TR202020089A2 - Method for Coating Metals with Single Surface Coating Method - Google Patents

Method for Coating Metals with Single Surface Coating Method

Info

Publication number
TR202020089A2
TR202020089A2 TR2020/20089A TR202020089A TR202020089A2 TR 202020089 A2 TR202020089 A2 TR 202020089A2 TR 2020/20089 A TR2020/20089 A TR 2020/20089A TR 202020089 A TR202020089 A TR 202020089A TR 202020089 A2 TR202020089 A2 TR 202020089A2
Authority
TR
Turkey
Prior art keywords
coating
strip
feature
boron nitride
coated
Prior art date
Application number
TR2020/20089A
Other languages
Turkish (tr)
Inventor
Gündüz Oğuz
Kiliç Yasemi̇n
Bulut Özyi̇ği̇t Mehmet
Original Assignee
Eregli Demir Vecelik Fab T A S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eregli Demir Vecelik Fab T A S filed Critical Eregli Demir Vecelik Fab T A S
Priority to TR2020/20089A priority Critical patent/TR202020089A2/en
Priority to EP21020630.6A priority patent/EP4012063A1/en
Publication of TR202020089A2 publication Critical patent/TR202020089A2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0242Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • C23C2/004Snouts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/30Fluxes or coverings on molten baths
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Abstract

Buluş, sıcak daldırma yöntemi ile metallerin üzerine metalik kaplamaların gerçekleştirildiği proseslerde şerit/parça yüzey enerjisini düşürecek ince film bir kaplamanın sıcak daldırma aşaması öncesinde uygulanması ve tek yüzeyi kaplanmış malzeme elde edilmesine olanak sağlayan bir tek yüzey kaplama üretim metodu ile ilgilidir. Gereksiz kaplama tüketimini azaltacağı için maliyet tasarrufu sağlanacağı gibi ergitme için harcanan enerjinin azalması da sağlanarak daha çevreci bir kaplama yöntemi artmasına da olanak sağlamaktadır.The invention relates to a single surface coating production method that allows the application of a thin film coating, which will reduce the surface energy of the strip/piece, before the hot-dip step, in processes where metallic coatings are carried out on metals with the hot-dip method and to obtain a single-surface coated material. As it will reduce unnecessary coating consumption, cost savings will be achieved and a more environmentally friendly coating method will also be increased by reducing the energy spent for melting.

Description

TARIFNAME TEK YÜZEY KAPLAMA YÖNTEMI ILE METALLERIN KAPLANMASI IÇIN YONTEM Teknik Alan Bulus, sicak daldirma yöntemi ile metaller üzerine metalik kaplamalarin gerçeklestirildigi proseslerde serit/parça yüzey enerjisini düsürecek ince film bir kaplamanin sicak daldirma asamasi öncesinde uygulanmasi ve tek yüzeyi kaplanmis malzeme elde edilmesine olanak saglayan bir tek yüzey kaplama üretim metodu ile Teknigin Bilinen Durumu Çinko kapli malzemelerin kullanildigi en büyük pazarlardan birisi olan otomotiv sektöründe de çogu parçada tek yüzeyde korozyon dayanimina ihtiyaç duyulsa da bu özelliklere sahip malzeme olmadigi için her iki yüzeyi de kapli malzemeler kullanmaktadir. Böylelikle gereksiz çinko sarfiyati gerçeklesmektedir. Tek yüzeyi kaplanmis serit üretimi baslangiç yatirim maliyeti oldukça yüksek farkli yollarla saglanabilmektedir. Bu metotlarin özetleri asagida verilmistir. Bu çerçevede bakildiginda bulus kapsaminda gelistirilecek yöntem kompleks olmayan, pratik, hizli ve kolay uygulanabilir olup baslangiç yatirim maliyeti düsüktür. Yapilan literatür arastirmasinda "Tek Tarafli Sicak Daldirmali Kaplama Islemi" baslikli US4254158A yayin numarali basvuruya rastlanmistir. Bu patent dokümani, seridin alt yüzeyine eriyik haldeki çinkoyu püskürterek tek yüzeyin galvaniz kaplanmasiyla ilgilidir. Bu yöntem, farkli serit, pota ve püskürtme açilari ile de uygulanabilmektedir. Yöntemde banyo hareketliligi yüksek oldugundan cüruf olusumunu minimum düzeye indirmek ve yüzey kusurunu azaltmak için çinko banyosu hava ortamindan bagimsiz hale getirilmistir. Önceki teknige ait yapilan patent arastirmasinda rastlanan bir baska basvuru ise "Tek Tarafli Galvanizli Sac Malzeme Üretme Süreci" baslikli US4120997A yayin numarali patenttir. Bu bulus, öncelikli olarak mevcut çift yüzey kaplama üretim prosesinde oldugu sekilde kaplama yapilmakta devaminda ise galvaniz kaplama seridin bir yüzeyinden siyirici firçalar ile kaldirilmaktadir. Bu proseste ilgili mekanik kaldirma islemine uygun serit yüzeyi elde edebilmek için Fe-Zn intermetalik fazlarinin olusumu tesvik edilmektedir. Kaplama banyosu sonrasi GA ürün üretimine benzer sekilde kaplamasi kaldirilacak yüzey kirilgan ve abrasif asinmaya uygun Fe-Zn intermetaliklerinin olusturulabilmesi için 500-800°C'de yaklasik 10 saniye tutulurken, diger yüzeyde çinko kaplamanin elde edilebilmesi için 150°C`ye hizlica sogutulur. Önceki teknige ait yapilan literatür arastirmasinda "Manufacturing of One-side Galvanized and Galvannealed Steel Sheet by Masking Coat" isimli Kawasaki Steel makalesine rastlanmistir. Bu makalede galvaniz kaplama öncesinde seridin bir yüzeyi roll coater yardimiyla seramik bazli kaplamalar ile kaplanir. Bu kaplamayi kürlemek için non-oxidizing firin ve redükleyici firin ortamlarina ihtiyaç duyulmaktadir. Galvaniz banyosundan çikan seridin seramik kapli yüzeyine isitma uygulanarak çinko viskozitesi düsürülmekte hava biçagiyla kolayca siyirilarak galvaniz banyosuna geri dönmesi saglanmaktadir. Bir sonraki adimda ise merdaneler ile mekanik olarak serit yüzeyindeki seramik film kirilarak nihai üründen uzaklastirilmaktadir. Bulusun çözümünü Amaçladigi Teknik Problemler Mevcut bulus, sicak daldirma yöntemi ile metal malzemeler üzerine metalik kaplamalarin gerçeklestirildigi proseslerde serit/parça yüzey enerjisini düsürecek ince film bir kaplamanin sicak daldirma asamasi öncesinde uygulanmasi ve tek yüzeyi kaplanmis malzeme elde edilmesine olanak saglayan bir tek yüzey çinko kaplama Otomotiv sektörü, insaat sektörü ya da genel uygulama alanlari gibi daha çok tek yüzeyde korozyon direnci ihtiyaci olan kullanicilar için piyasada olmayan daha avantajli yeni ürün saglanmasi hedeflenmistir. Bulusun çözümünü amaçladigi problemlerden biri, ihtiyaç duyulmayan yüzeyin kaplanmasidir. Bu problemden ötürü, agirlik degeri de artmaktadir. Bulus, endüstride ihtiyaç duyulmayan yüzeyde kaplama kullanilmayacagi için, tek yüzey kaplama ile totalde agirlik avantaji da saglanmaktadir. Bulusun çözümünü amaçladigi bir diger problem; gereksiz kaplama ile birlikte tüketimlerin artmasi, enerji kaynaklarinin gereksiz harcanmasi ve çevre duyarliligidir. Bulus sayesinde gelistirilecek yöntemin uygulamasi basit ve baslangiç yatirim maliyeti düsüktür. Ayrica gereksiz kaplama tüketimini azaltacagi için maliyet tasarrufu sagladigi gibi ergitme için harcanan enerjinin azalmasina ve çevre duyarliliginin artmasina da olanak saglamaktadir. Sekillerin Agiklanmasi Sekil 1: Yöntemin Akis Semasi Bulusun Açiklamasi Bu açiklamada, tek yüzey kaplama yöntemi sadece konunun daha iyi anlasilmasina yönelik olarak ve hiçbir sinirlayici etki olusturmayacak sekilde açiklanmaktadir. Bulus, tek yüzey kaplama ile ilgili bir yöntemle ilgilidir. Bor nitrit, oksit içermeyen, sentetik olarak üretilmis BN kimyasal formülüne sahip seramik maddedir. Fiziksel ve kimyasal özelliklerinden dolayi seramik alaninda yogun kullanim alani bulur. Dökümhanelerde etkin olarak kullanilan bor nitridin en önemli özelligi alüminyum, magnezyum veya bakir gibi metal eriyikleri islatmamasidir. Bor nitrit iki modifikasyonda olusur. Hegzagonal bor nitrit (h-BN), grafit yapisinda olup yüksek sicaklikta borik oksidin nitrürlenmesi ile elde edildigi bilinmektedir. Kübik bor nitrit ise hegzagonal bor nitrürün yüksek basinç ve sicaklikta islenmesi ile olusturulur. Kübik bor nitrit oldukça sert olup elmastan sonra sertligi en yüksek ikinci malzeme olarak tanimlanmistir ve asinma yüzeyleri ve sertlik özelligi talep edilen özel kullanim alanlari için tercih edilmesi uygundur. Hegzagonal bor nitridin ise kendi kendini yaglama özelligi, oksidasyon direnci, elektriksel ve termal stabilitesi, metal ergiyikler tarafindan islanmamasi en belirgin özellikleridir. Bu çalismada hegzagonal bor nitridin yüksek sicakliklarda malzeme yüzey enerjisi üzerinde olan etkisi kullanilacak ve kaplamasi yapilacak sivi ergiyigin (Zn, Al, Mg, Si ve alasimlari) yüzey yapismasi önlenecektir. Bor nitrit çözeltisi, 900"C'ye kadar stabilitesini koruyabilmektedir. Hegzagonal bor nitrit, çogu metalin ergiyigine karsi uygulandigi yüzeyde islatma enerjisini düsürmektedir. Yani metal ergiyigi ile yüzey arasinda 90°'nin üzerinde islatma açisi olusmasina sebep olmaktadir. Bor nitrit çözeltisi, bulus konusu yöntemde sicak daldirma yöntemiyle parça kaplama yapan tesislerde de kaplama önleyici olarak kullanilabilecektir. Sicak daldirma ile kaplama yöntemi sürekli hatlarda yapilabildigi gibi parça kaplamanin gerçeklestirildigi tesislerde de kullanilmaktadir. Sürekli hatlar kabaca, sirasiyla; temizleme, firin, sogutma ve sicak daldirmanin gerçeklestigi pota bölümlerinden olusmaktadir. Kontrollü atmosfer ortami olan firin bölümünde elektrik, indüksiyon, radyan tüp, dogrudan yanma/yakma yöntemleri ile isitma gerçeklestirilebilmektedir. Isitma ve/veya sogutma adimlarindan sonra isil islemi tamamlanan malzeme sicak daldirma yöntemi ile ergiyik metal banyosuna daldirilir. Malzemenin firindan pota bölgesine geçisi asamasinda hava ile temasini önlemek, oksit ve kirlilik olusumunu en aza indirmek amaciyla köprü görevi gören snout bölümü bulunmaktadir. Kaplama prosesi için çok önemli bir adim olan bu bölge malzemenin sicak daldirma prosesi sonrasi kaplama kalitesine dogrudan etki eder. Snout bölgesinde kontrollü atmosfer ortaminin saglanabilecegi sistemler bulunmaktadir. Snout içerisinde ya da firin ile snout bölgesi arasinda, serit sivi ergiyik potasina girmeden önce kaplanmasi istenmeyen yüzeye (alt ya da üst) alkol bazli bor nitrit püskürtülecek ve bir yüzey kaplanmadan üretim saglanabilecektir. Bor nitrit çözeltisi; parça kaplamalar için daldirma prosesinden önce, seridin tavlamasi ve kaplamasi yapilan sürekli hatlar için firin ile snout bölgesi arasinda ya da snout bölgesinde kaplanmasi istenmeyen parça ya da serit yüzeyine 0,1-10 g/cm2 olacak sekilde uygulanir. Sürekli tavlama hatlarinda sprey yöntemi ile kaplanmasi istenmeyen yüzeye bor nitrit uygulandiktan sonra serit kontrollü bir sekilde ergiyik metal banyosuna daldirilir. Sürekli hattin performans ve yeterliligine bagli olarak 4-16 saniye arasinda serit ergiyik metal banyosunda kalir. Parça kaplamalar için ergiyik metal banyosundan çikan parçalar kaplama gerçeklesen kisimda katilasmasinin tamamlanmasi için serbest sogumaya birakilirken sürekli hatlarda kaplama banyosu çikisinda seridin kaplanan yüzeyinde kaplama kalinligi ayarlamasi için hava biçaklari kullanilarak hedeflenen kaplama kalinligi elde edilir. Hem parça kaplama hem de sürekli serit kaplama prosesinde ergiyik metal banyosundan çikan malzeme sartlandirilmis ortamda ya da serbest soguma ile sogutulur. Parça kaplamalar için nihai yüzey islemlerinin gerçeklestirilmesi veya sürekli sicak daldirmayla kaplama tesislerinde serit mekanik ve yüzey özellikleri dogrultusunda temper hadde uygulamasi yapilir. Alternatif olarak, sürekli sicak daldirma yöntemi sonrasi demir ile alasimlandirilmasi için kaplamanin tavlanmasi sonrasi serit mekanik ve yüzey özellikleri dogrultusunda temper hadde uygulamasi yapilir. Çinko kaplamalar için serit ya da parçanin sivi çinko potasina giris sicakliginin 450- 550°C arasinda degistigi durumlar için bor nitrit spreyinin uygulama sicakligi da degisim gösterebilmektedir. Ancak bor nitritin uygulandigi malzeme ya da sivi ergiyik ile herhangi bir reaksiyona girmiyor olusu çok genis sicaklik bandinda uygulanmasina olanak saglamaktadir. Bor nitrit, snout bölgesi baslangici ya da firin bölgesi çikisinda 400-650°C arasinda, ya da firin bölgesinde daha yüksek sicaklikta (650-850°C), ya da firin girisi temizleme bölümü sonrasinda uygulanabilir. Bulus kapsaminda en uygun uygulamanin firin çikisi ile snout bölgesi girisinde elde edildigi tespit edilmistir. Alkol bazli solventler ile hazirlanan bor nitrit çözeltisi, serit yüzeyine 0,1-10 g/cm2 olacak sekilde uygulanir. Çözeltide alümina ya da silika bazli baglayici kullanilabilecegi gibi minimum %7 bor nitrit içermelidir. Bulusa konu yöntemde bor nitrit, sicak ve yüzey alaninin fazla oldugu altlik malzemelere basinçlandirilmis azot veya argon gaziyla beraber spreyleme yöntemiyle uygulanir. Çünkü sicak daldirma prosesinde en iyi kaplanmis yüzey özelliklerinin eldesi için daldirma yöntemiyle kaplama yapilacak malzeme potadaki ergiyik metal sicakligi ile arti eksi 50 °C olmalidir. Bu durumda çinko kaplamalar için serit sicakliginin 350-600 oC arasinda degismesi gerekmektedir. Yüksek sicakliklarda olan altlik malzemenin hava ile basinçlandirilmis sprey uygulamasi yüzeydeki oksidasyon miktarini artiracaktir. Nihai kullanim öncesi yüzeyde istenmeyen oksit tabakalarinin önlenmesi için basinçlandirma, azot ya da argon gazi ile yapilmalidir. ulusun Sanavive Uvgulanma_Bicimi Bu bulus, demir - çelik sektöründe temel olarak tek yüzeyi çinko kapli serit üretimini temel alsa da birçok sicak daldirma ile kaplama yönteminde de kullanilabilir. Bor nitrit çözeltisinin, kaplanmasi istenmeyen serit/parça yüzeyine 0,1-10 g/cm2 olacak sekilde uygulanmasi Kaplanmak istenen metal seridin/parçanin ergiyik metal banyosuna daldirilmasi Parça kaplamalar için kaplama banyosu Sürekli sicak daldirmayla kaplama sonrasi kaplamanin katilasma için tesislerinde pota çikisi azot ile bekletilmesi basinçlandirilmis hava biçaklari ile ergiyik metal kaplamanin kalinliginin ayarlanmasi Sartlandirilmis ortamda ya da serbest soguma ile sogutulmasi Parça kaplamalar için nihai yüzey Sürekli sicak daldirmayla kaplama islemlerinin gerçeklestirilmesi tesislerinde serit mekanik ve yüzey özellikleri dogrultusunda temper hadde uygulamasinin yapilmasi Kaplamanin demir ile alasimlandirilmasi için kaplamanin tavlanmasi sonrasi serit mekanik ve yüzey özellikleri dogrultusunda temper hadde uygulamasinin yapilmasi TR TR TR DESCRIPTION METHOD FOR COATING METALS WITH SINGLE SURFACE COATING METHOD Technical Field The invention is a technology that allows the application of a thin film coating that will reduce the strip/piece surface energy before the hot dipping stage and obtain a single surface coated material in processes where metallic coatings are carried out on metals by the hot dipping method. Known State of the Technique with the surface coating production method. In the automotive industry, which is one of the largest markets where zinc coated materials are used, most parts require corrosion resistance on a single surface, but since there are no materials with these properties, materials coated on both surfaces are used. Thus, unnecessary zinc consumption occurs. Single-surface coated ribbon production can be achieved in different ways, with a very high initial investment cost. Summaries of these methods are given below. When viewed in this context, the method to be developed within the scope of the invention is uncomplicated, practical, fast and easily applicable, and the initial investment cost is low. In the literature research, an application titled "One-Sided Hot Dip Coating Process" with publication number US4254158A was found. This patent document is about galvanizing a single surface by spraying molten zinc on the lower surface of the strip. This method can also be applied with different strips, crucibles and spray angles. Since the bath mobility is high in the method, the zinc bath is made independent from the air environment in order to minimize slag formation and reduce surface defects. Another application found in the patent research on the prior art is the patent with publication number US4120997A titled "Process of Producing Single-Sided Galvanized Sheet Material". This invention is primarily coated as in the existing double surface coating production process, and then the galvanized coating is removed from one surface of the strip with scraper brushes. In this process, the formation of Fe-Zn intermetallic phases is encouraged in order to obtain a strip surface suitable for the relevant mechanical lifting process. Similar to the GA product production after the plating bath, the surface to be coated is kept at 500-800°C for approximately 10 seconds to form Fe-Zn intermetallics that are brittle and suitable for abrasive wear, while it is quickly cooled to 150°C to obtain the zinc coating on the other surface. In the literature research on the previous technique, a Kawasaki Steel article titled "Manufacturing of One-side Galvanized and Galvannealed Steel Sheet by Masking Coat" was found. In this article, before galvanizing, one surface of the strip is coated with ceramic-based coatings with the help of a roll coater. Non-oxidizing oven and reducing oven environments are needed to cure this coating. By applying heating to the ceramic coated surface of the strip coming out of the galvanizing bath, the zinc viscosity is reduced and it is easily scraped with an air knife and returned to the galvanizing bath. In the next step, the ceramic film on the strip surface is broken mechanically with rollers and removed from the final product. Technical Problems the Invention Aims to Solve The present invention is based on the application of a thin film coating that will reduce the strip/piece surface energy before the hot dipping stage in processes where metallic coatings are made on metal materials by the hot dipping method, and a single surface zinc coating that allows a single surface coated material to be obtained. Automotive industry It is aimed to provide a more advantageous new product that is not available on the market for users who need corrosion resistance on a single surface, such as the construction industry or general application areas. One of the problems that the invention aims to solve is the covering of unneeded surfaces. Due to this problem, the weight value also increases. Since the invention does not use coating on surfaces that are not needed in the industry, a total weight advantage is also achieved with a single surface coating. Another problem that the invention aims to solve is; Increased consumption with unnecessary coating, unnecessary consumption of energy resources and environmental sensitivity. Thanks to the invention, the method to be developed is simple to implement and has a low initial investment cost. In addition, it provides cost savings by reducing unnecessary coating consumption, as well as reducing the energy spent on melting and increasing environmental awareness. Explanation of Drawings Figure 1: Flow Diagram of the Method Description of the Invention In this explanation, the single surface coating method is explained only for a better understanding of the subject and in a way that does not create any limiting effect. The invention relates to a method for single surface coating. Boron nitride is an oxide-free, synthetically produced ceramic material with the chemical formula BN. It finds extensive use in the field of ceramics due to its physical and chemical properties. The most important feature of boron nitride, which is used effectively in foundries, is that it does not wet metal melts such as aluminum, magnesium or copper. Boron nitride occurs in two modifications. Hexagonal boron nitride (h-BN) has a graphite structure and is known to be obtained by nitriding boric oxide at high temperatures. Cubic boron nitride is formed by processing hexagonal boron nitride at high pressure and temperature. Cubic boron nitride is very hard and has been defined as the second highest hardness material after diamond, and it is suitable for wear surfaces and special usage areas where hardness properties are requested. The most distinctive features of hexagonal boron nitride are its self-lubricating property, oxidation resistance, electrical and thermal stability, and not being wetted by metal melts. In this study, the effect of hexagonal boron nitride on the material surface energy at high temperatures will be used and the surface adhesion of the liquid melt (Zn, Al, Mg, Si and their alloys) to be coated will be prevented. Boron nitride solution can maintain its stability up to 900"C. Hexagonal boron nitride reduces the wetting energy on the surface where it is applied against the melt of most metals. In other words, it causes a wetting angle of over 90° between the metal melt and the surface. Boron nitride solution is the subject of the invention. It can also be used as a coating inhibitor in facilities that coat parts by hot dipping method. Hot dip coating method can be done in continuous lines as well as in facilities where part coating is carried out. Continuous lines roughly consist of crucible sections where cleaning, furnace, cooling and hot dipping take place, respectively. Controlled In the furnace section, which has an atmospheric environment, heating can be achieved by electricity, induction, radiant tube, direct combustion/combustion methods. After the heating and/or cooling steps, the material whose heat treatment is completed is immersed in the molten metal bath with the hot immersion method. During the transition of the material from the furnace to the crucible area, the material does not come into contact with air. There is a snout section that acts as a bridge to prevent and minimize oxide and pollution formation. This region, which is a very important step for the coating process, directly affects the coating quality of the material after the hot dipping process. There are systems that can provide a controlled atmosphere in the snout area. Alcohol-based boron nitride will be sprayed on the surface (bottom or top) that is not wanted to be coated within the snout or between the furnace and the snout area, before the strip enters the liquid melt pot, and production can be achieved without coating a surface. Boron nitride solution; Before the dipping process for part coatings, it is applied at a rate of 0.1-10 g/cm2 to the surface of the part or strip that is not wanted to be coated, between the furnace and the snout zone for continuous lines where the strip is annealed and coated, or in the snout zone. In continuous annealing lines, after boron nitride is applied to the surface that does not want to be coated by spray method, the strip is immersed in the molten metal bath in a controlled manner. Depending on the performance and adequacy of the continuous line, the strip remains in the molten metal bath for between 4-16 seconds. For piece coating, the parts coming out of the molten metal bath are left to cool freely to complete the solidification in the coating area, while in continuous lines, the targeted coating thickness is achieved by using air knives to adjust the coating thickness on the coated surface of the strip at the exit of the plating bath. In both the part coating and continuous strip coating processes, the material coming out of the molten metal bath is cooled in a conditioned environment or by free cooling. For piece coatings, final surface treatments are carried out or temper rolling is applied in line with the mechanical and surface properties of the strip in continuous hot-dip coating facilities. Alternatively, after the coating is annealed to alloy with iron after the continuous hot dipping method, temper rolling is applied in line with the mechanical and surface properties of the strip. For zinc coatings, the application temperature of boron nitride spray may also vary in cases where the entry temperature of the strip or part into the liquid zinc crucible varies between 450 and 550°C. However, the fact that boron nitride does not react with the material or liquid melt on which it is applied allows it to be applied in a very wide temperature range. Boron nitrite can be applied at the beginning of the snout zone or at the exit of the furnace zone between 400-650°C, or at higher temperatures in the furnace zone (650-850°C), or after the furnace inlet cleaning section. Within the scope of the invention, it has been determined that the most suitable application is achieved at the exit of the oven and the entrance of the snout zone. Boron nitride solution prepared with alcohol-based solvents is applied to the strip surface at a rate of 0.1-10 g/cm2. Alumina or silica-based binder can be used in the solution, and it must contain at least 7% boron nitride. In the method of the invention, boron nitride is applied to hot substrate materials with high surface area by spraying with pressurized nitrogen or argon gas. Because in order to obtain the best coated surface properties in the hot dipping process, the material to be coated by the dipping method must be at a temperature of plus or minus 50 °C with the molten metal temperature in the crucible. In this case, the strip temperature for zinc coatings should vary between 350-600 oC. Air pressurized spray application of the substrate material at high temperatures will increase the amount of oxidation on the surface. Pressurization should be done with nitrogen or argon gas to prevent unwanted oxide layers on the surface before final use. Although this invention is mainly based on single-surface zinc-coated strip production in the iron and steel industry, it can also be used in many hot-dip coating methods. Applying boron nitride solution at a rate of 0.1-10 g/cm2 to the surface of the strip/part that is not wanted to be coated. Immersing the metal strip/part to be coated in the molten metal bath. Coating bath for part coatings. After continuous hot dip coating, keeping the coating in the crucible outlet with nitrogen for solidification. Adjusting the thickness of the molten metal coating with pressurized air knives. Cooling in a conditioned environment or with free cooling. Final surface for piece coatings. Application of temper rolling in line with the strip mechanical and surface properties in facilities where continuous hot dip coating processes are carried out. After annealing the strip mechanical and surface properties for alloying the coating with iron. Application of temper rolling in line with surface properties TR TR TR

Claims (1)

1.ISTEM LER Bulus; sicak daldirma yöntemi ile metal malzemeler üzerine metalik kaplamalarin gerçeklestirildigi proseslerde metal seritin tek yüzeyinin kaplanmasi ile ilgili yöntemi olup, özelligi; - bor nitrit, çözeltisinin kaplanmasi istenmeyen serit/parça yüzeyine 0,1-10 gi'cm2 olacak sekilde uygulanmasi, - kaplanmak istenen metal seridin/parçanin ergiyik metal banyosuna daldirilmasi, - parça kaplamalar için kaplama banyosu sonrasi kaplamanin katilasma için bekletilmesi veya sürekli sicak daldirmayla kaplama tesislerinde pota çikisi azot ile basinçlandirilmis hava biçaklari ile ergiyik metal kaplamanin kalinliginin ayarlanmasi, - sartlandirilmis ortamda ya da serbest soguma ile sogutulmasi, - parça kaplamalar için nihai yüzey islemlerinin gerçeklestirilmesi veya sürekli sicak daldirmayla kaplama tesislerinde serit mekanik ve yüzey özellikleri dogrultusunda temper hadde uygulamasinin yapilmasi ya da kaplamanin demir ile alasimlandirilmasi için kaplamanin tavlanmasi sonrasi serit mekanik ve yüzey özellikleri dogrultusunda temper hadde uygulamasinin yapilmasi. istem 1'deki gibi bir yöntem olup, özelligi; çözeltinin minimum %7 hegzagonal bor nitrit içermesidir. Yukaridaki istemlerden herhangi biri gibi bir yöntem olup özelligi; bor nitrit çözeltisinin metal serit yüzeyine snout bölgesi baslangicinda veya firin bölgesi çikisinda veya firin bölgesinde veya firin girisi temizleme bölümü sonrasinda uygulanmasidir. Yukaridaki istemlerden herhangi birindeki gibi bir yöntem olup, özelligi; bor nitrit çözeltisinin 350-850°C sicaklik arasinda metal serit yüzeyine uygulanmasidir. Yukaridaki istemlerden herhangi birindeki gibi bir yöntem olup, özelligi; sicak daldirma yöntemi ile kaplama yapilan sürekli hatlarda kaplanmak istenmeyen metal yüzeye bor nitridin en az bir nozuldan uygulanmasidir. Yukaridaki istemlerden herhangi birindeki gibi bir yöntem olup, özelligi; bulusa konu yöntemde bor nitrit, sicak ve yüzey alaninin fazla oldugu altlik malzemelere basinçlandirilmis azot veya argon gaziyla beraber spreyleme yöntemiyle uygulanmasidir. Yukaridaki istemlerden herhangi birindeki gibi bir yöntem olup, özelligi; parça metalin kaplanmasi istenmeyen yüzeyinin azot veya argon gaziyla basinçlandirilmis spreyleme yöntemiyle bor nitrit çözeltisiyle kaplanmasidir. Yukaridaki istemlerden herhangi birindeki gibi bir yöntem olup, özelligi; kaplanmak istenen metal seridin ergiyik metal banyosuna 4-16 saniye süresince daldirilmasidir. Yukaridaki istemlerden herhangi birindeki gibi bir yöntem olup, özelligi; çelik seridin tek yüzeyinin çinko ile kaplanmasidir. TR TR TR1. CLAIMS Invention; It is a method of coating a single surface of a metal strip in processes where metallic coatings are carried out on metal materials by the hot dipping method, and its feature is; - Applying the boron nitride solution to the surface of the strip/part that is not wanted to be coated in 0.1-10 gi'cm2, - Dipping the metal strip/part to be coated into the molten metal bath, - For part coatings, waiting for the coating to solidify after the plating bath or by continuous hot dipping. Adjusting the thickness of the molten metal coating with air blades pressurized with nitrogen at the crucible outlet in coating facilities, - cooling in a conditioned environment or with free cooling, - performing final surface treatments for piece coatings or applying temper rolling in line with the strip mechanical and surface properties in continuous hot dip coating facilities. or to alloy the coating with iron, applying temper rolling in line with the mechanical and surface properties of the strip after annealing the coating. It is a method as in claim 1 and its feature is; The solution must contain minimum 7% hexagonal boron nitrite. It is a method like any of the above claims and its feature is; It is the application of boron nitride solution to the metal strip surface at the beginning of the snout zone or at the exit of the furnace zone or in the furnace zone or after the furnace inlet cleaning section. It is a method as in any of the above claims and its feature is; It is the application of boron nitride solution to the metal strip surface at a temperature between 350-850°C. It is a method as in any of the above claims and its feature is; It is the application of boron nitride from at least one nozzle to the metal surface that is not wanted to be coated in continuous lines coated by hot dipping method. It is a method as in any of the above claims and its feature is; In the method subject to the invention, boron nitride is applied to hot substrate materials with high surface area by spraying with pressurized nitrogen or argon gas. It is a method as in any of the above claims and its feature is; Coating the unwanted surface of the metal piece is covered with boron nitride solution by spraying pressurized with nitrogen or argon gas. It is a method as in any of the above claims and its feature is; It involves dipping the metal strip to be coated into the molten metal bath for 4-16 seconds. It is a method as in any of the above claims and its feature is; It is the coating of a single surface of the steel strip with zinc. TR TR TR
TR2020/20089A 2020-12-09 2020-12-09 Method for Coating Metals with Single Surface Coating Method TR202020089A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TR2020/20089A TR202020089A2 (en) 2020-12-09 2020-12-09 Method for Coating Metals with Single Surface Coating Method
EP21020630.6A EP4012063A1 (en) 2020-12-09 2021-12-09 Method for coating of metalic materials with single side coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2020/20089A TR202020089A2 (en) 2020-12-09 2020-12-09 Method for Coating Metals with Single Surface Coating Method

Publications (1)

Publication Number Publication Date
TR202020089A2 true TR202020089A2 (en) 2022-06-21

Family

ID=81536013

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2020/20089A TR202020089A2 (en) 2020-12-09 2020-12-09 Method for Coating Metals with Single Surface Coating Method

Country Status (2)

Country Link
EP (1) EP4012063A1 (en)
TR (1) TR202020089A2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4120997A (en) 1976-05-11 1978-10-17 Inland Steel Company Process for producing one-side galvanized sheet material
US4254158A (en) 1978-01-01 1981-03-03 Kobe Steel, Limited Process for one-side hot-dip coating
JPS5867855A (en) * 1981-10-16 1983-04-22 Kawasaki Steel Corp Apparatus for preparing steel plate having one surface hot-dipped with zinc
JPS5873756A (en) * 1981-10-26 1983-05-04 Kawasaki Steel Corp Plating inhibitor for one side hot dipping
JPS59104462A (en) * 1982-12-06 1984-06-16 Nisshin Steel Co Ltd Single surface molten metal plating method
JPS60141855A (en) * 1983-12-28 1985-07-26 Kawasaki Steel Corp Method for compounding plating stop-off agent for plating on one side
JPH11123535A (en) * 1997-10-17 1999-05-11 Daihatsu Motor Co Ltd Structure for preventing stickiness of molten metal in member contacting with molten light metal

Also Published As

Publication number Publication date
EP4012063A1 (en) 2022-06-15

Similar Documents

Publication Publication Date Title
CN1020928C (en) Method for hot dip aluminum coated chromium alloy steel
EP1951932B1 (en) Method of coating metal sheet
CN105316615B (en) A kind of production line and process of fine steel wire hot dip allumen
JP2011149084A (en) Al PLATED STEEL SHEET FOR HOT PRESS HAVING EXCELLENT TEMPERATURE RISING PROPERTY, AND METHOD FOR PRODUCING THE SAME
US4120997A (en) Process for producing one-side galvanized sheet material
JPH062932B2 (en) Method for continuous hot dipping of ferritic chrome alloy steel strip with aluminum
JP2768871B2 (en) Melt coating method for chromium-containing steel
KR102635881B1 (en) Method for manufacturing steel strip with improved adhesion of metal hot dip galvanized coatings
CN102286716B (en) Continuous hot dip galvanizing process for strip steel
TR202020089A2 (en) Method for Coating Metals with Single Surface Coating Method
EP0570219B1 (en) Use of a molten zinc resistant alloy
AU2011349108A1 (en) Control of coating of members
JP5596334B2 (en) Roll for hot metal plating bath
WO2013004913A2 (en) Method, arrangement and raw material for producing metal coating, and steel product
JP2004124118A (en) Galvanized steel sheet having excellent press formability and appearance and method for manufacturing the same
CN110106503B (en) Coating resistant to corrosion and abrasion of molten zinc and preparation method thereof
CN113025845A (en) Zinc-aluminum-magnesium alloy coating steel wire for bridge cable and preparation method thereof
JP2001158953A (en) HIGH-LUSTER Al-Zn ALLOY PLATED STEEL SHEET AND ITS MANUFACTURING METHOD
CN104943269A (en) Locally reinforced hot-rolled zinc-aluminum plated steel plate and manufacturing method thereof
CN113025935B (en) Hot-dip galvanized aluminum-magnesium alloy coated steel wire for bridge cable and preparation method thereof
AU728356B2 (en) Method of heat-treating thin sheet coated with ZnAl by hot dip galvanization
KR20030027288A (en) A spray coating method for hearth roll
CN108796417A (en) A kind of Aldip process continuously prepares the method and its device of corrosion-resistant I-steel
CA2044763C (en) Process for producing spray-plated metal strip
JPH04165058A (en) Formation of thermally sprayed film of metallic chromium