sekil 2'deki HearNPV-TR izolatinin yesil kurt larvalari üzerindeki doz denemelerinde görüldügü hazirlanarak 2. dönem Heliothis larvalari üzerinde test edilmistir. Tüm türlerde, virüs konsantrasyonu arttikça ölüm oranlarinin da paralel sekilde arttigi gözlenmistir. On dört gün sonra, canli kalan larvalarin pupaya girdigi ve ergin hale geldigi gözlendikten sonra deney sonlandirilmistir. En yüksek virülans 1 x nubigera için) ve %87 (H. viriplaca için) olarak belirlenmistir. %50 öldürücü konsantrasyon (LCso) degerleri ise; sirasiyla 1.5 x , 4.1 x olarak hesaplanmis olup, Tablo 2'de gösterilmektedir. Tablo ?de yer alan FL: Güven araligi, SE: Standart hata, df: Serbestlik derecesi, xzz Ki-kare olup, burada tek yönlü varyans analizi ve Tukey çoklu karsilastirma metodu kullanilmistir. Tablo 2. HearNPV-TR izolatinin yesil kurt larvalari üzerindeki doz denemeleri Tür Mortalite LC50 (FL, %95) Egim ± SE )(2 df Bulusa konu biyoinsektisit sivi bir formülasyon olup, dogada larvalarin zarar verdigi sebzelere tercihen sprey seklinde direkt olarak uygulanabilmektedir. Ürünün konsantrasyonu 1x1010 PIB/mlidir. Sulandirarak 1x107 PIB/ml konsantrasyonunda bitkilerin yüzeyine (yaprak vb.) sprey püskürtme seklinde uygulanmalidir. Biyoinsektisitin hazirlanmasinda teknigin bilinen durumunda mevcut olan yöntemler kullanilmistir ancak formülasyondaki içeriklerin birlesimi ve oranlari bulusa özgüdür. Bulusta; öncelikle bulus içerigindeki bakülovirüs izolati (HearNPV-TR) elde edilmistir, sonrasinda bu izolatin tanirnIanmasi/karakterizasyonu gerçeklestirilmis ve sonrasinda izolatin diger içerikler ile birlikte sivi formülasyonu hazirlanmistir. 2014 yili temmuz ayinda Adana (Türkiye) ilinde aspir bitkisi üzerinden ölü olarak toplanan Heliothis (yesil kurt) larva örnekleri üzerine 200'er pl dH20 eklendikten sonra Iarvalar el homojenizatörü ile ezilmistir. Elde edilen homojenatlarin 100 ul'si virüs taramasi için, geriye kalan miktar ise -20 °C'de muhafaza edilmistir. Entomopatojen virüsler ile enfekte olan Iarvalarda, virüs türüne bagli olarak bazi karakteristik belirtiler hem makroskobik hem de mikroskobik olarak gözlenmistir. Larva vücudunun renginin degisimi ve sivilasarak parçalanmasi, enfeksiyon kaynaginin tahmin edilmesi için ilk belirleyici özelliktir. Bu çalismada elde edilen ölü larvalarin bazilarinda kahverengi- sari renk degisimi bazilarinda da vücudun erimesi gözlenmistir. Makroskobik gözlemlerden sonra tüm örnekler isik mikroskobunda incelenip larvalarin ezilmesi ile elde edilen homojenattan lam-Iamel arasi preparasyon yapilarak, Sekil 3'te görüldügü üzere 100X büyütmede aydinlik alan görüntüsünde bakülovirüslere ait gömülü yapilarin oldugu tespit edilmistir. Diger tüm virüslerde oldugu gibi bakülovirüsler de isik mikroskobunda görülememektedir. Ancak bakülovirüslerin, sahip olduklari PIB yapisi isik mikroskobunda görülebilmektedir. Bu nedenle yapilan incelemeler sonucunda Sekil 3"teki gibi yuvarlak ve parlayan yapilarin gözlenmesi bakülovirüs varligini göstermektedir. Saflastirilan virüs izolatlarindan 3"er ul alinarak lam-lamel arasi preperatlar hazirlanmis ve preparatlarin hepsinde bakülovirüslere ait gömülü yapilar (PIB, polihedral inklüzyon yapi) mikroskopta 40X büyütmede gözlenmistir (Sekil 4). Daha sonra lamel kaldirilarak, lam üzerindeki süspansiyonlar kurutulmus ve üzerlerine immersiyon yagi damlatilarak Sekil 5'te görüldügü üzere 100X'Iik büyütmede PIB yapilari gözlenmistir. Saflastirilan virüslere ait PIB yapilari isik mikroskobunda hem 40X hem de 100X büyültmede görülebilmektedir. Ancak 40X büyültmede küçük olarak gözüken PIB yapilarinin daha net anlasilabilmesi için mikroskopta bulunan karanlik alan fazina geçilmis ve yapilar daha net gözlenmistir. Çok yogun olarak görülen PlB yapilari bir miktar su ile seyreltilmis ve sonrasinda immersiyon yagi kullanilarak 100X büyütmede aydinlik alan fazinda da PlB yapilari net bir sekilde gözlenmistir. Ayrica, virüs izolatlari ayri ayri stablar üzerine 20'ser pl damlatilarak, bir gece 37°C'Iik etüvde kurutulmus ve daha sonra püskürtmeli bir kaplayicida altin tozu ile kaplanarak, taramali elektron mikroskobunda incelenmistir. Sekil 6'da taramali elektron mikroskobunda PIB yapilari yakindan görülmüstür ve PIB"lerin düzensiz mofolojide oldugu saptanmistir. Taramali elektron mikroskobu sayesinde hem virüs varligi bir kez daha teyit edilmis hem de PlB'lerin boyutlari ölçülmüstür (0.73166 Virüslerin Transmisyon Elektron Mikroskobisi ile görüntülenmesi için virüs izolatlarinin her birinden 200'er pl alinarak, 13.000 x rpm'de 5 dk. çöktürülmüstür. Pellette bulunan PIB yapilari üzerine fosfat tuzu tamponu (PBS) ilave edilerek, 2 kez santrifüj edimis; santrifüj sonrasi pellet üzerine 0.1 M PBS içerisinde %25 glutaraldehit (2ml) ilave edilerek, 1 gece boyunca + 4 °C`de fiksasyona birakilmistir. Birincil fiksasyon sonrasinda hücreler 2 kez PBS ile yikama yapilarak santrifüj edilmis ve yikamalar sonrasinda %1ilik 2 ml. ozmiyum tetroksit eklenmistir. Ikincil fiksasyon, +4°Cide 1 saat boyunca gerçeklestirilmistir. Fiksasyonun ardindan 2 kez PBS ile yikanmis, bir pastör pipet yardimiyla %5' lik eriyik agar 50 mlilik tüp içerisindeki pellete eklenmis ve lam üzerine damlatilmistir. Donan agar parçalari bistüri ucu yardimiyla ufak parçalar halinde kesilip üzerine uranil asetat eklenerek, 15 dakika +4 °Cide inkübe edilmistir. Uranil asetat sonrasi agara gömülü hücreler, +4 °C'de 10'ar dk. sirasiyla %30, %50, %70, %90 (iki kez)'lik alkol serilerinden geçirilip daha sonra saf Propilen oksitte +4 °C`de 10 dk. bekletilmistir. Üzerine 1:1 oraninda propilen oksit/epon karisimi ilave edilerek +4 °C'de 10 dk. bekletilip, sonrasinda saf epon karisimi eklenerek, 48 saat +4 °C*de tutulmus ve araldite gömülmüstür. Ultramikrotomla 60 nm kalinliginda kesitler alinip kesitler bakir gridler üzerine yerlestirilmistir ve kesitler, uranil asetat+kursun sitrat boyasi ile boyanarak, transmisyon elektron mikroskobunda (TEM) incelenmistir. Sekil 7'de gösterildigi üzere TEM ile PIB'lerden enine ve boyuna alinan kesitler sayesinde nükleokapsit yapilari gözlenmistir. HearNPV-TR genomunun tekli nükleokapsite sahip oldugu tespit edilmis ve yapilan ölçümler ile nükleokapsit boyutlarinin 184 x 41 nm (en/boy) oldugu belirlenmistir. Yapilarin tespitinden sonra moleküler olarak virüs varliginin teyit edilmesi için polimeraz zincir reaksiyonu (PCR) gerçeklestirilmistir. Virüs homojenatlarindan 100ier pl yeni birtüpe alinip üzerine esit hacimde 3 X DAS (0.3 M Na2COe,, 0.5 M NaCI, 0.03 M EDTA; pH 10.5) solüsyonu eklenmistir. Karisim 30 dk. oda sicakligindaki rotatorda 40 rpm'de inkübe edilip gömülü yapidaki virüsler için yapilan bu ön uygulamadan sonra doku PCR kitinin prosedürüne göre; homojenatin 10 pl'si üzerine 20 pl dilüsyon tamponu ve 0.5 ul DNA release solüsyonu eklenerek vortekslenmistir. Önce oda sicakliginda 5 dk., daha sonra 98 °C'de 2 dk. inkübe edilmistir. 6000 x gide santrifüj yapilarak, süpernatant yeni bir mikrosantrifüj tüpe aktarilmis ve elde edilen bu süpernatant, virüs taramasi çalismalarinda DNA yerine kullanilmak üzere -20 OC'de muhafaza edilmistir. PCR reaksiyonu için GoTaq enzimi kullanilmistir. Çesitli DNA virüslerine ait gen bölgelerini çogaltan dejenerat primerler ile virüs taramasi yapilmistir. PCR reaksiyonu, 3 pl kalip DNA, 10 pl (10X) PCR tamponu, 1 pl (10 mM) dNTP karisimi, lier pl ileri ve geri primerler (10 pM), 6 ul MgClz (25 mM), 0.25 ul GoTaq DNA polimeraz (2.5 u) ve 50 pliye tamamlanacak sekilde dH20 ilave edilerek hazirlanmis; pozitif kontrol olarak laboratuvarda bulunan farkli virüs DNA"Iari, negatif kontrol olarak ise dH20 kullanilmistir. Reaksiyon döngüsü, denatürasyon için 94 °C`de 2 dk. bekletildikten sonra, primer döngü seklinde yapilmis ve son uzama asamasi için de 72 °C'de 7 dk. bekletilmistir. Reaksiyon sonrasinda örnekler 0.5 pg/ml etidyum bromür içeren %1'Iik agaroz jelde dk. yürütülüp jel görüntüleme sisteminde görüntülenmistir. Bant elde edilen örnekler agaroz jelden kesilerek, DNA saflastirma kiti ile temizlenmis, mikrosantrifüj tüplerine birakilan jel parçalarinin üzerlerine, her 10 mg jel parçasi için 20 pl baglanma tamponu (NT) ilave edilmistir. Karisim 55 °Cide yaklasik 30 dk. jel parçalari tamamen eriyinceye kadar bekletilmistir. Her 3 dk'da bir alt üst edilerek karistirilmis ve bu süre sonunda tamamen eriyen solüsyon, toplama tüplerinde bulunan kolonlara aktarilmistir. Kolonlar, 11.000 x g'de 1 dk. santrifüj edildip toplama tüpünde biriken sivi atilmistir. Kolonlara 700 ul yikama tamponu (NT3) ilave edilmistir. Toplama tüpünde biriken sivi atilip yikama islemi tekrarlanmistir. Kolon temiz bir mikrosatrifüj tüpüne aktarilarak, 25 ul elüsyon tamponu eklenmis ve 2 dk. oda sicakliginda bekletildikten sonra 2 dk. 11.000 x g'de santrifüj edilmistir. Kolonlar atilarak, mikrosantrifüj tüpünde toplanan DNA'nin safligi ve konsantrasyonu nanodrop ile ölçülmüstür. Ölçüm sonucunda DNA miktari 50 ng/ul ve üzerinde olan örneklerden 20'ser pl hazirlanarak dizi analizi gerçeklestirilmistir. Bulusta kullanilan bakülovirüs izolati (HearNPV-TR) ile daha önce izole edilen HearNPV izolatlari arasindaki moleküler farkliligi ortaya koyabilmek ve virülans farkliliginin moleküler kaynagini aydinlatabilmek amaciyla, elde edilen diziler GenBank (NCBl) verileri ile karsilastirilmis ve sekans listesinde hr1 gen bölgesi SEKANS ID NO.2, hr3 gen bölgesi SEKANS ID NO.3 ile gösterilen HearNPV-TRhin genom analizi yapilmistir. Analiz sonucunda HearNPV-TR genomunun sekans listesinde SEKANS ID N03 ile temsil edilen hr3, SEKANS ID NO.4 ile temsil edilen hr5 ve SEKANS lD N05 ile temsil edilen bro-a gen dizilimleri bakimindan, Iiteratürdeki HearNPV genomlarindan farkli oldugu görülmüstür. SEKANS ID NO. 1 ile temsil edilen HearNPV-TR'nin bro-a proteinine özgü amino asit diziliminin de Iiteratürdeki HearNPV'ler tarafindan üretilen bro-a proteinlerinden farkli oldugu görülmüstür. Bu farkliliklarin, virüs üretimi ve virülans etkisi bakimindan izolatlar arasinda farkliliga yol açtigi saptanmistir. Tablo 3.'te gösterildigi üzere HearNPV-TR genomunda bulunan bro-a geninin literatürde komple genom dizi analizi yapilan tüm H. armigera NPV izolatlari ile kiyaslanmasi sonucunda aminoasit benzerlik homolojisinin %83-86 arasinda oldugu görülmüstür. Benzerlik analizine göre, bulusta kullanilan HearNPV-TR izolatinin genomunda bulunan bro-a geninin, bakülovirüslerden ziyade askovirüslere (Heliothis virescens askovirüs 3i genomunda bulunan bro 23 geni) yüksek oranda benzerlik gösterdigi belirlenmistir. Bu durum, bakülovirüsler ve askovirüsler arasinda yatay gen transferinin oldugunu göstermektedir. Tablo 3. HearNPV-TR ve diger HearSNPV genomlarinin bro genleri ve hrs bölgelerinin çesitliligi Izolat adi bro aa uzunlugu benzerlik hrs nükleotit benzerlik genleri bölgeleri uzunlugu HearNPV-TR brO-b 501 - hr3 714 _ hr5 2424 - hr5 899 77 % hr5 2806 89 % 99 % M 2598 98 % hr5 2806 89 % hr5 1385 75 % hr5 1391 97 Â) 1391 77 % hr5 1391 77 % 1391 77 % 1391 77 % hr5 97 A› 1391 77 % HaSNPV- *bro-a 375 _ hr3 480 89 % 1391 77 % hr5 1391 77 % 1385 75 % f 2083 77 % hr5 2076 79 % M 1749 97 % HaSNPV-LB3 *bro-b 352 _ hr3 295 8., % NS 2106 7., % hr1 1822 97 % HaSNPV-LB6 *bro-b 352 _ hr3 295 8., % 2081 77 % M 2001 97 % HaSNPV-LI *bro-b 348 _ hr3 296 88 % hr5 2083 75 % M 1926 97 % hr5 1385 76 % hr1 1926 97 % r 1385 76 % M 494 9i % *bro-a 138 - hrz 2378 99 % Sekil 1'de yer alan Bro-a genlerinden sentezlenen aminoasit dizisine göre karsilastirilmasi yapilan filogenetik analiz sonucunda, HearNPV-TR genomunun Tablo 3"te HearNPV-TR genomunda olmayan genler * ile belirtilmistir. HearNPV-TR genomu ile diger genomlar arasinda yüksek farklilik gösteren oranlar koyu renk yapilarak belirtilmistir. Tabloda yer alan izolatlar birbirlerinden genotipik olarak farklilasmaktadir. HearNPV-TR genomundaki SEKANS lD N03 ile temsil edilen hr3 ve SEKANS lD NO.4 ile temsil edilen hr5 bölgelerinin, diger H. armigera NPV izolatlari ile düsük oranda benzerlik gösterdigi belirlenmistir. Tablo 3'e göre hr3 ve hr5 bölgeleri için aminoasit benzerlik homolojisinin %75-89 arasinda oldugu görülmektedir. Genomda görülen bu durum, izolatlara karakteristik özellik saglamakta ve transkripsiyon arttirma seviyelerinin, virüs üretiminin ve virülansin farkli olmasina sebep olmaktadir. HearNPV-TR genomu Blast analizi sonucuna göre hr3 ve hr5 bölgelerinin dizilimlerinde belirli kisimlarda farkliliklar bulunmaktadir. SEKANS lD N03 ile temsil edilen HearNPV-TR Hr3 bölgesi için 5' ucundan 3'ucuna dogru olan baz farkliliklari su sekildedir: 33. pozisyondaki T dizisi, 56. pozisyondaki C dizisi, 64. pozisyondaki T dizisi, 101. pozisyondaki C dizisi, 118. pozisyondaki C dizisi, 152. pozisyondaki C dizisi, 201. pozisyondaki A dizisi, 203. pozisyondaki C dizisi, 295. pozisyondaki A pozisyonlarindaki AA dizileri, 326. pozisyondaki T dizisi, 328. pozisyondaki T dizisi, pozisyonlardaki CC dizileri. SEKANS lD NO.4 ile temsil edilen HearNPV-TR Hr5 bölgesi için 5' ucundan 3'ucuna dogru olan baz farkliliklari su sekildedir: 27. pozisyondaki C dizisi, 30. pozisyondaki G dizisi, 36. pozisyondaki A dizisi, 65. pozisyondaki A dizisi, 67. pozisyondaki T dizisi, 77. pozisyondaki T dizisi, 82. pozisyondaki A dizisi, 87. pozisyondaki A dizisi, 112. pozisyondaki G dizisi, 121. pozisyondaki T dizisi, 154. pozisyondaki T dizisi, TAA dizileri, 241. pozisyondaki T dizisi, 243. pozisyondaki G dizisi, 246. pozisyondaki C dizisi, 278. pozisyondaki T dizisi, 292. pozisyondaki T dizisi, 325. pozisyondaki A dizisi, 347. pozisyondaki A dizisi, 371. pozisyondaki T dizisi, 390. pozisyonundaki T dizisi, 400. pozisyondaki C dizisi, 404. pozisyondaki A dizisi, 445. pozisyondaki A pozisyondaki C dizisi, 493. pozisyondaki C dizisi. Bakülovirüslerde çiplak virüs üretimi geç fazda, gömülü virüs üretimi ise çok geç fazda meydana gelmektedir. Bu nedenle, genomda bulunan ve yukarida belirtilen homolog tekrar bölgelerindeki (hrs) bu farkliliklar izolatin geç fazdaki gen transkripsiyonunu ve DNA replikasyonunu arttirmayi saglamaktadir. Böylece, bu bölgelere sahip virüsler daha etkili ve daha hizli bir virülansa sahip olmasini saglamaktadir. Çiplak ve gömülü virüs üretimi direkt olarak hr bölgeleri ile ilgili olmasa da bu bölgeler çiplak ve gömülü virüslerin üretildikleri geç ve çok geç fazda DNA replikasyonunu arttirdigindan dolayi, hücrede daha fazla virüs üretimine sebep olmaktadir. Tablo 4'te Dünyada bu zamana kadar genom analizi yapilan tüm Heliothis türlerinin oldugu tablo görülmektedir. TR TR TR DESCRIPTION HELICOVERPA ARMIGERA NUCLEOPOLYHEDROVIRUS BASED BIOINSECTICIDE THAT CAN BE USED AGAINST AGRICULTURAL PEST HELIOTHIS SPECIES Armigera) is a nucleopolyhedrovirus (NPV)-based bioinsecticide (biopreparation ) It is related to. State of the Art Greenworm (Heliothis/Helicoverpa) species, which are polyphagous pests, have spread almost all over the world; It feeds on many agricultural products such as tomatoes, cotton, lettuce, corn, pepper, watermelon, sunflower and tobacco and damages these products. Agricultural pests, especially those that live above ground, cause significant crop losses and economic damage. Chemical pesticides are used extensively by producers to keep the economic damage threshold of these insects under control. However, in recent years, it has been reported that green worms have developed resistance to chemical pesticides in many countries. The amount of pesticide applied to the larvae is increasing and the residue of chemical pesticides on agricultural products is increasing. The chemicals used cause damage to non-target organisms, disruption of ecological balance, development of resistance in pests and threats to human health. This situation has created a need for the development of environmentally friendly alternative control systems against bollworms both in our country and in the world. In many developed countries, the use of bioinsecticides, which are microbial control agents, is preferred instead of chemical pesticides for the control of green worms. As a microbial control agent, there are currently two commercial preparations belonging to two different entomopathogenic bioinsecticide groups widely used against bollworms. These; They are products of Bacillus thrungiensis and nucleopolyhedroviruses (NPV) from the baculovirus group. However, it is known that bollworms have also developed resistance to Bacillus thrungiensis products. Baculoviruses, on the other hand, are specific to the target pest and infect only certain groups of insects. Baculoviruses are the most common and most studied virus family among insect pathogenic viruses. Baculoviruses are important biocontrol agents used against insect pests in agriculture due to their narrow host diversity, persistence in the environment, environmental friendliness and high virulence. Baculoviruses are divided into two groups as nucleopolyhedroviruses (NPV) and granulosis viruses (GV) according to their polyhedrin and granule morphologies. Molecular classification of baculoviruses is based on the use of the polh, lef8 and Ief9 conserved gene regions. Nucleopolyhedroviruses (NPV), part of the baculovirus family, are viruses that affect insects, primarily moths and butterflies, and are used as pesticides. The first commercial baculovirus product against greenworms was produced by the Elcar company in 1975. Later, some companies from various countries commercially produced NPV-based commercial products such as Diplomata, Gemstar, Biotrol, Heliokill, Helinash and Helicovex. Many baculoviruses have been isolated from Heliothis species so far. Virulence and host spectra of isolates obtained from the same host vary. It is stated that the differences between Helicoverpa NPV genomes are generally caused by baculovirus repeat ORF (bro) genes and homologous regions (hrs) [1-6]. The prior art includes solid or liquid-based formulations containing baculovirus isolates isolated from H. armigera and H. zea [7-10]. It has been reported in the literature that oil-based formulations produced from baculoviruses show high tolerance to environmental factors (UV, heat, wind and rain) and have a longer shelf life. Cottonseed oil and corn oil have been used in oil-based baculovirus formulations in the literature [11-12]. In an article by Mehrvar et al. in the prior art, the effect of vegetable oils on the yield of Helicoverpa armigera (HearNPV) nucleopolyhedrovirus was examined. Here, the larvae were fed with a virus-inoculated standard diet or a plant-supplemented virus-inoculated standard diet. As a result of these feedings, it was observed that feeding supplemented with sunflower oil increased larval mortality [13]. However, sunflower oil and other oils used in this study are added directly to the larvae's food. No viral formulation has been prepared here, and the virus mixed with sunflower oil is later spread on the food in its raw form. This application with artificial food is a study that can only be applied under laboratory conditions and cannot be applied in agricultural areas. In addition, it is known that the use of foreign virus isolates may have a negative impact on the biological activity of local strains and that local pest species may show less sensitivity to geographically different isolates. The insecticides developed against Heliothis type agricultural pests in the current technique are insufficient in terms of control efficiency and effect on the pests, the pests become resistant to chemical pesticides over time in applications where current methods are used, the accumulation of these chemical pesticides on agricultural products and the increase of these residues negatively affects non-harmful organisms and human health. For reasons such as, there is a need to develop bioinsecticide formulations for use against Heliothis type agricultural pests. Brief Description and Purposes of the Invention In the present invention, an effective and environmentally friendly microbial product is used in the biological control of Heliothis species, one of the agricultural pests, by using the baculovirus isolate Helicoverpa armigera nucleopolyhedrovirus (HearNPV-TR), which has been identified morphologically and molecularly and has high infectivity for target insects. biopesticide is explained. The first aim of the invention is to effectively combat Heliothis species in agriculture without the use of chemicals. Since the HearNPV-TR isolate used in the invention is specific only to the target harmful Heliothis species, biocontrol of these species is ensured, while non-harmful organisms are prevented from being negatively affected during the control process. At the same time, thanks to the viral content of the bioinsecticide in question, resistance to chemical drugs is prevented. Another aim of the invention is to ensure that the insecticide to be used in agriculture is effective for a long time and that its effect continues without requiring constant application. In the invention, oil-based formulations are used to protect the HearNPV-TR isolate against environmental conditions, to prevent it from being inactivated in nature, and to ensure that the applied bioinsecticide has a long-term effect. Another aim of the invention is to provide an environmentally friendly biocontrol against Heliothis species. For this purpose, natural ingredients are used in these bioinsecticides and the damage caused by chemical residues in agricultural products to humans and animals is prevented. Thanks to the local isolates used in the bioinsecticides that are the subject of the invention, the biological activity of the local strains in the regions where these bioinsecticides are used is ensured to continue without deterioration. Contrary to the negative effects and high costs of chemical drugs; The invention enables the development of a bioinsecticide of viral origin that is environmentally friendly, low-cost and resistant to natural conditions (high temperature and UV). Explanation of Figures Figure 1: Comparison of Bro-a genes according to amino acid sequence Figure 2: Dosage trials of HearNPV-TR isolate on greenworm larvae Figure 3: 100X bright field light microscope image of embedded structures of baculoviruses (Polyhedral inclusion structure (PlB)) Figure 4 : 40X dark field image of embedded structures (PIB) of Baculoviruses after purification Figure 5: 100X bright field image of embedded structures (PIB) of Baculoviruses after purification Figure 6: Image of PIB structures of Baculoviruses in scanning electron microscope Figure 7: Transmission electron microscope image of Baculoviruses image of nucleocapsid structures Detailed Description of the Invention The invention relates to a bioinsecticide based on Helicoverpa armigera nucleopolyhedrovirus (NPV) developed against Heliothis species, an agricultural pest, and prepared for the purpose of achieving an environmentally friendly biocontrol. The bioinsecticide of the invention contains HearNPV (or HearNPV PlB), oil, emulsifier, sweetener, thickener, surfactant, insect gut-degrading agent, physiological stress-inducing agent and distilled water. Thanks to the content of the formulation subject to the invention, the formulation can be prepared by using a different Heliothis NPV isolate instead of the virus isolate, which is the active ingredient in the formulation. However, preferably, the HearNPV-TR isolate, which is seen to have the highest virulence effect (the isolate containing the hr3 represented by SEQ ID NO.3, hr5 represented by SEQ ID NO.4 and the bro-a gene sequences represented by SEQ ID NO.4) is used. The bioinsecticide of the invention preferably contains HearNPV-TR (or HearNPV-TR pure PlB), oil, emulsifier, sweetener, thickener, surfactant, insect gut-degrading agent, physiological stress-inducing agent and distilled water. In a preferred embodiment of the invention, HearNPV based bioinsecticide; 20% by volume - HearNPV-TR; 5%, 7.5%, 10% fat by volume; 4-6% emulsifier by volume, surfactant by volume, 0.1-0.2% by volume insect gut-breaking agent, by weight in volume. In a preferred embodiment of the invention, HearNPV based bioinsecticide; 25% HearNPV-TR by volume; 5% fat by volume; It contains 5% emulsifier by volume, 5% sweetener by volume, 1% thickener by weight by volume, 0.5% surfactant by volume, 0.2% insect intestine-breaking agent by volume, 1% physiological stress-inducing agent by weight by volume and 50% distilled water by volume. In an embodiment of the invention, the bioinsecticide, HearNPV-TR, refined sunflower oil as oil, soy lecithin as emulsifier, Glycerin as sweetener, xanthan gum as thickener, Silwet L-T as surfactant, Kalkoflor M2R as insect intestine-breaking agent, boric as physiological stress-inducing agent. Contains acid and distilled water. The oil contained in the bioinsecticide is used to protect the active ingredient HearNPV isolate from external effects and to increase its productivity. In these bioinsecticides, the use of sunflower oil, which has a relatively low cost, is preferred. However, all types of oil (corn oil, hazelnut oil, cotton oil, etc.) can be used in the formulation. Care was taken to ensure that the oil rate used was at a level that would not affect plant photosynthesis, and three different oil rates were studied to determine the effect level (5%, 7.5%, 10%). Emulsifier is used to mix the oil-water-virus suspension homogeneously, reduce surface tension and create phase balance at the interface that stabilizes the emulsion. As emulsifier, soy lecithin is preferably used; However, many emulsifiers can be used as alternatives instead of soy lecithin. In another application of the invention; Glycerin monostearate or castor oil condensed with polyglycerol is used as an emulsifier. The glycerin contained in the preparation is used as a humectant, nutrition enhancer and flavor enhancer. Instead of glycerin, sucrose can be used, which gives a sugary taste so that insects enjoy consuming the product. Xanthan gum is preferably used as a thickener, but instead of xanthan gum, pectin, guar gum, arabic gum, etc. are used. Many products can be used. As surfactant; Silwet L-77 is preferably used to reduce surface tension. This product is a copolymer of polyalkylene oxide modified heptamethyl trisiloxane and allyloxypolypropylene glycol methyl ether. The insect intestine-degrading agent increases the effectiveness of the virus and helps shorten the time to death in insects. Thus, harmful insect larvae will die before they can cause much damage to agricultural products. Calcoflor M2R/ Calcoflor dye, blankophore or leucophore is used as the insect intestine-degrading agent in the formulation. Boric acid is preferably used as a physiological stress-inducing agent. In order for baculovirus formulations to have a long shelf life, the pH level must be between 4-7. In the preferred application of the bioinsecticide formulation in question, the optimum pH is 4.8. Table 1 presents the bioinsecticide ingredients used to make the viral suspension both more stable and as effective as other commercially available products, along with their functions. Here, especially the use of some natural additives ensures that the invention formulation is environmentally friendly. Table 1. Bioinsecticide content prepared in an embodiment of the invention. Contents Function Amount Active ingredient pure PlB of HearNPV-TR . ç" . 20-25% v/v (viral suspension) Refined sunflower oil UV protector Emulsifying agent, oil and water-virus E323 Homogeneous mixing of soy lecithin suspension 4-6% v/v Prevent evaporation E422 Glycerin and nutrition enhancer, taste % 4-6 v/v E415 /V Distilled water is added to ~50% v/v until the final volume is completed. While preparing the bioinsecticide, all ingredients are measured and added into a sterile glass bottle. After all the ingredients are added, they are mixed in the homogenizer at the lowest speed (no rpm setting) for 1 minute. Finally, the pH meter is measured. pH is measured. The insecticidal activities of the invention product on Heliothis species (H. armigera, H. peltigera, H. nubigera and H. viriplaca) were determined under laboratory conditions. It was prepared that the HearNPV-TR isolate in Figure 2 was seen in the dose trials on green worm larvae. It was tested on Heliothis larvae. It has been observed that in all species, as the virus concentration increases, mortality rates increase in parallel. Fourteen days later, the experiment was terminated after it was observed that the surviving larvae entered the pupa and became adults. The highest virulence was determined as 1 x nubigera) and 87% (for H. viriplaca). 50% lethal concentration (LCso) values are; were calculated as 1.5 x and 4.1 x respectively and are shown in Table 2. Table ? FL: Confidence interval, SE: Standard error, df: Degree of freedom, xzz Chi-square, where one-way analysis of variance and Tukey multiple comparison method were used. Table 2. Dose trials of HearNPV-TR isolate on greenworm larvae Species Mortality LC50 (FL, 95%) Slope ± SE )(2 df The bioinsecticide subject to the invention is a liquid formulation and can be applied directly, preferably as a spray, to vegetables damaged by larvae in nature. Its concentration is 1x1010 PIB/ml. It should be diluted and applied to the surface of plants (leaves, etc.) by spraying at a concentration of 1x107 PIB/ml.In the preparation of the bioinsecticide, methods available in the state of the art have been used, but the combination and proportions of the ingredients in the formulation are specific to the invention. In invention; Firstly, the baculovirus isolate (HearNPV-TR) in the content of the invention was obtained, then the identification/characterization of this isolate was carried out and then the liquid formulation of the isolate was prepared together with other ingredients. After adding 200 pl dH20 to the dead Heliothis (greenworm) larvae samples collected dead from the safflower plant in Adana (Turkey) in July 2014, the larvae were crushed with a hand homogenizer. 100 µl of the obtained homogenates were used for virus screening, and the remaining amount was stored at -20 °C. In larvae infected with entomopathogenic viruses, some characteristic symptoms were observed both macroscopically and microscopically, depending on the virus type. The change in color of the larval body and its disintegration by liquefaction is the first determining feature to predict the source of infection. Brown-yellow color change was observed in some of the dead larvae obtained in this study, and body melting was observed in some. After macroscopic observations, all samples were examined under a light microscope and a slide-to-glass preparation was made from the homogenate obtained by crushing the larvae. As seen in Figure 3, it was determined that there were embedded structures of baculoviruses in the bright field image at 100X magnification. As with all other viruses, baculoviruses cannot be seen under a light microscope. However, the PIB structure of baculoviruses can be seen under a light microscope. Therefore, as a result of the examinations, the observation of round and shining structures as shown in Figure 3 indicates the presence of baculovirus. Slide-cover slip preparations were prepared by taking 3 μl each of the purified virus isolates, and in all of the preparations, embedded structures (PIB, polyhedral inclusion structure) belonging to the baculoviruses were observed under the microscope at 40X magnification. was observed (Figure 4). Then, the coverslip was removed, the suspensions on the slide were dried, and immersion oil was dropped on them, and PIB structures were observed at 100X magnification, as shown in Figure 5. PIB structures of purified viruses can be seen under a light microscope at both 40X and 100X magnification. However, in order to understand the PIB structures, which appear small at 40X magnification, more clearly, the dark field phase of the microscope was switched and the structures were observed more clearly. The very dense PlB structures were diluted with some water and then, using immersion oil, the PlB structures were clearly observed in the bright field phase at 100X magnification. In addition, virus isolates were dropped 20 µl each onto separate plates, dried in an oven at 37°C overnight, and then coated with gold powder in a sputter coater and examined under a scanning electron microscope. In Figure 6, PIB structures were seen closely in the scanning electron microscope and it was determined that the PIBs had an irregular morphology. Thanks to the scanning electron microscope, the presence of the virus was confirmed once again and the sizes of the PlBs were measured (0.73166). 200 pl of each were taken and precipitated at 13,000 x rpm for 5 minutes. Phosphate salt buffer (PBS) was added to the PIB structures in the pellet and centrifuged twice; after centrifugation, 25% glutaraldehyde (2ml) in 0.1 M PBS was added to the pellet. ) was added and allowed to fix at +4 °C for 1 night. After primary fixation, the cells were washed twice with PBS and centrifuged, and after washing, 2 ml of 1% osmium tetroxide was added. Secondary fixation was at +4 °C for 1 hour. After fixation, it was washed twice with PBS, and 5% molten agar was added to the pellet in a 50 ml tube with the help of a pasteur pipette and dropped onto the slide. The frozen agar pieces were cut into small pieces with the help of a scalpel tip, uranyl acetate was added and incubated at +4 °C for 15 minutes. Cells embedded in agar after uranyl acetate were incubated at +4 °C for 10 min each. It is passed through an alcohol series of 30%, 50%, 70%, 90% (twice), respectively, and then in pure Propylene oxide at +4 °C for 10 minutes. has been kept waiting. A 1:1 ratio propylene oxide/epon mixture was added and heated at +4 °C for 10 min. Then, pure epon mixture was added, kept at +4 °C for 48 hours and embedded in araldite. 60 nm thick sections were taken with an ultramicrotome, the sections were placed on copper grids, and the sections were stained with uranyl acetate + lead citrate dye and examined under a transmission electron microscope (TEM). As shown in Figure 7, nucleocapsid structures were observed through transverse and longitudinal sections taken from PIBs using TEM. It was determined that the HearNPV-TR genome had a single nucleocapsid, and the measurements showed that the nucleocapsid dimensions were 184 x 41 nm (width/length). After detection of the structures, polymerase chain reaction (PCR) was performed to molecularly confirm the presence of the virus. 100 ml of virus homogenates were taken into a new tube and an equal volume of 3 X DAS (0.3 M Na2COe, 0.5 M NaCl, 0.03 M EDTA; pH 10.5) solution was added. Mixing 30 min. According to the procedure of the tissue PCR kit, after this pre-application for viruses in embedded structure and incubated at 40 rpm in a rotator at room temperature; 20 μl of dilution buffer and 0.5 μl of DNA release solution were added to 10 μl of the homogenate and vortexed. First at room temperature for 5 min, then at 98 °C for 2 min. has been incubated. By centrifuging at 6000 x centrifuge, the supernatant was transferred to a new microcentrifuge tube and the resulting supernatant was stored at -20 °C to be used instead of DNA in virus screening studies. GoTaq enzyme was used for the PCR reaction. Virus screening was performed with degenerate primers that amplify the gene regions of various DNA viruses. PCR reaction: 3 pl template DNA, 10 pl (10X) PCR buffer, 1 pl (10 mM) dNTP mix, lier pl forward and reverse primers (10 pM), 6 ul MgCl2 (25 mM), 0.25 ul GoTaq DNA polymerase ( It was prepared by adding 2.5 u) and dH20 to complete 50 pleats; Different virus DNAs available in the laboratory were used as positive control, and dH2O was used as negative control. The reaction cycle was carried out as a primary cycle, after waiting at 94 °C for 2 minutes for denaturation, and for the final extension stage, 7 cycles at 72 °C. After the reaction, the samples were run on a 1% agarose gel containing 0.5 pg/ml ethidium bromide for a minute and displayed on the gel imaging system. The samples obtained from the band were cut from the agarose gel, cleaned with a DNA purification kit, and placed on the gel pieces placed in microcentrifuge tubes. 20 pl of binding buffer (NT) was added for 10 mg of gel pieces. The mixture was kept at 55 °C for approximately 30 minutes until the gel pieces were completely dissolved. It was mixed by turning upside down every 3 minutes, and at the end of this period, the completely dissolved solution was placed in collection tubes. The columns were centrifuged at 11,000 x g for 1 minute and the liquid accumulated in the collection tube was discarded. 700 µl of wash buffer (NT3) was added to the columns. The liquid accumulated in the collection tube was discarded and the washing process was repeated. The column was transferred to a clean microcentrifuge tube, 25 µl of elution buffer was added and incubated for 2 min. After waiting at room temperature for 2 minutes. It was centrifuged at 11,000 x g. The columns were discarded and the purity and concentration of the DNA collected in the microcentrifuge tube were measured with a nanodrop. As a result of the measurement, sequence analysis was performed by preparing 20 pl from the samples with DNA amount of 50 ng/ul and above. In order to reveal the molecular difference between the baculovirus isolate (HearNPV-TR) used in the invention and the previously isolated HearNPV isolates and to elucidate the molecular source of the virulence difference, the obtained sequences were compared with GenBank (NCBl) data and the hr1 gene region was SEQUENCE ID NO.2 in the sequence list. HearNPV-TRhin genome analysis, whose hr3 gene region is shown with SEQ ID NO.3, was performed. As a result of the analysis, it was seen that the HearNPV-TR genome was different from the HearNPV genomes in the literature in terms of the hr3 gene sequences represented by SEQUENCE ID N03, hr5 represented by SEQUENCE ID NO.4 and the bro-a gene sequences represented by SEQ ID N05 in the sequence list. SEQUENCE ID NO. It has been observed that the amino acid sequence specific to the bro-a protein of HearNPV-TR, represented by 1, is different from the bro-a proteins produced by HearNPVs in the literature. It has been determined that these differences lead to differences between isolates in terms of virus production and virulence effect. As shown in Table 3, when the bro-a gene in the HearNPV-TR genome was compared with all H. armigera NPV isolates for which complete genome sequence analysis was performed in the literature, it was observed that the amino acid similarity was between 83-86%. According to the similarity analysis, it was determined that the bro-a gene in the genome of the HearNPV-TR isolate used in the invention was highly similar to ascoviruses (bro 23 gene found in the Heliothis virescens ascovirus 3i genome) rather than baculoviruses. This shows that there is horizontal gene transfer between baculoviruses and ascoviruses. Table 3. Diversity of bro genes and hrs regions of HearNPV-TR and other HearSNPV genomes. Isolate name bro aa length similarity hrs nucleotide similarity genes regions length HearNPV-TR brO-b 501 - hr3 714 _ hr5 2424 - hr5 899 77 % hr5 2806 89 % 99 percentage _hr3 480 89 % 1391 77 % hr5 1391 77 % 1385 75 % f 2083 77 % hr5 2076 79 % M 1749 97 % HaSNPV-LB3 *bro-b 352 _ hr3 295 8., % NS 2106 7., % hr1 1822 97 % HaSNPV- LB6 *bro-b 352 _ hr3 295 8., % 2081 77 % M 2001 97 % HaSNPV-LI *bro-b 348 _ hr3 296 88 % hr5 2083 75 % M 1926 97 % hr5 1385 76 % hr1 1926 97 % r 1385 76% M 494 9i% *bro-a 138 - hrz 2378 99 Genes are indicated with *. Rates showing high differences between the HearNPV-TR genome and other genomes are indicated in bold. The isolates in the table differ from each other genotypically. It was determined that the hr3 regions represented by SEQ ID NO.3 and the hr5 regions represented by SEQ ID NO.4 in the HearNPV-TR genome showed low similarity with other H. armigera NPV isolates. According to Table 3, it is seen that the amino acid homology for the hr3 and hr5 regions is between 75-89%. This situation seen in the genome provides characteristic features to the isolates and causes differences in transcription enhancement levels, virus production and virulence. According to the results of HearNPV-TR genome Blast analysis, there are differences in certain parts of the sequences of the hr3 and hr5 regions. SEQUENCE For the HearNPV-TR Hr3 region represented by 1D N03, the base differences from the 5' end to the 3' end are as follows: T sequence at position 33, C sequence at position 56, T sequence at position 64, C sequence at position 101, 118 C sequence at position 152, A sequence at position 201, C sequence at position 203, AA sequences at position 295, T sequence at position 326, T sequence at position 328, CC sequences at positions 295. For the HearNPV-TR Hr5 region represented by SEQUENCE 1D NO.4, the base differences from the 5' end to the 3' end are as follows: C sequence at position 27, G sequence at position 30, A sequence at position 36, A sequence at position 65. , T sequence at position 67, T sequence at position 77, A sequence at position 82, A sequence at position 87, G sequence at position 112, T sequence at position 121, T sequence at position 154, TAA sequences, T sequence at position 241 sequence, G sequence at position 243, C sequence at position 246, T sequence at position 278, T sequence at position 292, A sequence at position 325, A sequence at position 347, T sequence at position 371, T sequence at position 390, Sequence C at position 400, sequence A at position 404, sequence C at position A at position 445, sequence C at position 493. In baculoviruses, naked virus production occurs in the late phase, and embedded virus production occurs in the very late phase. Therefore, these differences in the above-mentioned homologous repeat regions (hrs) in the genome enable the isolate to increase late-phase gene transcription and DNA replication. Thus, viruses with these regions have more effective and faster virulence. Although the production of naked and embedded viruses is not directly related to the hr regions, these regions cause more virus production in the cell because they increase DNA replication in the late and very late phases in which naked and embedded viruses are produced. Table 4 shows the table of all Heliothis species whose genome analysis has been performed so far in the world.TR TR TR

TR2020/20611A 2020-12-16 2020-12-16 Helicoverpa armigera nucleopolyhedrovirus-based bioinsecticide that can be used against agricultural pest heliothis species. TR202020611A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TR2020/20611A TR202020611A1 (en) 2020-12-16 2020-12-16 Helicoverpa armigera nucleopolyhedrovirus-based bioinsecticide that can be used against agricultural pest heliothis species.
PCT/TR2020/051324 WO2022132065A1 (en) 2020-12-16 2020-12-18 A helicoverpa armigera nucleopolyhedrovirus-based bioinsecticide usable against agricultural pests of heliothis species

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2020/20611A TR202020611A1 (en) 2020-12-16 2020-12-16 Helicoverpa armigera nucleopolyhedrovirus-based bioinsecticide that can be used against agricultural pest heliothis species.

Publications (1)

Publication Number Publication Date
TR202020611A1 true TR202020611A1 (en) 2022-06-21

Family

ID=82059776

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2020/20611A TR202020611A1 (en) 2020-12-16 2020-12-16 Helicoverpa armigera nucleopolyhedrovirus-based bioinsecticide that can be used against agricultural pest heliothis species.

Country Status (2)

Country Link
TR (1) TR202020611A1 (en)
WO (1) WO2022132065A1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3205209A1 (en) * 2016-02-09 2017-08-16 Basf Se Mixtures and compositions comprising paenibacillus strains or metabolites thereof and other biopesticides

Also Published As

Publication number Publication date
WO2022132065A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
Sridhar et al. New record of the invasive South American tomato leaf miner, Tuta absoluta (Meyrick)(Lepidoptera: Gelechiidae) in India
Wyenandt et al. Basil downy mildew (Peronospora belbahrii): Discoveries and challenges relative to its control
Macarisin et al. Infectivity of Cryptosporidium parvum oocysts after storage of experimentally contaminated apples
Brévault et al. First records of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), in Senegal.
Sivasubramaniam et al. Sustainable management of plant-parasitic nematodes: an overview from conventional practices to modern techniques
Habibu et al. Susceptibility status of Anopheles gambiae complex to insecticides commonly used for malaria control in Northern Nigeria
Gomez-Polo et al. Identification of Orius spp.(Hemiptera: Anthocoridae) in vegetable crops using molecular techniques
Nourmohammadpour-Amiri et al. Influence of ground beetles (Carabidae) as biological agent to control of the Mediterranean fruit fly pupae, Ceratitis capitata, in Iranian citrus orchards
Kondidie Genetic variability and gene flow of the fall armyworm Spodoptera frugiperda (JE Smith) in the western hemisphere and susceptibility to insecticides
TR202020611A1 (en) Helicoverpa armigera nucleopolyhedrovirus-based bioinsecticide that can be used against agricultural pest heliothis species.
Corrado et al. Host response to biotic stresses
Mhina et al. Rift Valley fever potential mosquito vectors and their infection status in Ngorongoro district in Northern Tanzania
El-Sitiny et al. Biochemical and molecular diagnosis of different tomato cultivars susceptible and resistant to Tuta absoluta (meyrick) infestation
Srivastava et al. Molecular detection method developed to track the koinobiont larval parasitoid Apanteles opuntiarum (Hymenoptera: Braconidae) imported from Argentina to control Cactoblastis cactorum (Lepidoptera: Pyralidae)
Laarif et al. Molecular detection and biological characterization of a nucleopolyhedrovirus isolate (Tun-SlNPV) from Spodoptera littoralis in Tunisian tomato greenhouses
Rasheed et al. Occurrence of fall armyworm, Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae), in Chittoor district of Andhra Pradesh, India with a note on rove beetle as its potential natural enemy
Nikpay et al. Biotic stresses in sugarcane plants and its management
Van Asch et al. DNA-based identification of larvae offers insights into the elusive lifestyles of native olive seed wasps in South Africa
Aydinli et al. Prevalence of root-knot nematodes and their effects on fruit yield in kiwifruit orchards in Samsun Province (Türkiye)
Hussain et al. Occurrence of granulovirus infecting Cydia pomonella in high altitude cold arid region of India
Murali et al. Molecular characterization and their phylogenetic relationship based on mitochondrial cytochrome oxidase I of Brinjal shoot and fruit borer, Leucinodes orbonalis (Guenée)(Lepidoptera: Pyralidae)
Takooree et al. A comparison of methods for the detection of Phytophthora infestans on potatoes in Mauritius
Alhudaib et al. Genetic Diversity among Rhynchophorus ferrugineus Populations from Saudi Arabia and India
Yaakop et al. Molecular Identification and Species Richness of Flies (Diptera) and Their Associated Bovidae Hosts at Cattle Farms in Selangor, Malaysia.
US11001842B2 (en) Peptide phosphorodiamidate morpholino oligomers plant delivery to reduce pathogens and insect pests