TR202015702A1 - Polymethacrylimide (PMI) foam synthesized in situ with nano-sized materials and its production method - Google Patents

Polymethacrylimide (PMI) foam synthesized in situ with nano-sized materials and its production method

Info

Publication number
TR202015702A1
TR202015702A1 TR2020/15702A TR202015702A TR202015702A1 TR 202015702 A1 TR202015702 A1 TR 202015702A1 TR 2020/15702 A TR2020/15702 A TR 2020/15702A TR 202015702 A TR202015702 A TR 202015702A TR 202015702 A1 TR202015702 A1 TR 202015702A1
Authority
TR
Turkey
Prior art keywords
production method
pmi
foam
feature
polymerization
Prior art date
Application number
TR2020/15702A
Other languages
Turkish (tr)
Inventor
Güngör Sila
Cebeci̇ Hülya
Gürkan İdri̇s
Ösken İpek
Original Assignee
Roketsan Roket Sanayi Ve Ticaret Anonim Sirketi
Roketsan Roket Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roketsan Roket Sanayi Ve Ticaret Anonim Sirketi, Roketsan Roket Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ filed Critical Roketsan Roket Sanayi Ve Ticaret Anonim Sirketi
Priority to TR2020/15702A priority Critical patent/TR202015702A1/en
Priority to PCT/TR2021/050998 priority patent/WO2022071912A1/en
Publication of TR202015702A1 publication Critical patent/TR202015702A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/142Compounds containing oxygen but no halogen atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/12Organic compounds only containing carbon, hydrogen and oxygen atoms, e.g. ketone or alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Buluş, ağırlık oranı olarak %30-80 metakrilik asit ile %20-70 akrilonitril ve %1-3 akrilamit içeren bir reaktant ve bir polimerizasyon başlatıcı, bir çekirdeklenme ajanı ve bir köpükleştirme ajanı içeren bileşenlerin bir reaksiyon karışımı oluşturur biçimde üniform karıştırılması; reaksiyon karışımının bir ön polimerizasyon süresince UV ışığa maruz bırakılması ile çapraz bağlı köpüklenebilir bir ön polimerizasyon ürünü elde edilmesi ve ön polimerizasyon ürününün kalıplanması ve çapraz bağ oluşturur biçimde polimerizasyonu ile 100-260°C' de polimetakrilamit köpük elde edene kadar kürlenmesi işlem adımlarını içeren polimetakrilimit polimer köpük üretim metodu ve bu metotla elde edilen polimer köpüktür.The invention consists of uniform mixing of a reactant containing 30-80% methacrylic acid with 20-70% acrylonitrile and 1-3% acrylamide, and components comprising a polymerization initiator, a nucleating agent and a foaming agent in a weight ratio to form a reaction mixture; Polymethacrylimide polymer including the steps of obtaining a crosslinked foamable prepolymerization product by exposing the reaction mixture to UV light during a prepolymerization and molding the prepolymerization product and polymerizing it in a crosslinking manner and curing at 100-260°C until polymethacrylamide foam is obtained. foam production method and the polymer foam obtained by this method.

Description

TARIFNAME NANO BOYUTTA MALZEMELI YERINDE SENTEZLENEN POLIMETAKRILIMIT (PMI) KÖPÜK VE BUNUN ÜRETIM METODU TEKNIK ALAN Mevcut bulus, yerinde polimetakrilimit (PMI) köpük ve bunlarin güçlendirilmis türevlerinin nano boyutta malzemeler ve partiküller ile yerinde (in-situ) sentezleme islemi ve bu sekilde sentezlenen polimer köpük ile ilgilidir. TEKNIGIN BILINEN DURUMU Polimer köpükler ve bunlarin kompozit malzemeleri isil yalitim, ambalaj, mekanik destekleme gibi uygulamalarda çesitli kullanim alanlari bulmustur. Ancak geleneksel köpükler ve bunlarin kompozitleri kisitli mekanik, termal ve elektrik özelliklere sahiptir. Yüksek performansli yapisal köpükler olarak da bilinen PMI köpükler ve çesitli nanomalzemeler ile güçlendirilmis PMI köpükler havacilik için sandviç kompozitler gibi gelismis yapilarda uygulama alani bulmaktadirlar. Bu hafif PMI merkezli sandviç kompozitler, nanomalzeme katkilari ile elektrik iletkenligi ve yüksek isil dayanim gibi ek islev kazanabilen yüksek mekanik özellikler gösteren yapilardir. Ileri teknoloji uygulamalarda, çok islevlilige sahip yüksek performansli yapisal köpükler çesitli uygulama alanlari bulmaktadir. PMI köpük, uzun ömür, dayanim ve isil kararlilik saglayan düzenli hücre boyu dagilimi ve düsük yogunluga sahiptir. Sandviç kompozit yapilar havacilik, savunma, uzay uygulamalarinda, ulasim araçlari için yapisal malzeme ve/veya isil yalitim uygulamalarinda kullanim alani bulmaktadir. PMI köpüklerin katkisiz olarak üretim islemleri uzun zaman alan sentez adimlari ile gerçeklestirilmektedir. Çok adimli sentezleme ve köpüklestirme ile düzgün ve düzenli boyutlarda hücre dagilimi özelliklerine sahip. isil açidan dayanikli ürünler elde edilebilmektedir. PMI köpüklerin mekanik özellikleri, alev geciktiricii antistatik, antioksidan, yaglayici, boya, hafif stabilize edici vs. farkli katkilarla gelistirilmektedir. PMI kati köpük hazirlama metodu açiklanmistir. Buna göre hizlandirici ve iletken partiküller içeren isitma ile hazirlanan bir metakrilik asit-metakrilonitril kopolimeri hava araci üretiminde ve hizli akan gazlara yönelik benzeri uygulamalarda laminasyonda ara katman malzeme olarak kullanima uygundur. Köpük olusturan çapraz bagli polimer, bilhassa PMI köpük, bilesenlerin polimerizasyon baslatici içermektedir. BULUSUN KISA AÇIKLAMASI Bulusun amaci, polimetakrilimid köpük üretim prosesinde sentezleme süresinin kisaltilmasidir. Bahsedilen amaçlara ulasmak üzere bulus, bilesenlerin agirlik orani olarak %30-80 metakrilik asit ile %20-70 akrilonitril ve %1-3 akrilamit veya bunlarin türevlerinin karisimini içeren bir reaktant ve bir polimerizasyon baslatici, bir çekirdeklenme ajani ve bir köpüklestirme ajani içeren bilesenlerin karisim kabinda bir reaksiyon karisimi olusturur sekilde düzgün karistirilmasi; reaksiyon karisiminin UV kaynagindan gelen isiga maruz birakilmasi ile çapraz bagli köpüklenebilir bir ön polimerizasyon ürünü elde edilmesi ve ön polimerizasyon ürününün bir konteynirde, 20-80°C`de polimerizasyon reaksiyonun gerçeklestirilip kopolimer PMI blok elde edilmesi ve sonrasinda 100-260 °C sicaklik ile köpük elde edilmesi adimlarini içeren PMI köpük üretilmesi islemidir. UV isik ile ön polimerizasyon gerçeklestirilmesi iyi kontrol edilebilir bir prosese imkan vermektedir. Ayrica mevcut duruma göre sasirtici derecede kisa bir sürede ön polimerizasyonun tamamlanmasi saglanmistir. Yaygin sekilde kullanilan polimer köpük ticari ürünlerin elde edilmesinde uzun saatler süren toplam proses, ön polimerizasyon adiminin 1-5 dakika gibi bir süreye düsürülmesi ile 12-48 saat mertebelerine indirilmistir. Ayrica termal baslaticilarla karsilastirildiginda enerji tüketimi önemli ölçüde azaltilmistir. Muhtemel bir uygulamada, reaksiyon karisimina %0,5-30 konvensiyonel katki maddeleri ilave edilmesi mümkündür. Tercih edilen bir uygulamada konteynir bir cam kaliptir ve ön polimerizasyon ürünü cam kaliba dökülerek, sivi içeren (su, yag vb.) bir banyo veya bir firin içerisinde polimerizasyon reaksiyonu gerçeklestirilir. Bulusun tercih edilen bir uygulamasi, ön polimerizasyon süresinin en fazla 10 dakika, tercihen 1-5 dakika ayarlanmasi islem adimini içermektedir. Bu süre sonrasinda 700 um altinda hücre yapisi olusumu saglamakta ve gelismis mekanik özellikler ile elektrik iletkenligine sahip bir son ürün elde edilmesine imkân vermektedir. Bulusun tercih edilen bir uygulamasinda, polimerizasyon baslatici, agirlik orani olarak 0A)O,O1- 2 azobisisobutironitril (AIBN) veya benzoilperoksit (BPO) içermektedir. Tercihen, köpüklestirme ajani, agirlik orani olarak %1-5 arasinda 1-amil alkol veya bütanol içermektedir. Bulusun tercih edilen bir uygulamasi, ön polimerizasyon ürününe (karbon nanotüp) CNT, grafen, (nanosilika) NS, (nanokauçuk) NK, (boron nitrit nanotüp) BNNT içeren gruptan seçilen nano-parçacik ilavesi islem adimini içermektedir. Bu ilaveler, polimer köpük ürünün mekanik özelliklerini iyilestirerek isil yalitim ve elektrik iletkenligi degerlerini iyilestirmektedir. Bulusun tercih edilen bir uygulamasi, reaksiyon ürününe agirlik orani olarak %O,1-3 arasinda damitilmis su ilavesi islem adimini içermektedir. Bulusun tercih edilen bir uygulamasinda, ön polimerizasyon ürünün kaliplandigi kalip kapali cam kaliptir. Böylece, polimer yerinde sentezlenmektedir. Tercihen, cam kalip en az 12-48 saat 20-80°C arasinda seçilen sabit isida su banyosunda bekletilmektedir. Bu süre polimerizasyonun tamamlanmasi için yeterli olmaktadir. Bulusun tercih edilen bir uygulamasinda, köpüklestirme islem adimi 1-8 saat olarak ayarlanmistir. Bu islem kapali veya açik kalip kullanilarak bir firin veya homojen sicaklik dagilimi saglayabilen bir cihaz içerisinde gerçeklestirilebilir. Bulusun tercih edilen bir yapilanmasi, yukarida tarif edilen PMI köpük üretim metodu islem adimlari ile elde edilen bir polimer köpüktür. Bulusun tercih edilen bir yapilanmasinda, polimer köpük agirligi 40-140 kg/m3 arasinda ayarlanmistir. Bu düsük yogunluk daha düzenli gözenek boyut dagilimi saglamayi mümkün kilmistir. Bulusun tercih edilen bir yapilanmasinda, polimer köpük gözenek boyu 50-700 um arasinda ayarlanmistir. Tercihen, polimer köpük baski dayanimi yogunluga bagli olarak 0.7-8 lVlPa arasinda ve iletken katkilar ile islevsellestirildigi halde ise elektrik iletkenliginin 103 S/cm'den büyük ayarlanmistir. SEKILLERIN KISA AÇIKLAMASI Sekil 1. bulus konusu PMl üretim metodunun temsili bir uygulamasinin sematik gösterimidir. Sekil 2, PMI ve CNT/PMI köpük sentezleme metodu akis diyagramidir. Sekil 3, a, b ve c örneklerinin farkli bilesen (metakrilik asit, akrilonitril ve akrilamit) yüzdeleri ile elde edilen saf PMI köpüklerin spesifik basma mukavemet ve hüçre çap degerlerlerini gösteren grafiktir. Sekil 4, a, b ve c örneklerinin farkli bilesen (metakrilik asit, akrilonitril ve akrilamit) yüzdeleri ile elde edilen saf PMI köpüklerin optik ve taramali elektron mikroskobu (SEM) görüntüleridir. Sekil 5, a, b ve c örneklerinin farkli bilesen (metakrilik asit, akrilonitril ve akrilamit) yüzdeleri ile elde edilen saf PMI köpüklerin ve ticari PMI köpügün IR spektrumudur. Sekil 6, bulus konusu yöntem ile elde edilen saf PMI köpük örnegidir. Sekil 7', Yerinde sentezlenen CNT/PMI köpügüdür. BULUSUN DETAYLI AÇIKLAMASI Bu detayli açiklamada, bulus konusu gelistirme için herhangi bir kisitlama olmayacak sekilde ve sadece konuyu daha iyi anlatmasi için örnek referanslar ile anlatilmistir. Sekil 1'de bulus konusu PMI köpük üretim metoduna dair temsili bir uygulama sematik olarak gösterilmektedir. Agirlik orani olarak %40 akrilonitril, %60 metakrilik asit, %1 akrilamit içeren bilesenlerin, %2 1-amil alkol, %O,3 AIBN, %1,5 saf su, %0,5 geleneksel katki maddeleri içeren grubun, sivi bilesenler (1) ve kati bilesenler (2) olarak bir karisim kabinda (3) tamamen karistirilmasi ile bir reaksiyon karisimi (4) elde edilmesi ile baslamaktadir. Reaksiyon karisimi bir sonraki adimda bir foto-baslatim (photo-initiation) ünitesinde (5) 1 dakika boyunca bir UV kaynaginda (6) isinima maruz birakilarak ön polimerizasyona baslamaktadir. Reaksiyon karisiminin (4) çapraz baglanmaya baslamasi ile elde edilen ön polimerizasyon ürünü (8) bir conta (7) ile sizdirmazligi saglanan cam plakaya (9) sahip kapali bir kaliba (11) dökülerek 12- 48 saat boyunca 50°C sicakliga ayarlanan su banyosunda polimerizasyon ünitesinde (12) yerlestirilmektedir. Bu islem ile polimerizasyon islemi tamamlanmakta ve kopolimer blok (13) kalip (11) içinde sekil verilmis sekilde olusumunu tamamlamaktadir. Bir firin yapisindaki isil saat boyunca isil isleme maruz birakilarak PMl köpük (15) elde edilmektedir. Kapali kalip (11) üretim kolay sekillendirmeye ve kopolimer blogun (13) üç katina kadar genisleyebilen kapali hücreli rijit köpük elde edilmesine imkân vermektedir. Kopolimer blogun yüksek sicaklik ile esneklik kazanmasi (13), düsen rijitligi ile gaz hareketlerine izin vermesi sonucunda genisleyerek yüksek dayanimli PMI köpük (15) elde edilmesini saglamaktadir. Reaksiyon karisiminin (4) ön polimerizasyonu sadece birkaç dakika sürmekte ve kisaltilmis polimerizasyonun toplam 48 saatte tamamlanmasi mümkün olmaktadir. Sekil 2'de PlVlI ve CNT içeren PMI sentezleme islem adimlari gösterilmektedir. MAA/AN/AM baslatici (A) üzerine foto baslatim (photo initiation) uygulanarak UV isinina maruz birakilmaktadir. Bu sekilde reaksiyon sonrasi ön polimer (B) elde edilmektedir. Ardindan ya nano-partikül ilavesi ile kapali kaliplama ile polimerizasyon süreci ile önce nano partikül gömülü polimer (C) elde edilmekte ardindan isil islem ile nano partiküllü PMI köpük (C1) elde edilmekte, ya da ön polimer (B) dogrudan kapali kalipta polimerizasyon ile polimere (D) dönüstürülerek isil islem sonrasi PMI köpük (D1) ürünü elde edilmektedir. Sekil 3'te farkli kosullarda (a, b, c) elde edilen saf PMI köpüklerin karsilastirmali spesifik basma mukavemetleri ve hücre boyutlari verilmistir. A sentezinde agirlikça % 1 üre, %15 saf su varken, B sentezinde %2 üre, %1,5 saf su ve C sentezinde %1 üre, %3 saf su bulunmaktadir. Diger bilesenler bütün sentenzlerde aynidir. Ayrica Sekil 4'e bulus konusu metot ile elde edilen a,b,c PMI köpüklerinin optik ve SEM görüntüleri sunulmaktadir. Her bir ürün düzgün Cidarli ve çap dagilimi benzer iç yapilarak sahiptir. Sekil 5'te ise ticari ve sentezlenmis PMI köpüklerin a, b, c örneklerine iliskin lR spektrumu sunulmaktadir. Degisen bilesen oranlari ile hazirlanan a, b ve c sentezlerinin ve ticari (IS-51) PMI köpüklerin IR spektrumu verilmistir. Sekil 6'da bulus konusu metot ile elde edilen saf ve CNT içeren PMI kopolimer ve köpük örnekleri gösterilmektedir. Sekil 4, a, b ve c örneklerinin farkli bilesen (metakrilik asit, akrilonitril ve akrilamit) yüzdeleri ile elde edilen saf PMI köpüklerin optik ve SEM görüntüleridir. Sekil 5, a, b ve C örneklerinin farkli bilesen (metakrilik asit, akrilonitril ve akrilamit) yüzdeleri ile elde edilen saf PMI köpüklerin ve ticari PMI köpügün IR spektrumudur. Sekil 6, bulus konusu yöntem ile elde edilen saf PMI köpük örnegi saf ve CNT takviyeli PMI a) kopolimer bloklar ve b) köpükler olarak göstermektedir. Sekil 7 ise yerinde sentezlenen CNT/PMI köpügü örneklerini göstermektedir. TR TR TR DESCRIPTION POLYMETHACRYLIMITE (PMI) FOAM SYNTHESIS IN-SITU WITH NANO-SIZE MATERIALS AND ITS PRODUCTION METHOD TECHNICAL FIELD The present invention is the in-situ synthesis process of polymethacrylimide (PMI) foam and their reinforced derivatives with nano-sized materials and particles and the polymer foam synthesized in this way. It is related to. KNOWN STATE OF THE TECHNOLOGY Polymer foams and their composite materials have found various uses in applications such as thermal insulation, packaging and mechanical support. However, conventional foams and their composites have limited mechanical, thermal and electrical properties. PMI foams, also known as high-performance structural foams, and PMI foams reinforced with various nanomaterials find application in advanced structures such as sandwich composites for aviation. These lightweight PMI-centered sandwich composites are structures with high mechanical properties that can gain additional functions such as electrical conductivity and high thermal resistance with nanomaterial additives. In advanced technology applications, high-performance structural foams with multifunctionality find various application areas. PMI foam has regular cell size distribution and low density, providing long life, strength and thermal stability. Sandwich composite structures are used in aviation, defense, space applications, structural material and/or thermal insulation applications for transportation vehicles. The production of PMI foams without additives is carried out through long time-consuming synthesis steps. It features multi-step synthesis and foaming and cell distribution in uniform and regular sizes. Thermally resistant products can be obtained. Mechanical properties of PMI foams include flame retardant, antistatic, antioxidant, lubricant, dye, light stabilizer, etc. It is developed with different contributions. The PMI solid foam preparation method is explained. Accordingly, a methacrylic acid-methacrylonitrile copolymer prepared by heating containing accelerator and conductive particles is suitable for use as an intermediate layer material in lamination in aircraft production and similar applications for fast-flowing gases. Foam-forming cross-linked polymer, especially PMI foam, contains polymerization initiator of the components. BRIEF DESCRIPTION OF THE INVENTION The purpose of the invention is to shorten the synthesis time in the polymethacrylimide foam production process. In order to achieve the mentioned objectives, the invention is based on a reactant containing a mixture of 30-80% methacrylic acid, 20-70% acrylonitrile and 1-3% acrylamide or their derivatives as the weight ratio of the components, and a mixture of components containing a polymerization initiator, a nucleation agent and a foaming agent. uniform mixing to form a reaction mixture in the chamber; A cross-linked foamable prepolymerization product is obtained by exposing the reaction mixture to light from a UV source, and the polymerization reaction of the prepolymerization product is carried out in a container at 20-80 °C to obtain a copolymer PMI block, and then the foam is heated at 100-260 °C. It is the process of producing PMI foam, which includes the steps of obtaining Pre-polymerization with UV light allows for a well-controlled process. In addition, prepolymerization was completed in a surprisingly short time compared to the current situation. The total process, which takes many hours to obtain widely used polymer foam commercial products, has been reduced to 12-48 hours by reducing the pre-polymerization step to 1-5 minutes. Additionally, energy consumption is significantly reduced compared to thermal initiators. In a possible application, it is possible to add 0.5-30% conventional additives to the reaction mixture. In a preferred embodiment, the container is a glass mold and the pre-polymerization product is poured into the glass mold and the polymerization reaction is carried out in a bath containing liquid (water, oil, etc.) or in an oven. A preferred embodiment of the invention includes the process step of adjusting the pre-polymerization time to a maximum of 10 minutes, preferably 1-5 minutes. After this period, it enables the formation of a cell structure below 700 µm and allows obtaining a final product with improved mechanical properties and electrical conductivity. In a preferred embodiment of the invention, the polymerization initiator contains 0A)O,O1-2 azobisisobutyronitrile (AIBN) or benzoylperoxide (BPO) as a weight ratio. Preferably, the foaming agent contains 1-5% by weight of 1-amyl alcohol or butanol. A preferred application of the invention includes the process step of adding nanoparticles selected from the group containing CNT, graphene, (nanosilica) NS, (nanorubber) NK, (boron nitride nanotube) BNNT to the pre-polymerization product (carbon nanotube). These additions improve the mechanical properties of the polymer foam product, improving its thermal insulation and electrical conductivity values. A preferred embodiment of the invention includes the process step of adding 0.1-3% distilled water to the reaction product as a weight ratio. In a preferred embodiment of the invention, the mold in which the pre-polymerization product is molded is a closed glass mold. Thus, the polymer is synthesized in situ. Preferably, the glass mold is kept in a water bath at a constant temperature selected between 20-80°C for at least 12-48 hours. This time is sufficient to complete the polymerization. In a preferred embodiment of the invention, the foaming process step is set as 1-8 hours. This process can be carried out using a closed or open mold in an oven or a device that can provide homogeneous temperature distribution. A preferred embodiment of the invention is a polymer foam obtained by the PMI foam production method process steps described above. In a preferred embodiment of the invention, the polymer foam weight is set between 40-140 kg/m3. This lower density made it possible to achieve a more uniform pore size distribution. In a preferred embodiment of the invention, the polymer foam pore size is set between 50-700 µm. Preferably, the compressive strength of the polymer foam is set to be between 0.7-8 lVlPa depending on the density, and the electrical conductivity is set to be greater than 103 S/cm when functionalized with conductive additives. BRIEF DESCRIPTION OF THE FIGURES Figure 1 is a schematic representation of a representative application of the PMl production method that is the subject of the invention. Figure 2 is the PMI and CNT/PMI foam synthesis method flow diagram. Figure 3 is a graph showing the specific compressive strength and cell diameter values of pure PMI foams obtained with different component (methacrylic acid, acrylonitrile and acrylamide) percentages of samples a, b and c. Figure 4 is the optical and scanning electron microscope (SEM) images of pure PMI foams obtained with different component percentages (methacrylic acid, acrylonitrile and acrylamide) of samples a, b and c. Figure 5 is the IR spectrum of pure PMI foams and commercial PMI foam obtained with different component percentages (methacrylic acid, acrylonitrile and acrylamide) of samples a, b and c. Figure 6 is an example of pure PMI foam obtained by the method of the invention. Figure 7' is the CNT/PMI foam synthesized in situ. DETAILED DESCRIPTION OF THE INVENTION In this detailed description, the subject of the invention is explained without any restrictions for development and with sample references only to explain the subject better. In Figure 1, a representative application of the PMI foam production method of the invention is shown schematically. Components containing 40% acrylonitrile, 60% methacrylic acid, 1% acrylamide by weight, the group containing 2% 1-amyl alcohol, 0.3% AIBN, 1.5% pure water, 0.5% traditional additives, liquid components It starts by completely mixing (1) and solid components (2) in a mixing bowl (3) to obtain a reaction mixture (4). In the next step, the reaction mixture is exposed to irradiation with a UV source (6) for 1 minute in a photo-initiation unit (5) and begins pre-polymerization. The pre-polymerization product (8) obtained by starting the cross-linking of the reaction mixture (4) is poured into a closed mold (11) with a glass plate (9) sealed with a gasket (7) and placed in a water bath set at 50°C for 12-48 hours. It is placed in the polymerization unit (12). With this process, the polymerization process is completed and the copolymer block (13) completes its formation as shaped in the mold (11). PMl foam (15) is obtained by exposing the structure of a furnace to heat treatment for hours. Closed mold (11) production allows easy shaping and obtaining a closed-cell rigid foam that can expand up to three times the copolymer block (13). The copolymer block gains flexibility with high temperatures (13) and expands as a result of its decreasing rigidity allowing gas movements, resulting in high-strength PMI foam (15). Prepolymerization of the reaction mixture (4) takes only a few minutes and it is possible to complete the shortened polymerization in a total of 48 hours. Figure 2 shows the process steps of synthesizing PMI containing PlVlI and CNT. Photo initiation is applied on the MAA/AN/AM initiator (A) and it is exposed to UV light. In this way, prepolymer (B) is obtained after the reaction. Then, either the nanoparticle embedded polymer (C) is obtained by the closed molding polymerization process with the addition of nanoparticles, and then the nanoparticle PMI foam (C1) is obtained by heat treatment, or the prepolymer (B) is directly converted to the polymer by closed mold polymerization. (D) is converted and PMI foam (D1) product is obtained after heat treatment. In Figure 3, comparative specific compressive strengths and cell sizes of pure PMI foams obtained under different conditions (a, b, c) are given. While synthesis A contains 1% urea and 15% pure water by weight, synthesis B contains 2% urea and 1.5% pure water, and synthesis C contains 1% urea and 3% pure water. Other components are the same in all syntheses. Additionally, optical and SEM images of a, b, c PMI foams obtained by the method of the invention are presented in Figure 4. Each product has smooth walls and similar internal diameter distribution. In Figure 5, the IR spectrum of samples a, b, c of commercial and synthesized PMI foams is presented. IR spectra of a, b and c syntheses prepared with varying component ratios and commercial (IS-51) PMI foams are given. Figure 6 shows pure and CNT-containing PMI copolymer and foam samples obtained by the method of the invention. Figure 4 is the optical and SEM images of pure PMI foams obtained with different percentages of components (methacrylic acid, acrylonitrile and acrylamide) of samples a, b and c. Figure 5 is the IR spectrum of pure PMI foams and commercial PMI foam obtained with different component percentages (methacrylic acid, acrylonitrile and acrylamide) of samples a, b and C. Figure 6 shows the pure PMI foam sample obtained by the method of the invention as pure and CNT reinforced PMI a) copolymer blocks and b) foams. Figure 7 shows examples of CNT/PMI foam synthesized in situ. TR TR TR

Claims (1)

1.ISTEMLER Bir polimetakrilimit (PMI) köpük üretim metodu olup özelligi, bilesenlerinin agirlik orani türevlerinin karisimini içeren bir reaktant ve bir polimerizasyon baslatici, bir çekirdeklenme ajani ve bir köpüklestirme ajani içeren bilesenlerin bir karisim konteynirinda (3) bir reaksiyon karisimi (4) olusturur sekilde düzgün karistirilmasi; reaksiyon karisiminin (4) birön polimerizasyon süresince bir UV kaynagindan (6) gelen UV isiga maruz birakilmasi ile çapraz bagli köpüklenebilir bir ön polimerizasyon ürünü (8) elde edilmesi ve ön polimerizasyon ürününün (8) bir konteynirda 20-80°C'de polimerizasyon reaksiyonun gerçeklestirilip kopolimer PlVll blok elde edilmesi ve sonrasinda 100-260“0 sicaklik ile köpük üretilmesi islem adimlarini içermesidir. Istem 1'e uygun bir PMI köpük üretim metodu olup özelligi, ön polimerizasyon süresinin en fazla 10 dakika, tercihen 1-5 dakika ayarlanmasi islem adimini içermektedir. Önceki istemlerden herhangi birine uygun bir polimetakrilimit köpük üretim metodu olup özelligi, polimerizasyon baslaticinin agirlik orani olarak %0,01-2 azobisisobutironitril (AIBN) veya benzoilperoksit (BPO) içermesidir. Önceki istemlerden herhangi birine uygun bir PMI köpük üretim metodu olup özelligi, köpüklestirme ajaninin agirlik orani olarak %1-5 1-amil alkol veya bütanol içermesidir. Önceki istemlerden herhangi birine uygun bir PMI köpük üretim metodu olup özelligi, ön polimerizasyon ürününe (8) karbon nanotüp (CNT), grafen, nanosilika (NS), nanokauçuk (NK), boron nitrit nanotüp (BNNT) içeren gruptan seçilen nano-parçacik ilavesi islem adimini içermesidir. Önceki istemlerden herhangi birine uygun bir PMI köpük üretim metodu olup özelligi, reaksiyon karisimina (4) agirlik orani olarak %O,1-3 arasinda damitilmis su ilavesi islem adimini içermesidir. Önceki istemlerden herhangi birine uygun bir PMI köpük üretim metodu olup özelligi, ön polimerizasyon ürününün (8) kaliplandigi kalibin kapali cam kalip olmasi ile karakterize edilmektedir. Istem 7'ye uygun bir polimetakrilimit köpük üretim metodu olup özelligi, cam kalibin en az 12-48 saat 20-80°C arasinda seçilen sabit isida sürekli akan su banyosunda bekletilmesi islem adimini içermesidir. 9- Önceki istemlerden herhangi birine uygun bir PMI köpük üretim metodu olup özelligi, kürlenme islem adiminin 1-8 saat olarak ayarlanmasi islem adimini içermesidir. 10-Önceki istemlerden herhangi birine uygun bir PMI köpük üretim metodu ile elde edilen bir polimer köpüktür. 11- Istem 10'a uygun bir polimer köpük olup özelligi, polimer köpük yogunlugunun 40-140 kg/m3 arasinda ayarlanmis olmasidir. 12- istem 10-1 1 'e uygun bir polimer köpük olup özelligi, polimer köpük gözenek boyunun 50-700 pm arasinda ayarlanmis olmasidir. 13-Istem 10-12”ye uygun bir polimer köpük olup özelligi, polimer köpük basma mukavemetinin 0.7-8 MPa ve elektrik iletkenliginin 10'3 S/cm'den büyük ayarlanmis olmasidir. TR TR TR1.CLAIMS It is a polymethacrylimide (PMI) foam production method, characterized in that the weight ratio of its components forms a reaction mixture (4) in a mixing container (3) of a reactant containing a mixture of derivatives and a polymerization initiator, a nucleation agent and a foaming agent. Proper mixing; By exposing the reaction mixture (4) to UV light coming from a UV source (6) during a pre-polymerization period, a cross-linked foamable pre-polymerization product (8) is obtained and the pre-polymerization product (8) is kept in a container at 20-80°C for the polymerization reaction. It includes the process steps of obtaining copolymer PlVll block and then producing foam with a temperature of 100-260°C. It is a PMI foam production method in accordance with claim 1 and its feature includes the process step of adjusting the pre-polymerization time to a maximum of 10 minutes, preferably 1-5 minutes. It is a polymethacrylimide foam production method according to any of the previous claims, characterized in that the polymerization initiator contains 0.01-2% azobisisobutyronitrile (AIBN) or benzoylperoxide (BPO) as a weight ratio. It is a PMI foam production method according to any of the previous claims, characterized in that the foaming agent contains 1-5% 1-amyl alcohol or butanol by weight. It is a PMI foam production method in accordance with any of the previous claims, and its feature is the addition of nano-particles selected from the group containing carbon nanotube (CNT), graphene, nanosilica (NS), nanorubber (NK), boron nitride nanotube (BNNT) to the pre-polymerization product (8). It includes the processing step. It is a PMI foam production method in accordance with any of the previous claims, and its feature is that it includes the process step of adding 0.1-3% distilled water as a weight ratio to the reaction mixture (4). It is a PMI foam production method in accordance with any of the previous claims and is characterized by the fact that the mold in which the pre-polymerization product (8) is molded is a closed glass mold. It is a polymethacrylimide foam production method in accordance with claim 7, and its feature is that it includes the process step of keeping the glass mold in a continuously flowing water bath at a constant temperature selected between 20-80°C for at least 12-48 hours. 9- It is a PMI foam production method according to any of the previous claims and its feature is that it includes the process step of setting the curing process step as 1-8 hours. 10-It is a polymer foam obtained by a PMI foam production method according to any of the previous claims. 11- It is a polymer foam according to claim 10 and its feature is that the density of the polymer foam is adjusted between 40-140 kg/m3. 12- It is a polymer foam in accordance with claim 10-1, and its feature is that the polymer foam pore size is set between 50-700 pm. 13-It is a polymer foam in accordance with claims 10-12 and its feature is that the compressive strength of the polymer foam is set to 0.7-8 MPa and the electrical conductivity is set to be greater than 10'3 S/cm. TR TR TR
TR2020/15702A 2020-10-02 2020-10-02 Polymethacrylimide (PMI) foam synthesized in situ with nano-sized materials and its production method TR202015702A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TR2020/15702A TR202015702A1 (en) 2020-10-02 2020-10-02 Polymethacrylimide (PMI) foam synthesized in situ with nano-sized materials and its production method
PCT/TR2021/050998 WO2022071912A1 (en) 2020-10-02 2021-10-01 In-situ synthesized polymetacrilymide (pmi) foam with nanosized material and the production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2020/15702A TR202015702A1 (en) 2020-10-02 2020-10-02 Polymethacrylimide (PMI) foam synthesized in situ with nano-sized materials and its production method

Publications (1)

Publication Number Publication Date
TR202015702A1 true TR202015702A1 (en) 2022-04-21

Family

ID=80950664

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2020/15702A TR202015702A1 (en) 2020-10-02 2020-10-02 Polymethacrylimide (PMI) foam synthesized in situ with nano-sized materials and its production method

Country Status (2)

Country Link
TR (1) TR202015702A1 (en)
WO (1) WO2022071912A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3826469A1 (en) * 1988-08-04 1990-02-08 Roehm Gmbh HARD FOAM AS A CORE MATERIAL FOR LAYING MATERIALS
CN101289565B (en) * 2008-06-12 2010-07-28 中国人民解放军国防科学技术大学 Polymethacrylimide foam/inorganic nano composite material and method for preparing same
CN103232568B (en) * 2013-04-19 2015-08-05 江苏科技大学 A kind of polymethacrylimide plastic foam and preparation method thereof
CN103524968B (en) * 2013-10-23 2016-01-06 江苏兆鋆新材料科技有限公司 A kind of Graphene strengthens the preparation method of polymethacrylimide foam material
CN109456439B (en) * 2018-11-20 2021-07-27 浙江中科恒泰新材料科技有限公司 Photoinitiated rapidly-prepared polymethacrylimide foamable particle
CN110746638B (en) * 2019-12-02 2020-12-22 南京航空航天大学 Method for preparing carbon nanofiber reinforced polymethacrylimide foam through suspension polymerization

Also Published As

Publication number Publication date
WO2022071912A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
Li et al. Sol-gel derived porous ultra-high temperature ceramics
Ding et al. Foaming behavior of microcellular foam polypropylene/modified nano calcium carbonate composites
Kim et al. A simple pressing route to closed-cell microcellular ceramics
Li et al. In-situ cooling of adsorbed water to control cellular structure of polypropylene composite foam during CO2 batch foaming process
Tian et al. Effects of exterior gas pressure on the structure and properties of highly porous SiOC ceramics derived from silicone resin
Eksilioglu et al. Mesophase AR pitch derived carbon foam: Effect of temperature, pressure and pressure release time
Strauss et al. Supercritical CO2 processed polystyrene nanocomposite foams
Kim et al. Processing of microcellular mullite
JP4662804B2 (en) Hollow resin fine particles, method for producing hollow resin fine particles, and composite material
Smorygo et al. Preparation and characterization of open-cell epoxy foams modified with carbon fibers and aluminum powder
Kim et al. Processing of open‐cell silicon carbide foams by steam chest molding and carbothermal reduction
Afolabi et al. Fabrication and characterization of two-phase syntactic foam using vacuum assisted mould filling technique
CA3126410A1 (en) Foaming of blowing agent containing polymers through the use of microwaves
Aghvami‐Panah et al. Microwave‐assisted foaming of polystyrene filled with carbon black; effect of filler content on foamability
Xu et al. An ultrafast and clean method to manufacture poly (vinyl alcohol) bead foam products
TR202015702A1 (en) Polymethacrylimide (PMI) foam synthesized in situ with nano-sized materials and its production method
KIM et al. Processing of porous silicon oxycarbide ceramics from extruded blends of polysiloxane and polymer microbead
CN110746633B (en) Preparation method of microporous polymethacrylimide foam
Eom et al. Effect of forming methods on porosity and compressive strength of polysiloxane-derived porous silicon carbide ceramics
Nguyen et al. Novel core–shell (dendrimer) epoxy tougheners: Processing and hot–wet performance
Jang et al. Processing of highly porous, open-cell, microcellular silicon carbide ceramics by expansion method using expandable microspheres
Chen et al. High‐Precision 3D Printing of High‐Strength Polymer‐Derived Ceramics: Impact of Precursor's Molecular Structure
Arab-Baraghi et al. A simple method for preparation of polymer microcellular foams by in situ generation of supercritical carbon dioxide from dry ice
KR100673432B1 (en) Method for preparation of a carbon composite containing carbon nanotube
CN114230952A (en) PMI block foam material and preparation method thereof