TR202010595A2 - Polymer blends and packaging films produced from these blends for fresh fruit and vegetable packaging applications - Google Patents

Polymer blends and packaging films produced from these blends for fresh fruit and vegetable packaging applications

Info

Publication number
TR202010595A2
TR202010595A2 TR2020/10595A TR202010595A TR202010595A2 TR 202010595 A2 TR202010595 A2 TR 202010595A2 TR 2020/10595 A TR2020/10595 A TR 2020/10595A TR 202010595 A TR202010595 A TR 202010595A TR 202010595 A2 TR202010595 A2 TR 202010595A2
Authority
TR
Turkey
Prior art keywords
packaging
blends
pmp
ldpe
gas permeability
Prior art date
Application number
TR2020/10595A
Other languages
Turkish (tr)
Inventor
Gökkurt Tolga
Original Assignee
Soezal Kimya Sanayi Ve Ticaret Anonim Sirketi
Sözal Ki̇mya Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soezal Kimya Sanayi Ve Ticaret Anonim Sirketi, Sözal Ki̇mya Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ filed Critical Soezal Kimya Sanayi Ve Ticaret Anonim Sirketi
Priority to TR2020/10595A priority Critical patent/TR202010595A2/en
Priority to PCT/TR2021/050022 priority patent/WO2022005415A1/en
Publication of TR202010595A2 publication Critical patent/TR202010595A2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/0625LLDPE, i.e. linear low density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/0633LDPE, i.e. low density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • B29K2023/083EVA, i.e. ethylene vinyl acetate copolymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/18Polymers of hydrocarbons having four or more carbon atoms, e.g. polymers of butylene, e.g. PB, i.e. polybutylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08J2423/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Packging For Living Organisms, Food Or Medicinal Products That Are Sensitive To Environmental Conditiond (AREA)
  • Wrappers (AREA)

Abstract

Buluş özellikle, taze meyve ve sebzelerin solunum oranı ile uyumlu bir atmosferik bileşim oluşturmak, seçici ve yüksek gaz geçirgenlik özellikleri sağlamak üzere, poli(4-metil-1-penten), alçak yoğunluklu polietilen veya doğrusal alçak yoğunluklu polietilen, etilen-vinil asetat kopolimeri ve poligliserol ester içeren polimer harmanı, en yüksek seviyede homojen bir dengeli bir yapı elde etmek üzere oluşturulan vida konfigürasyonu (10) ile polimer harmanlarının üretim yöntemi ve bu harmanlardan üretilen ambalaj filmleri ile ilgilidir.In particular, the invention features poly(4-methyl-1-pentene), low density polyethylene or linear low density polyethylene, ethylene-vinyl acetate copolymer, to create an atmospheric composition compatible with the respiration rate of fresh fruits and vegetables and to provide selective and high gas permeability properties. and the polymer blend containing polyglycerol ester, the screw configuration (10) formed to obtain a homogeneous stable structure at the highest level, and the production method of polymer blends and packaging films produced from these blends.

Description

TARIFNAME Taze meyve ve sebze ambalajlama uygulamalari için polimer harmanlari ve bu harmanlardan üretilen ambalaj filmleri Teknik Alan Bulus, taze meyve ve sebze ambalajlama uygulamalarinda kullanilmak üzere gelistirilen polimer harmani ve bu harmandan üretilen ambalaj filmi ile ilgilidir. Bulus özellikle, taze meyve ve sebzelerin solunum orani ile uyumlu bir atmosferik bilesim olusturmak, seçici ve yüksek gaz geçirgenlik özellikleri saglamak üzere, poli(4-metiI-1- penten), alçak yogunluklu polietilen veya dogrusal alçak yogunluklu polietilen, etilen-vinil asetat kopolimeri ve poligliserol ester içeren polimer harmanlari, en yüksek seviyede homojen bir dengeli bir yapi elde etmek üzere olusturulan vida konfigürasyonu ile polimer harmanlarinin üretim yöntemi ve bu harmanlardan üretilen ambalaj filmleri ile ilgilidir. Teknigin Bilinen Durumu Dünya üzerindeki milyonlarca insan, küresel isinma, iklimsel degisimler, artan nüfus ve ekonomik krizler gibi olumsuz birçok faktöre bagli olarak en temel gida maddelerine bile ulasamamaktadirlar (1). Su anda, açlikla ilgili sebeplerden dolayi her gün yaklasik 21.000 kisi ölmektedir ve dünyadaki dokuz kisiden biri her gece aç kalmaktadir (2-4). Diger taraftan, dünyada yillik olarak üretilmis gida ürünlerinin milyarlarca tonluk kismi, depolama ve paketleme yöntemlerindeki noksanliklara bagli olarak insanlar tarafindan tüketilmeksizin çöpe atilmaktadir. Örnegin taze meyve ve sebzelerin yaklasik %40" i, deniz ürünlerinin ise yilinda 12,3 milyar insana ulasacak olan dünya nüfusunu beslemek istiyorsak, gida israflarinin azaltilmasinin ve önlenmesinin anahtar faktörler oldugunu belirtmektedirler (8,9). Bu nedenle, raf ömrü ve gida ürünlerinin korunmasi, geçmis yillara nazaran daha önemli bir hale gelmektedir. Bilinen teknikte bu kayiplarin engellenmesi için güncel çalismalar, özellikle modifiye atmosferde ambalajlama olarak isimlendirilen depolama kosullarinin iyilestirilmesini amaçlayan muhafaza teknikleri üzerine yogunlasmaktadir. Modifiye atmosferde ambalajlama, raf ömrünü uzatmak ve gida kalitesini korumak için ürünlerin etrafinda özel bir atmosferik kompozisyon olusturulmasini saglayan bir paketleme teknolojisi olarak tanimlanmaktadir. Örnegin taze sebze ve meyveler gibi nefes alabilen gida ürünlerinin raf ömrünü uzatan modifiye ambalaj uygulamalarindaki en temel prensip, ambalaj içerisinde muhafaza edilen ürünün sonulum hizi ile ambalajlama filminin geçirgenligi arasinda bir etkilesim neticesinde dogal bir atmosferik degisim gerçeklestirilmesine dayanmaktadir (10- 14). Modifiye atmosfer ambalaji (MAP) teknolojisi, hasattan sonra bozulabilen ürünlerin raf ömrünün uzatilmasina olanak taniyarak, ürünün besin degeri veya ürünün organoleptik kalitesi üzerinde minimum etkiyle dagitim maliyetlerini sinirlandiran ambalajlama avantaji saglamaktadir (14). Modifiye atmosfer ambalaji teknigi, perakendecilerin herhangi bir büyük isleme, koruyucu madde veya kimyasal katki maddesi olmaksizin uzun raf ömrüne sahip taze gidalar pazarlamasina olanak veren devrim niteligindeki bir adim olarak görülebilmektedir. MAP teknolojisi pasif ve aktif (p.MAP ve a.MAP) olmak üzere iki temel sinifa ayrilmaktadir (15). Aktif modifiye atmosferde ambalajlama teknolojisi (a.MAP), ambalaj içerisindeki atmosfer bilesiminin azot, oksijen ve karbondioksit gibi çesitli gazlarin kullanilarak, istenilen ve raf ömrünü uzatacak bir sekilde degistirilmesi teknigini temsil etmektedir. Her türlü gida ürünün raf ömrünü uzatmak için kullanilabilecek bir teknik olmakla birlikte, genel olarak oksitlenerek bozulan et ürünleri, meyve sulari vb. gibi ürünlerin ambalajlamasi için kullanilan bir tekniktir. Ambalaj içerisinde muhafaza edilecek ürününün raf ömrünün uzatilmasi için gereksinim duyulacak atmosferik bilesim, harici olarak yaratilmaktadir. Buradaki kisitlama, kullanilacak ambalaj malzemesinin düsük gaz geçirgenligine yani bariyer özelliklerine sahip olma zorunlulugudur. Eger bu saglanamaz ise, ambalaj içerisinde olusturulan gaz kompozisyonu kisa sürede, geçirgenligin etkisi ile kaybolacak ve istenilen raf ömrü elde edilemeyecektir. Pasif modifiye atmosferde ambalajlama teknolojisi (p.MAP) ise, paketin içindeki orijinal atmosfer gaz bilesimini degistirmek için filmin geçirgenliginin ve taze ürünün fizyolojik süreçlerinin (çogunlukla solunumun) etkilesimini temel alan dinamik ve farkli bir yaklasimdir ( teknigi özellikle taze sebze ve meyveler gibi solunum yapan taze gida ürünlerinin muhafazasi için kullanilmaktadir. Buradaki kisitlama, kullanilacak ambalaj malzemesinin yüksek ve seçinimli bir geçirgenlige sahip olma zorunlulugudur. Eger bu saglanamaz ise ambalaj içerisinde istenilen ve raf ömrünü uzatmaya yönelik atmosferik bilesim elde edilemeyecek ve ürünlerin raf ömrünü uzatmak mümkün olmayacaktir. Günümüzde modifiye atmosferde paketleme teknigine uygun ambalajlarin üretimi için kullanilan birçok farkli ticari plastik hammadde ve bu hammaddelerin kullanimi ile gelistirilmis farkli tasarimlara sahip ambalajlar mevcuttur. Ifade edilen ambalajlarin üretiminde PET ve PA gibi düsük gaz geçirgenlik özelliklerine sahip mühendislik plastiklerinin yaninda LDPE, LLDPE, HDPE ve PP gibi göreceli olarak daha yüksek gaz geçirgenlik özelliklerine sahip poliolefinler olarak isimlendirilen plastiklerin kullanimi söz konusudur. Hatta çogu gida ambalaj uygulamasinda, ifade edilen bu plastikler, katmanli bir yapi teskil edecek sekilde bir arada kullanilmaktadir. Lakin ifade edilen bu ambalajlar, düsük gaz geçirgenlik degerlerine sahip olmasi dolayisi ile taze meyve ve sebze gibi solunum yapan ve paralelinde yüksek gaz geçirgenlik degerlerine gereksinim duyulacak ürünlerin muhafazasi için kullanilabilecek MAP tasarimlarinda kullanilan plastik hammaddeler ve paralelinde plastik Filmler, raf ömrünü uzatabilecek basarili bir paketleme uygulamalari için en önemli bilesenlerdir. Kisaca a.MAP uygulamalari için düsük gaz geçirgenlik degerlerine yani bariyer özelliklere sahip polimerik filmlere gereksinim duyulurken, p.MAP uygulamalari için ise muhafaza edilecek taze meyve ve sebzenin solunum hizina bagli olarak yüksek gaz geçirgenlik özelliklerine sahip polimerik filmlere gereksinim duyulmaktadir. Kisaca yüksek ve seçinimli geçirgenlik özelliklerine sahip polimer malzeme ve paralelin de ambalaj arastirmalari, meyve ve sebzeler gibi çabuk bozulabilen gida ürünlerinin raf ömürlerinin uzatilabilmesi için en önemli noktadir. Lakin günümüzde ambalaj üretiminde yogun olarak kullanilan ve ticari plastikler içesinde, göreceli olarak en yüksek gaz geçirgenlik degerlerine sahip LDPE, LLDPE, HDPE ve PP gibi poliolefin grubu plastiklerin bile geçirgenlik degerleri, p.MAP uygulamalarinda elde edilmek istenilen uzun süreli raf ömrü için yeterli olamamaktadir. Örnegin en yüksek gaz geçirgenlik degerlerine sahip ticari polimerlerden birisi olan LDPE türevi plastiklerin bile üretilecek ambalaj filminin kalinligina bagli olarak oksijen gaz geçirgenlik degeri 3.900-13.000 degismektedir. Pasif modifiye atmosferde muhafaza teknigine uygun olarak bir ambalaj içerisinde saklanilmak istenilen en önemli ticari ürünlerden biri olan muzun ise oksijen esasli solunum hizi 30-120 cc.h'1.kg'1 arasinda degismektedir. Eger bu muz 20 kg* lik bir LDPE arasinda ambalaj içi bir günlük oksijen tüketimi söz konusu olacaktir. Bu deger görülebilecegi üzere LDPE' in gaz geçirgenlik degerinin üzerindedir ve bu durumun dogal bir sonucu olarak muhafazanin ilk ya da ikinci günü sonunda ambalaj içerisinde oksijen sifirlanacak, karbondioksit çok yükselecektir. Bu durum, muhafaza edilen ürünün aerobik solunumunun durmasina ve aneorobik solunumun baslamasina yol açacak, muhafaza edilen ürün bozulacak ve ürün ticari degerini tamamen kaybetmis olacaktir. Ifade edilen bu sorunu çözmek için bilinen teknikte kullanilan pratik ve güncel yöntem, ambalajlarin mikroperfore edilmesidir. Bu yöntemde, ambalaj yüzeyine açilacak mikro ölçekli ve farkli konumlarda delikler ile muhafaza edilecek ürün için istenilen ambalaj içi atmosfer bilesiminin temin edilmesi amaçlanmaktadir. Günümüzde yogun olarak kullanilan bir teknigi temsil etmektedir. Lakin muhafaza edilecek ürüne ve dogal olarak solunum hizina bagli olarak delik sayi ve konumlarinin tasarimi büyük önem arz etmektedir. Dogru tasarima sahip ve yüksek bir performansa sahip perfore bir ürünün su ana kadar gelistirilebildigini söylemek mümkün degildir. Bu alandaki tasarim çalismalari da yogun bir sekilde devam etmektedir. Ayrica film üretimi sonrasi ek bir mikro-perforasyon süreci gereksinimi, açilan deliklerin, muhafaza süreçlerindeki basinç farkliligi nedeni ile kapanmasi ya da muhafaza edilen ürünler tarafindan kapatilmasi gibi etkinligi sinirlandiran olumsuzluklar da söz konusudur. Teknigin bilinen durumunda taze meyve ve sebze gibi ürünlerin ambalajlanmasinda kullanilan yapilanmalar ile ilgili bazi basvurulara rastlanilmistir. Bunlardan biri, CN107266820A numarali patent basvurusudur. Basvuruda, yüksek mekanik mukavemete sahip olan ve bakterilerin büyümesini etkili bir sekilde inhibe edebilen, gida üzerindeki taze tutma etkisi gelistirilebilen bir film ve bunun hazirlama yöntemi açiklanmaktadir. Bulusa konu film, özet kisminda belirtildigi üzere polivinil klorür, etilen-vinil asetat kopolimeri, polipropilen, stearik asit, Iauramid etil sodyum sülfat, sodyum aljinat, kitosan, etil asetat, vinil trimetoksisilan, titanyum dioksit, bambu tozu, ftalat esterleri ve modifiye kitin lifinden hazirlanmaktadir. TR 2016 05385 numarali patent basvurusu, gida sanayiinde taze meyve sebze ürünlerinin ambalajlanmasi ile ilgilidir. Basvuruda, farkli fiziksel ve kimyasal özelliklere sahip monomerlerin, degisen oranlarda kullanilarak farkli kompozisyonlarda poliüretan filmlerin sentezlenmesi ve dökme yöntem ve sicak presleme yöntemi ile film haline getirilmesi yöntemini ve bu yöntem ile üretilen ambalaj filmini açiklamaktadir. Bulusa konu film, PEG, hint yagi ve 1,4-bütandiol içermektedir. Son yillarda, ifade edilen gida ambalajlari için gerekli olan uygun gaz geçirgenlik özelliklerini saglamak ve mevcut teknikte karsilasilan kisitlamalari ortadan kaldirmak için gerçeklestirilen çalismalarin, ticari polimerlerin karistirilmasi ve yeni özelliklerde harmanlarin elde edilmesine yönelik oldugu görülmektedir. Bu baglamda, eriyik isleme yöntemleri ile farkli yapilara sahip polimer harmanlarinin hazirlanmasi ve karakterizasyonu hakkinda birçok çalisma yayinlanmistir. Fakat bu çalismalarin çogunda, aktif modifiye atmosferde paketlemeye yönelik olarak polimerik malzemelerin gaz bariyeri özelliklerinin iyilestirilmesinin amaçlandigi tespit edilmektedir. (17-20). Bununla birlikte, pasif modifiye atmosferde muhafaza yöntemine uygun gaz geçirgenlik özelliklerini arttirmaya yönelik sinirli sayida çalisma bulunmaktadir (21,22). Sonuç olarak yukarida bahsedilen olumsuzluklardan ve eksikliklerden dolayi, ilgili teknik alanda bir yenilik yapma ihtiyaci ortaya çikmistir. Bulusun Amaci Mevcut bulus, yukarida bahsedilen gereksinimleri karsilayan, tüm dezavantajlari ortadan kaldiran ve ilave bazi avantajlar getiren, taze meyve ve sebze ambalajlama uygulamalari için polimer harmanlari ve bu harmanlardan üretilen ambalaj filmleri ile ilgilidir. Bulusun ana amaci, plastik ambalajlama uygulamalari için taze meyve ve sebzelerin solunum orani ile uyumlu bir atmosferik bilesim olusturabilen, seçici ve yüksek gaz geçirgenlik özelliklerine sahip, polimer harmanlari elde etmektir. Bulusun amaci, taze meyve ve sebzeler gibi çabuk bozulabilen gida ürünlerinin raf ömürlerinin uzatilmasini saglayan bir ambalaj filmi ortaya koymaktir. Bulusun amaci, muhafaza edilmek istenen ürünün raf ömrünün uzatilmasi için gereksinim duyulan/duyulacak gaz geçirgenlik degerleri ve ambalajin sahip olmasi gerekli mekanik özellikler olmak üzere istenilen tüm teknik degerleri saglayan bir ambalaj filmi elde etmektir. Bulusun amaci, istenilen seçinimli ve yüksek gaz geçirgenlik özelliklerini saglayacak niteliklere sahip harmanlari, alçak yogunluklu polietilen (LDPE) içerisine agirlikça %75'e kadar farkli oranlarda isotaktik bir polimetilpenten (PMP) kopolimeri ekleyerek elde etmektir. Bulusun amaci, polimer harmanini olusturan PMP kopolimerin yapisal özelligi ve LDPE ile PMP polimerleri arasindaki kismi faz ayrismalari sayesinde yüksek gaz geçirgenlik özelliklerine sahip ambalaj filmleri üretmektir. Bulusun amaci, LDPE/PMP harman yapisi sayesinde, perfore ambalajlara oranla daha homojen dagilimli ve en az iki kat yüksek gaz geçirgenlik özelligine sahip bir ambalaj filmi saglamaktir. Bulusun bir amaci, harmandaki PMP oraninin arttirilmasi ya da harmandan üretilen film kalinliginda gerçeklestirilecek degisimler sayesinde geçirgenlik degerlerini çok daha yüksek degerlere çikarilmasini kolaylastiran bir yapilanma saglamaktir. Bulusun bir amaci, LDPE/PMP harmanlarinin üretimi için kullanilan çift vidali bir ekstrüderde basarili bir harman üretimini saglayacak bir ekstrüder vida konfigürasyonu olusturmaktir. Bulusun bir diger amaci, harman üretiminde fazlar arasi uyumsuzluk ve faz ayrismalarini istenilen araliklarda konumlandirilmasina olanak saglayan bir ekstrüder vida konfigürasyonu ortaya koymaktir. Bulusun bir diger amaci, üretilecek ambalaj film kalinligini, muhafaza edilmek istenilen ürünün gereksinim duydugu ambalaj içi atmosferik bilesim, ürün solunum hizi ve ambalaj gaz geçirgenlik degerlerini esas alip, gereksinimleri karsilayacak sekilde belirlemektir. Ambalaj film kalinligi 15-100 mikron arasinda degisebilmektedir. Yukarida anlatilan amaçlarin yerine getirilmesi için bulus, taze meyve ve sebze ambalajlama uygulamalarinda kullanilmak üzere gelistirilen polimer harmani olup, özelligi; taze meyve ve sebzelerin solunum orani ile uyumlu bir atmosferik bilesim olusturmak, seçici ve yüksek gaz geçirgenlik özelliklerini saglamak üzere, PMP, LDPE, EVA ve poligliserol ester içermektedir. Yukarida anlatilan amaçlarin yerine getirilmesi için bulus, taze meyve ve sebze ambalajlama uygulamalarinda kullanilmak üzere gelistirilen polimer harmaninin üretim yöntemi olup, özelligi; taze meyve ve sebzelerin solunum orani ile uyumlu bir atmosferik bilesim olusturmak, seçici ve yüksek gaz geçirgenlik özelliklerini saglamak üzere, . PMP, LDPE, etilen-vinil asetat kopolimeri ve poligliserol esterin mikser içerisinde homojen karisim haline gelene dek karistirilmasi, o fazlar arasi uyumsuzluk ve faz ayrismalarini istenilen araliklarda konumlandirmak üzere, kullanilacak L/D 48/1 olan çift vidali ekstrüderin vida konfigürasyonunun ayarlanmasi, . ekstrüder kovan sicakliklarinin, ekstrüdere hammaddelerin girecegi bölgede 220 °C ile kademeli olarak kafa kalibina kadar 260 °C`ye ulasacak sekilde ayarlanmasi, - elde edilen harmanin ana dozajlamadan çift vidali ekstrüdere beslenmesi, Bulusun amaçlarini gerçeklestirmek üzere, vida konfigürasyonu sirasiyla, 4 adet 56x56 vida, seklindedir. Bulusun amaçlarini gerçeklestirmek üzere, polimer harmani pasif modifiye atmosfer ambalaj filmi üretiminde kullanilmakta olup, ambalaj filmi taze meyve ve sebzelerin solunum orani ile uyumlu bir atmosferik bilesim olusturmakta, seçici ve yüksek gaz geçirgenlik özelliklerini saglamaktadir. Bulusun yapisal ve karakteristik özellikleri ve tüm avantajlari asagida verilen detayli açiklama sayesinde daha net olarak anlasilacaktir ve bu nedenle degerlendirmenin de bu detayli açiklama göz önüne alinarak yapilmasi gerekmektedir. Bulusun Anlasilmasina Yardimci Olacak Sekiller Sekil-1: Polimer harmaninin çift vidali bir ekstrüderde üretiminde kullanilan vida konfigürasyonunun temsili görünümdür. Sekil-2: LDPE kopolimerinden üretilmis filmlerin kesitlerinden alinmis SEM görüntüsüdür. Sekil-3: PMP kopolimerinden üretilmis filmlerin kesitlerinden alinmis SEM görüntüsüdür. Sekil-4: Agirlikça %20 PMP kopolimeri içeren LDPE/PMP harmanlarindan üretilmis 20 mikron kalinligindaki ambalajlarin kesitten alinmis SEM görüntüsüdür. Sekil-5: Agirlikça ise %30 PMP kopolimeri içeren LDPE/PMP harmanlarindan üretilmis 20 mikron kalinligindaki ambalajlarin kesitten alinmis SEM görüntüsüdür. Çizimlerin mutlaka ölçeklendirilmesi gerekmemektedir ve mevcut bulusu anlamak için gerekli olmayan detaylar ihmal edilmis olabilmektedir. Bundan baska, en azindan büyük ölçüde özdes olan veya en azindan büyük ölçüde özdes islevleri olan elemanlar, ayni numara ile gösterilmektedir. Parça Referanslarinin Açiklamasi . Vida konfigürasyonu 11. 56x56 vida 12. 96x96 vida 13. 72x72 vida 14. 96x48 vida . 45X5x58 kirici 16. 60X4x56 kirici 17. 56x28 sol vida 18. 30x7x72 kirici Bulusun Detayli Açiklamasi Bu detayli açiklamada, taze meyve ve sebze ambalajlama uygulamalari için polimer harmani ve bu harmandan üretilen ambalaj filmi, sadece konunun daha iyi anlasilmasina yönelik olarak ve hiçbir sinirlayici etki olusturmayacak sekilde açiklanmaktadir. Bulus, taze meyve ve sebze ambalajlama uygulamalarinda kullanilmak üzere gelistirilen polimer harmanlari ve bu harmanlardan üretilen ambalaj filmleri ile ilgilidir. Bulusun en önemli özelligi, taze meyve ve sebzelerin solunum orani ile uyumlu bir atmosferik bilesim olusturulmasi, seçici ve yüksek gaz geçirgenlik özelliklerinin saglamasidir. Bulusa konu polimer harmaninin formülasyonu; Içerik Agirlikça tercih Agirlikça kullanilabilir edilen miktar (%) miktar (%) Poli(4-metiI-1-penten) (PMP) 20 10-50 Alçak yogunluklu polietilen (LDPE) 64 50-87 Dogrusal alçak yogunluklu polietilen (LLDPE) Etilen-vinil asetat kopolimeri (EVA) 10 1-10 Maleik anhidrit asili LDPE (PE.g.MA) 5 1-10 Poligliserol ester 1 1-5 PMP (4-metilpenten-1 tabanli olefin kopolimeri), 4-methylpentene-1-based olefin kopolimer olarak isimlendirilen kopolimerleri temsil etmektedir. Bu kopolimerler, kristalin ve özel bir karakteristik yapisi nedeni ile yüksek isik geçirgenligine sahiptir. Ayrica benzersiz yapisi itibari ile LDPE ve LLDPE gibi ambalaj sektöründe yogun olarak kullanilan poliolefinlere nazaran en az 10 kat daha yüksek gaz geçirgenlik degerlerine sahiptir. Moleküler agirlig olarak çekme mukavemeti 10 IVIPA, kopmada Uzama %1O mekanik degerlerini karsilayan tüm muadil ürünler kullanilabilmektedir. Bulusa konu olan yapi içerisinde öncelikli olarak kullanilabilmektedir. LDPE (alçak yogunluklu polietilen): Düsük yogunluklu polietilen olarak isimlendirilen ve genel ambalaj film üretimi için gelistirilmis grup plastikler kullanilacaktir. Içeriginde erucamide ve oleamide esasli slip katkilar ile amorf silika olarak adlandirilan antiblok katkilar yer almaktadir. Ilgili bilesenin Eriyik Akis Indeks Degeri (MFI/MFR) lSO 1133 standartina uygun ASTM D882 standardina uygun olarak çekme mukavemeti 10 MPA, kopmada uzama °/o300 mekanik degerlerini karsilayan tüm muadil ürünler kullanilabilmektedir. LLDPE (dogrusal alçak yogunluklu polietilen), büten dogrusal alçak yogunluklu polietilen olarak isimlendirilen ve genel ambalaj film üretimi için gelistirilmis grup plastikler kullanilacaktir. Içerikte erucamide ve oleamide esasli slip katkilar ile amorf silika olarak adlandirilan antiblok katkilar yer almaktadir. Ilgili bilesenin Eriyik Akis Indeks Degeri ile 2 9/10 dakika araliginda olmalidir. Yogunluk degeri ASTM D1505 standartina uygun olarak 0,92 g/cm3 degerinden düsük olmalidir. ASTM D882 standartina uygun olarak çekme mukavemeti 20 MPA, kopmada uzama %300 mekanik degerlerini karsilayan tüm muadil ürünler kullanilabilmektedir. EVA kopolimeri, bulus içeriginde su buhari geçirgenligi ve ambalajin isisal yapisma özelliklerini iyilestirmek için kullanilmaktadir. Kullanilan EVA kopolimerinin, VA (Vinil Asetat) içerigi %12 ile %21 arasinda degisebilmektedir. Ilgili bilesenin Eriyik Akis Indeks Degeri, 9/10 dakika araliginda olmalidir. Yogunluk degeri ASTM D1505 standardina uygun olarak Ultra LD 730 ve sonrasinda EscoreneTM Ultra LD 705.MJ kodlu EVA kopolimer ya da muadilleri kullanilabilmektedir. Maleik asilanmis kopolimerler (PE.g.MA ya da POE.g.MA), LDPE/PMP harmanlar arasindaki uyumsuzluk ve paralelinde faz ayrimini sinirlandirmak amaci kullanilmakta olup, bulusa konu olan harman içerigine tercihen agirlikça %5-10 oraninda degisen asilanmis kopolimerler girilebilmektedir. Asilanmis kopolimer olarak poliolefin elastomer graft maleic anhydride ya da Lineer Low Density Polyethylene graf maleic anhydride kullanilabilmektedir. Maleik anhidrit asi oraninin, %0,5 üzerinde olmasi gerekmektedir. Ilgili bilesenin Eriyik Akis Indeks standardina uygun olarak 0,935 g/cm3 ve 1,02 g/cm3 araliginda olmalidir. Poligliserol ester, bugu önleyici ajan olarak kullanilmaktadir. Pasif modifiye atmosfer teknigine uygun ambalajlarin en önemli teknik özelliklerinden birisi de, muhafaza süresince ambalaj yüzeyinde bugu olusmama zorunlulugudur. Bugu olusumunun engellenmesi için yüzeye migre olarak, ambalaj yüzey enerjisini ya da yüzeyde biriken su damlaciklarinin içerisinde çözünerek yüzey enerjilerini degistiren çesitli bitkisel ya da hayvansal yaglar ambalaj yapisina eklenmektedir. Bulus kapsaminda da, harman üretim süreçleri kapsaminda içerige bitkisel esasli bir sorbital ester bileseni girilmistir. Ilgili bilesenin yapi içerisindeki orani, agirlikça %1-5 arasinda degisebilecektir. Bulus kapsaminda, Croda® firmasinin patentli ürünü kullanilmaktadir. Ambalajlama için bugu yapmama özelligi büyük önem arz ettigi için polimer harmani formülasyonu içeriginde tercihen agirlikça %2 oraninda bugu önleyici ajan kullanilmaktadir. Seri üretim kapsaminda, gereksinim duyulacak özelliklere bagli olarak bu oran %1-5 arasinda degistirilebilmektedir. Bulus ile plastik ambalajlama uygulamalari için taze meyve ve sebzelerin solunum orani ile uyumlu bir atmosferik bilesim olusturabilen seçici ve yüksek gaz geçirgenlik özelliklerine sahip, polimer harmanlari elde edilmektedir. Istenilen seçinimli ve yüksek gaz geçirgenlik özelliklerini saglayacak niteliklere sahip alasimlar, alçak yogunluklu polietilen (LDPE) içerisine agirlikça %75'e kadar degisen oranlarda isotaktik bir polimetilpenten (PMP) kopolimeri eklenerek elde edilmektedir. LDPE/PMP harmanlari ve harmanda yer alan polimerler, eriyik harmanlama yöntemine uygun olarak çift vidali bir ekstrüder kullanilarak üretilmektedir. Bulus kapsaminda çift vidali ekstrüder vida konfigürasyonu, en yüksek seviyede homojen bir dengeli bir yapi elde etmek üzere, yeniden tasarlanmistir. Sekil-1'de LDPE/PMP harmanlarinin çift vidali bir ekstrüderde üretiminde kullanilan vida konfigürasyonunun (10) temsili görünümü verilmektedir. Buna göre bulusa konu LDPE/PMP harmanlarinin çift vidali ekstrüderde üretilmesinde kullanilan vida konfigürasyonu (10) sirasiyla, 4 adet 56x56 vida seklindedir. Bulusa konu polimer harmaninin Üretim yöntemi' su seki/dedin' i PIVIP, LDPE veya LLDPE, etilen-vinil asetat kopolimeri, maleik anhidrit asili LDPE ve poligliserol ester mikser içerisinde homojen karisim haline gelene dek karistirilir, . L/D 48/1 olan çift vidali ekstrüderin vicla konfigürasyonu, fazlar arasi uyumsuzluk ve faz ayrismalarini istenilen araliklarda konumlandirmak üzere ayarlanir, o Ekstrüder kovan sicakliklari, ekstrüdere hammaddelerin girecegi bölgede 220 °C ile kademeli olarak kafa kalibina kadar 260 °C`ye ulasacak sekilde ayarlanir, o Elde edilen harman ana dozajlamadan çift vidali ekstrüdere beslenir ve ekstrüder çikisinda polimer harmani elde edilir. Bulusun tercih edilen yapilanmasinda, gravimetrik ana ve yan dozatörleri olan çift vidali ekstrüderler ile mikserlemeye gerek olmadan direk üretim de yapilabilmektedir. Yukarida bahsedilen üretim yönteminde eriyik harmanlama yöntemi kullanilmakta olup, ekstrüder vida çapi. 26-70 mm arasinda degisebilmektedir. Vida devir hizi ise, istenilen üretim kapasitesine bagli olarak 200-500 rpm arasinda degiskenlik gösterebilmektedir. Bulusa konu üretim yöntemi ile elde edilen harmanlar ile pasif modifiye atmosfer ambalaj filmi üretiminde kullanilmaktadir. Ambalaj filmi üretimi, sisirme ekstrüzyon (blow film extrusion) yöntemi ile gerçeklestirilmektedir. Blow film makinesinin vida çapi 20-70 mm, kafa kalip çapi ise istenilen ambalaj ölçüsüne bagli olarak 50-500 mm arasinda degisebilmektedir. Film üretimi için özel bir vida konfigürasyonuna gereksinim duyulmamaktadir. Ambalaj filminin üretimi için ekstrüder kovan sicakliklarinin 220-260 °C arasinda degisen bir sekilde ayarlanmasi gerekmektedir. Üretilecek ambalaj film kalinligi, muhafaza edilmek istenilen ürünün gereksinim duydugu ambalaj içi atmosferik bilesim, ürün solunum hizi ve ambalaj gaz geçirgenlik degerleri esas alinarak, gereksinimleri karsilayacak sekilde 15-100 mikron arasinda degisebilmektedir. Bulusa konu harman yapisi ve üretim süreci ile basta muhafaza edilmek istenen ürünün raf ömrünün uzatilmasi için gereksinim duyulan/duyulacak gaz geçirgenlik degerleri ve ambalajin sahip olmasi gerekli mekanik özellikler olmak üzere istenilen tüm teknik degerler kolaylikla yaratilabilmektedir. Bulusa konu polimer harmanlari ile elde edilen filmlerin oksijen geçirgenlik (OTR) degerleri, ASTM F2622 standardina göre belirlenirken, karbondioksit gaz geçirgenlik (COTR) degerleri ise ASTM F2476 standardina göre tespit edilmistir. Tablo-1'de bulusa konu LDPE/PMP harmani ile elde edilen ambalaj filmlerinin mevcut teknikte kullanilan ambalaj filmlerine karsilik farkli sicakliklarda oksijen geçirgenligi, tablo-2'de ise karbondioksit geçirgenligi sonuçlari verilmektedir. Tablo-1: Bulusa konu LDPE/PMP harmani ile elde edilen ambalaj filmlerinin mevcut teknikte kullanilan ambalaj filmlerine karsilik farkli sicakliklarda oksijen geçirgenligi Oksijen Geçirgenligi (cc/m2.day.atm) Numune Adi Tablo-2: Bulusa konu LDPE/PMP harmani ile elde edilen ambalaj filmlerinin mevcut teknikte kullanilan ambalaj filmlerine karsilik farkli sicakliklarda karbondioksit geçirgenligi Karbondioksit Geçirgenligi (cc/m2.day.atm) Numune Adi LDPE/PMP harmani(20u) Ölçülemiyor Ölçülemiyor Ölçülemiyor Ölçülemiyor LDPE/PMP harmani(15p) Ölçülemiyor Ölçülemiyor Ölçülemiyor Ölçülemiyor Tablo-1 ve Z'den anlasilacagi üzere günümüzde bulusa konu polimer harmani ile yogun olarak kullanilan mikro-perforasyon tekniginden de yüksek gaz geçirgenlik degerleri elde edilebilmektedir. Yüksek gaz geçirgenlik özellikleri PMP kopolimerin yapisal özelligi ve LDPE ile PMP polimerleri arasindaki faz ayrismasi kaynakli elde edilmektedir. Tablo-1 ve 2'deki LDPE/PMP harmanlari agirlikça %70/%30 bilesimine sahip olmasina karsin, mikro-perfore ambalajlara nazaran iki kat yüksek gaz geçirgenlik degerleri elde edilmistir. Harmandaki PMP oraninin arttirilmasi ya da harmandan üretilen ambalaj kalinliginda gerçeklestirilecek degisimler ile geçirgenlik degerleri çok daha yüksek degerlere kolaylikla çikarilabilmektedir. Mikro-Perfore yapili ambalajlarda oldugu gibi gözeneklerin kapanmasi gibi bir olumsuzluk söz konusu degildir. LDPE/PMP harman yapisi sayesinde, perfore ambalajlara nazaran daha homojen dagilimli bir gaz geçirgenlik özelligi söz konusudur. Yani mikro-perfore yapiya göre ambalajin her bölgesi benzer gaz geçirgenlik degerleri göstermektedir. Gaz geçirgenlik analizleri, elde edilen degerlerin literatür bilgileri ile tutarli olmasi amaciyla bulusa konu olan harmanlardan 100 mikron kalinliginda çekilmis ambalaj film örnekleri üzerinden de gerçeklestirilmistir. Tablo-?te LDPE/PMP harmanlarindan elde edilen 100 mikron kalinligindaki ambalaj filmlerinin 25 0C ve %90 RH (Bagil Nem) sartlarinda tespit edilen oksijen ve karbondioksit gaz geçirgenlikleri, tablo-4'te ise LDPE/PMP harmanlarindan elde edilen 20 mikron kalinligindaki ambalaj filmlerinin 25 "C ve %90 RH (Bagil Nem) sartlarinda tespit edilen oksijen ve karbondioksit gaz geçirgenlikleri verilmektedir. Tablo-3: LDPE/PMP harmanlarindan elde edilen 100 mikron kalinligindaki ambalaj filmlerinin 25 °C ve %90 RH (Bagil Nem) sartlarinda tespit edilen oksijen ve karbondioksit gaz geçirgenlikleri 16. 15. S9` SAMPLES 'ö 8 E 6 âî 8 â E 5 Tablo-4: LDPE/PMP harmanlarindan elde edilen 20 mikron kalinligindaki ambalaj filmlerinin "C ve %90 RH (Bagil Nem) sartlarinda tespit edilen oksijen ve karbondioksit gaz geçirgenlikleri 0: 5. g h i- E E SAMPLES 5 .8, a s :es: 8 .8, 'g 6 PMP 147.982 ±1.1 - Ölçülemiyor - Tablo-3'deki degerlere göre LDPE türevi ambalajlara nazaran gaz geçirgenlik degeri 2,5 kat, karbondioksit degerleri ise 4,5 kata kadar arttirilabilmektedir. Ambalaj kalinliginin 20 mikrona indirilmesi ile gerçeklestirilen analizlerin sonuçlarinin paylasildigi tablo-4'ten anlasilacagi üzere, ambalaj kalinliginin azaltilmasi ile çok daha yüksek geçirgenlik degerleri elde edilebilmektedir. Kalinlik artisi ve PMP oranlari birlikte ele alinarak geçirgenlik artislari incelendiginde, ambalaj kalinliginin azaltilmasinin çok daha üstünde gaz geçirgenlik artislari gözlenmektedir. Bu durum, ambalaj inceldikçe harman yapisindaki LDPE ve PMP faz ayrimlarinin artmasindan kaynaklandigi düsünülmektedir. Fakat ambalaj geçirgenliginin istenilen sekilde, maliyet etkin ayarlanmasi için bir avantaj ortaya çikarmaktadir. Tablo-öte ise, ASTM D882 standartina göre gerçeklestirilmis çekme testi neticesinde elde edilmis mekanik degerleri verilmektedir. Mekanik testler, pasit modifiye atmosferde muhafaza teknigine uygun ambalajlari temsil edecek LDPE/PMP harmanlarindan çekilmis 100 mikron kalinligindaki filmler üzerinde gerçeklestirilmistir. Analiz sonuçlari, yapiya eklenen PMP kopolimeri orani ile orantili olarak çekme mukavemet degerlerinin arttigini, paralelinde %kopma uzama degerlerinin düstügünü göstermektedir. Tespit edilen bu degerler, harmanlarin ambalaj üretiminde sorunsuz bir sekilde kullanilabilecegini açik bir sekilde göstermektedir. Tablo-5: LDPE/PMP harmanlarindan elde edilen 100 mikron kalinligindaki ambalaj filmlerinin ASTM D882 standartina göre gerçeklestirilmis mekanik analiz sonuçlari Elasticity SAMPLES Tensile Strength (M Pa) Tensile Strength at Break Elongation at Braek (%) Modulus LDPE/PMP harmanlari bilesiminde kullanilan LDPE ve PMP kopolimerlerinden üretilmis filmlerin taramali elektron mikroskopu ile kesitten alinmis SEM görüntüleri elde edilmistir. Sekil-2'de LDPE kopolimerinden üretilmis filmlerin kesitlerinden alinmis SEM görüntüleri, sekil-3'te ise PMP kopolimerinden üretilmis filmlerin kesitlerinden alinmis SEM görüntüleri verilmektedir. SEM görüntüleri, filmlerin oldukça homojen bir yapiya sahip oldugu ve içeriginde herhangi bir safsizlik olmadigini açik bir sekilde göstermektedir. Sekil-4'te agirlikça %20 PMP kopolimeri içeren LDPE/PMP harmanlarindan üretilmis 20 mikron kalinligindaki ambalajlarin kesitten alinmis SEM görüntüleri, sekil-5"te ise %30 PMP kopolimeri içeren LDPE/PMP harmanlarindan üretilmis 20 mikron kalinligindaki ambalajlarin kesitten alinmis SEM görüntüleri verilmektedir. SEM görüntülerinde gözüken tabakali yapi, LDPE ve PMP harmanlari içerigindeki bilesenlerin faz ayrimini temsil etmektedir. Yüksek gaz geçirgenlik degerleri, PMP kopolimerlerin yüksek gaz geçirgenlik degerlerine sahip olmasinin yaninda, bu faz ayrismasindan da kaynaklanmaktadir. Yesil muzlar, %100 LDPE'den mamul ambalaj filmi içerisinde muhafaza edilmis ve raf ömürleri analiz edilmistir. Ambalaj filmi 4L iç hacme ve 200x300mm boyutlarindadir. Ambalaj filmi içerisine 500 gr yesil muz konumlandirilmistir. Tablo-6'da %100 LDPEden üretilmis ambalaj filmi içerisinde yesil muz muhafazasi ve raf ömrü göstergesi olarak ambalaj içi atmosferik bilesimdeki zamana bagli degisimlerin analiz sonuçlari verilmektedir. 14 gün sonunda hesaplanan ortalama etilen konsantrasyonu ise 0.00554 ppm/g.l.gün seklindedir. Tablo-6: %100 LDPE`den üretilmis ambalaj filmi içerisinde yesil muz muhafazasi ve raf ömrü göstergesi olarak ambalaj içi atmosferik bilesimdeki zamana bagli degisimlerin analiz sonuçlari Deneysel çalisma 2,' Yesil muzlar, %10 PMP kopolimeri içeren LDPE/PMP harmanindan üretilmis ambalaj filmi içerisinde muhafaza edilmis ve raf ömürleri analiz edilmistir. Ambalaj filmi 4L iç hacme ve 200x300mm boyutlarindadir. Ambalaj filmi içerisine 510 gr yesil muz konumlandirilmistir. Tablo-7'de %10 PlVIP kopolimeri içeren LDPE/PMP harmanindan üretilmis ambalaj filmi içerisinde yesil muz muhafazasi ve raf ömrü göstergesi olarak ambalaj içi atmosferik bilesimdeki zamana bagli degisimlerin analiz sonuçlari verilmektedir. 14 gün sonunda hesaplanan ortalama etilen konsantrasyonu ise 0,00472 ppm/g.l.gün seklindedir. Tablo-7: %10 PMP kopolimeri içeren LDPE/PMP harmanindan üretilmis ambalaj filmi içerisinde yesil muz muhafazasi ve raf ömrü göstergesi olarak amabalaj içi atmosferik bilesimdeki zamana bagli degisimlerin analiz sonuçlari Deneysel çalisma 3,' Yesil muzlar, %25 PMP kopolimeri içeren LDPE/PMP harmanindan üretilmis ambalaj filmi içerisinde muhafaza edilmis ve raf ömürleri analiz edilmistir. Ambalaj filmi 4L iç hacme ve 200X300mm boyutlarindadir. Ambalaj filmi içerisine 508 gr yesil muz konumlandirilmistir. Tablo-8'de %25 PMP kopolimeri içeren LDPE/PMP harmanindan üretilmis ambalaj filmi içerisinde yesil muz muhafazasi ve raf ömrü göstergesi olarak ambalaj içi atmosferik bilesimdeki zamana bagli degisimlerin analiz sonuçlari verilmektedir. 14 gün sonunda hesaplanan ortalama etilen konsantrasyonu ise 0,00218 ppm/g.l.gün seklindedir. Tablo-8: %25 PMP kopolimeri içeren LDPE/PlVIP harmanindan üretilmis ambalaj filmi içerisinde yesil muz muhafazasi ve raf ömrü göstergesi olarak ambalaj içi atmosferik bilesimdeki zamana bagli degisimlerin analiz sonuçlari LDPE, LLDPE, PE.g.MA ve PMP kopolimerlerinin farkli teknik özellige sahip olanlari tiplerini, farkli oranlarda kullanilarak potansiyel bulusa benzer bir üretimin gerçeklestirilmesi ihtimal dahilinde görünmektedir. Bunun haricinde bilesenlerin, çift Vidali ekstrüderde islenmeksizin bir karisim olarak film üretim süreçlerinde kullanimi ise mümkün görünmemektedir. KAYNAKLAR . Gokkurt, T., Findik, F., Unal, H., & Mimaroglu, A. (2012). Extension iri Shelf Life of Fresh Food Using Nanomaterials Food Packages. Polymer-Plastics United Nations Children's Emergency Fund (UNICEF). (2011). Levels and Trends in Child Mortality, Estimates Developed by the UN Inter-agency Group for Child Mortality Estimation. FAO (2008). The State of Food Insecurity in the World High Food Prices and Food Security-Threats and Opportunities, Food and Agriculture Organization of the United Nations, Rome, Italy. Mirabella, N., Castellani, V., and Sala, S. (2014). Current options for the valorization of food manufacturing waste: a review, Journal of Cleaner Production, vol. 65, pp. 28-41. C. Beretta, F. Stoessel, U. Baier, and 8. Hellweg. (2013). "Quantifying food losses and the potential for reduction iri Switzerland," Waste Management, vol. 33, no. 3, pp. 764-773. Ghosh, P. R., Fawcett, D., Sharma, S. B., & Poinern, G. E. J. (2016). Progress towards Sustainable Utilisation and Management of Food Wastes in the Global Economy. International Journal of Food Science, 1-22. De Laurentiis, V., Corrado, S., & Sala, S. (2018). Quantifying household waste of fresh fruit and vegetables in the EU. Waste Management, 77, 238-251. Gustavsson, J., Cederberg, C., Sonesson, U., Otterdijk, R. Van., and Meybeck, A. (2011). Global Food Losses and Food Waste: Extent, Causes and Prevention, Food and Agriculture Organization of the United Nations, Rome, Italy, Gerland, P., Raftery, A.E., Sevöikova, H., et al., (2014). World population .Zhuang, H., Barth, M. M., & Cisneros-Zevallos, L. (2014). Modified Atmosphere Packaging for Fresh Fruits and Vegetables. Innovations in Food Packaging, 445- Esturk, O., Ayhan, Z., & Gokkurt, T. (2013). Production and Application of Active Packaging Film with Ethylene Adsorber to Increase the Shelf Life of Broccoli (Brassica oleraceaL. var. ltalica). Packaging Technology and Science, 27(3), 179-191. 12.Altieri, G., Genovese, F., Matera, A., Tauriello, A., & Di Renzo, G. C. (2018). Characterization of an innovative device controlling gaseous exchange in packages for food products. Postharvest Biology and Technology, 138, 64-73. 13.Tumwesigye, K. S., Sousa, A. R., Oliveira, J. C., & Sousa-Gallagher, M. J. (2017). Evaluation of novel bitter cassava film for equilibrium modified atmosphere packaging of cherry tomatoes. Food Packaging and Shelf Life, 13, Mastromatteo, M., Conte, A., Del Nobile, M.A., (2010). Combined use of modified atmosphere packaging and natural compounds for food preservation. Food Eng. .Tajeddin, B., Ahmadi, B., Sohrab, F., & Chenarbon, H. A. (2018). Polymers for Modified Atmosphere Packaging Applications. Food Packaging and Preservation, 457-499. Mangaraj, S., Goswami, T., Mahajan, P., (2009). Applications of plastic films for modified atmosphere packaging of fruits and vegetables: a review. Food Eng. Faisant, J. B., A'i't-Kadi, A., Bousmina, M., & Desche"nes, L. (1998). Morphology, thermomechanical and barrier properties of polypropylene-ethylene vinyl alcohol blends. Polymer, 39(3), 533-545. 18.Yeh, J.-T., Chao, C.-C., & Chen, C.-H. (2000). Effects of processing conditions on the barrier properties of polyethylene (PE)/modified polyamide (MPA) and modified polyethylene (MPE)/polyamide (PA) blends. Journal of Applied Polymer FROUNCHI, M., DADBIN, S., SALEHPOUR, Z., & NOFERESTI, M. (2006). Gas barrier properties of PP/EPDM blend nanocomposites. Journal of Membrane Donadi, S., Modesti, M., Lorenzetti, A., & Besco, S. (2011). PET/PA nanocomposite blends with improved gas barrier properties: Effect of processing Scafati, S. T., Boragno, L., Losio, S., Conzatti, L., Lanati, S., Sacchi, M. C., & Stagnaro, P. (2013). Innovative films with tunable permeability for fresh vegetable packaging applications. Journal of Applied Polymer Science, 131(6), Merkel, K., LenZa, J., Rydarowski, H., Pawlak, A., & Wrzalik, R. (2016). Characterization of structure and properties of polymer films made from blends of polyethylene with poly(4-methyl-1-pentene). Journal of Materials Research, HV mag WD der ::pm HV mag WD det Spot :0 pm 00 ICV G 000 2 7 S mm ETE ` METU CEHTRAL LAB 2075 HV mag WD det spot ›_-2Ü m TR TR TR DESCRIPTION Polymer blends for fresh fruit and vegetable packaging applications and packaging films produced from these blends Technical Field The invention relates to the polymer blend developed for use in fresh fruit and vegetable packaging applications and the packaging film produced from this blend. In particular, the invention is based on poly(4-methyl-1-pentene), low-density polyethylene or linear low-density polyethylene, ethylene-vinyl acetate copolymer, to create an atmospheric composition compatible with the respiration rate of fresh fruits and vegetables and to provide selective and high gas permeability properties. and polymer blends containing polyglycerol ester, the production method of polymer blends with the screw configuration created to obtain a homogeneous and balanced structure at the highest level, and the packaging films produced from these blends. State of the Art Millions of people around the world cannot access even the most basic food items due to many negative factors such as global warming, climatic changes, increasing population and economic crises (1). Currently, approximately 21,000 people die every day from hunger-related causes, and one in nine people in the world goes hungry every night (2-4). On the other hand, billions of tons of food products produced annually in the world are thrown away without being consumed by people, due to deficiencies in storage and packaging methods. For example, approximately 40% of fresh fruits and vegetables and seafood are stated to be key factors in reducing and preventing food waste if we want to feed the world population, which will reach 12.3 billion people per year (8,9). Therefore, the shelf life of food products and Preservation is becoming more important than in previous years. In order to prevent these losses in the known art, current studies focus on preservation techniques aimed at improving storage conditions, especially modified atmosphere packaging, to extend the shelf life and protect food quality. It is defined as a packaging technology that enables the creation of an atmospheric composition. The most basic principle in modified packaging applications that extends the shelf life of breathable food products, such as fresh vegetables and fruits, is a natural atmospheric change as a result of an interaction between the decomposition rate of the product stored in the package and the permeability of the packaging film. It is based on its implementation (10-14). Modified atmosphere packaging (MAP) technology provides the advantage of packaging that limits distribution costs with minimal impact on the nutritional value or organoleptic quality of the product by allowing the shelf life of perishable products to be extended after harvest (14). The modified atmosphere packaging technique can be seen as a revolutionary step that allows retailers to market fresh foods with a long shelf life without any major processing, preservatives or chemical additives. MAP technology is divided into two basic classes: passive and active (p.MAP and a.MAP) (15). Active modified atmosphere packaging technology (a.MAP) represents the technique of changing the atmospheric composition in the packaging in a desired way that will extend the shelf life by using various gases such as nitrogen, oxygen and carbon dioxide. Although it is a technique that can be used to extend the shelf life of all kinds of food products, it is generally used for meat products, fruit juices, etc. that spoil by oxidation. It is a technique used for packaging products such as. The atmospheric composition required to extend the shelf life of the product to be kept in the packaging is created externally. The limitation here is that the packaging material to be used must have low gas permeability, that is, barrier properties. If this cannot be achieved, the gas composition created in the package will disappear in a short time due to the effect of permeability and the desired shelf life will not be achieved. Passive modified atmosphere packaging technology (p.MAP) is a dynamic and different approach based on the interaction of the permeability of the film and the physiological processes (mostly respiration) of the fresh product to change the original atmospheric gas composition inside the package (the technique is especially used in respiring fresh vegetables and fruits). It is used for the preservation of food products. The limitation here is that the packaging material to be used must have a high and selective permeability. If this cannot be achieved, the desired atmospheric composition to extend the shelf life will not be achieved and it will not be possible to extend the shelf life of the products. There are many different commercial plastic raw materials used for the production of suitable packages and packages with different designs developed using these raw materials. In the production of the mentioned packages, engineering plastics with low gas permeability properties such as PET and PA are used, as well as relatively higher ones such as LDPE, LLDPE, HDPE and PP. Plastics called polyolefins with gas permeability properties are used. In fact, in most food packaging applications, these plastics are used together to form a layered structure. However, these packages are plastic raw materials used in MAP designs, which can be used for the preservation of respiring products such as fresh fruits and vegetables, which require high gas permeability values, as they have low gas permeability values, and plastic films are successful packaging applications that can extend the shelf life. are the most important components for Briefly, for a.MAP applications, polymeric films with low gas permeability values, that is, polymeric films with barrier properties, are needed, while for p.MAP applications, polymeric films with high gas permeability properties are needed, depending on the respiration rate of the fresh fruits and vegetables to be preserved. In short, research on polymer materials with high and selective permeability properties and, in parallel, on packaging, is the most important point in extending the shelf life of perishable food products such as fruits and vegetables. However, even the permeability values of polyolefin group plastics such as LDPE, LLDPE, HDPE and PP, which are used extensively in packaging production today and have the highest gas permeability values among commercial plastics, are not sufficient for the long-term shelf life desired to be achieved in p.MAP applications. For example, even LDPE-derived plastics, which are one of the commercial polymers with the highest gas permeability values, have an oxygen gas permeability value of 3,900-13,000 depending on the thickness of the packaging film to be produced. The oxygen-based respiration rate of banana, which is one of the most important commercial products to be stored in a package in accordance with the passive modified atmosphere preservation technique, varies between 30-120 cc.h'1.kg'1. If this banana is in a 20 kg* LDPE package, there will be a daily oxygen consumption in the packaging. As can be seen, this value is above the gas permeability value of LDPE, and as a natural result of this situation, at the end of the first or second day of storage, oxygen in the package will be zero and carbon dioxide will rise significantly. This will cause the aerobic respiration of the preserved product to stop and the anaerobic respiration to begin, the preserved product will deteriorate and the product will completely lose its commercial value. The practical and current method used in the known art to solve this problem is microperforation of the packages. In this method, it is aimed to provide the desired in-package atmosphere composition for the product to be stored by opening micro-scale holes in different positions on the packaging surface. It represents a technique that is used extensively today. However, the design of the number and location of holes is of great importance depending on the product to be preserved and naturally the respiratory rate. It is not possible to say that a perforated product with the right design and high performance has been developed so far. Design studies in this field continue intensively. There are also drawbacks that limit the effectiveness, such as the need for an additional micro-perforation process after film production, the opening of the holes being closed due to the pressure difference in the preservation processes or being covered by the preserved products. In the state of the art, some applications have been found regarding structures used in the packaging of products such as fresh fruits and vegetables. One of these is the patent application number CN107266820A. The application describes a film and its preparation method, which has high mechanical strength and can effectively inhibit the growth of bacteria, improving the fresh-keeping effect on food. The film subject to the invention, as stated in the summary, is made of polyvinyl chloride, ethylene-vinyl acetate copolymer, polypropylene, stearic acid, Iauramide ethyl sodium sulfate, sodium alginate, chitosan, ethyl acetate, vinyl trimethoxysilane, titanium dioxide, bamboo powder, phthalate esters and modified chitin fiber. is being prepared. The patent application numbered TR 2016 05385 is related to the packaging of fresh fruit and vegetable products in the food industry. The application explains the method of synthesizing polyurethane films in different compositions by using monomers with different physical and chemical properties in varying proportions and turning them into films by the casting method and hot pressing method, and the packaging film produced by this method. The film subject to the invention contains PEG, castor oil and 1,4-butanediol. In recent years, it has been observed that the studies carried out to provide the appropriate gas permeability properties required for food packaging and to eliminate the limitations encountered in the current technique are aimed at mixing commercial polymers and obtaining blends with new properties. In this context, many studies have been published on the preparation and characterization of polymer blends with different structures using melt processing methods. However, it is determined that most of these studies aim to improve the gas barrier properties of polymeric materials for packaging in active modified atmosphere. (17-20). However, there are a limited number of studies aimed at increasing the gas permeability properties suitable for the passive modified atmosphere preservation method (21,22). As a result, due to the negativities and deficiencies mentioned above, the need for innovation in the relevant technical field has emerged. Purpose of the Invention The present invention relates to polymer blends and packaging films produced from these blends for fresh fruit and vegetable packaging applications, which meet the above-mentioned requirements, eliminate all disadvantages and bring some additional advantages. The main purpose of the invention is to obtain polymer blends with selective and high gas permeability properties that can create an atmospheric composition compatible with the respiration rate of fresh fruits and vegetables for plastic packaging applications. The aim of the invention is to provide a packaging film that allows extending the shelf life of perishable food products such as fresh fruits and vegetables. The aim of the invention is to obtain a packaging film that provides all the desired technical values, including the gas permeability values that are needed to extend the shelf life of the product to be preserved and the mechanical properties that the packaging must have. The purpose of the invention is to obtain blends that have the desired selective and high gas permeability properties by adding an isotactic polymethylpentene (PMP) copolymer into low density polyethylene (LDPE) at different rates up to 75% by weight. The aim of the invention is to produce packaging films with high gas permeability properties, thanks to the structural properties of the PMP copolymer that forms the polymer blend and the partial phase separation between LDPE and PMP polymers. The aim of the invention is to provide a packaging film with a more homogeneous distribution and at least twice as high gas permeability compared to perforated packaging, thanks to its LDPE/PMP blend structure. One purpose of the invention is to provide a structure that makes it easier to increase the permeability values to much higher values by increasing the PMP ratio in the blend or changes in the film thickness produced from the blend. An aim of the invention is to create an extruder screw configuration that will ensure successful blend production in a twin screw extruder used for the production of LDPE/PMP blends. Another aim of the invention is to introduce an extruder screw configuration that allows the incompatibility between phases and phase separations to be positioned at desired intervals in blend production. Another purpose of the invention is to determine the packaging film thickness to be produced in a way that will meet the requirements, based on the atmospheric composition inside the packaging, product respiration rate and packaging gas permeability values required by the product to be preserved. Packaging film thickness can vary between 15-100 microns. In order to fulfill the purposes described above, the invention is a polymer blend developed to be used in fresh fruit and vegetable packaging applications, and its feature is; It contains PMP, LDPE, EVA and polyglycerol ester to create an atmospheric composition compatible with the respiration rate of fresh fruits and vegetables and to provide selective and high gas permeability properties. In order to fulfill the purposes described above, the invention is a production method of polymer blend developed for use in fresh fruit and vegetable packaging applications, and its feature is; To create an atmospheric composition compatible with the respiration rate of fresh fruits and vegetables and to provide selective and high gas permeability properties. Mixing PMP, LDPE, ethylene-vinyl acetate copolymer and polyglycerol ester in the mixer until they become a homogeneous mixture, adjusting the screw configuration of the twin screw extruder to be used, L/D 48/1, in order to position the phase incompatibilities and phase separations in the desired ranges. Adjusting the extruder barrel temperatures from 220 °C in the area where the raw materials will enter the extruder to gradually reaching 260 °C up to the head mold, - feeding the resulting blend from the main dosing to the twin screw extruder, In order to achieve the purposes of the invention, the screw configuration is 4 pieces of 56x56 screws. , in the form. In order to realize the purposes of the invention, the polymer blend is used in the production of passive modified atmosphere packaging film, and the packaging film creates an atmospheric composition compatible with the respiration rate of fresh fruits and vegetables and provides selective and high gas permeability properties. The structural and characteristic features and all the advantages of the invention will be more clearly understood thanks to the detailed explanation given below, and therefore the evaluation should be made taking this detailed explanation into consideration. Figures to Help Understand the Invention Figure-1: This is a representative view of the screw configuration used in the production of the polymer blend in a twin-screw extruder. Figure-2: SEM image taken from cross-sections of films produced from LDPE copolymer. Figure-3: SEM image taken from sections of films produced from PMP copolymer. Figure-4: This is a cross-sectional SEM image of 20 micron thick packages produced from LDPE/PMP blends containing 20% PMP copolymer by weight. Figure-5: This is the cross-sectional SEM image of 20 micron thick packages produced from LDPE/PMP blends containing 30% PMP copolymer by weight. Drawings do not necessarily have to be scaled and details that are not necessary to understand the present invention may be omitted. Furthermore, elements that are at least substantially identical or have at least substantially identical functions are designated by the same number. Description of Part References. Screw configuration 11. 56x56 screw 12. 96x96 screw 13. 72x72 screw 14. 96x48 screw . 45X5x58 crusher 16. 60X4x56 crusher 17. 56x28 left screw 18. 30x7x72 crusher Detailed Description of the Invention In this detailed description, the polymer blend for fresh fruit and vegetable packaging applications and the packaging film produced from this blend are only for a better understanding of the subject and will not create any limiting effect. It is explained as follows. The invention relates to polymer blends developed for use in fresh fruit and vegetable packaging applications and packaging films produced from these blends. The most important feature of the invention is to create an atmospheric composition compatible with the respiration rate of fresh fruits and vegetables and to provide selective and high gas permeability properties. Formulation of the polymer blend subject to the invention; Content Preference by weight Available amount by weight (%) quantity (%) Poly(4-methyl-1-pentene) (PMP) 20 10-50 Low density polyethylene (LDPE) 64 50-87 Linear low density polyethylene (LLDPE) Ethylene- vinyl acetate copolymer (EVA) 10 1-10 Maleic anhydride acyl LDPE (PE.g.MA) 5 1-10 Polyglycerol ester 1 1-5 PMP (4-methylpentene-1 based olefin copolymer), 4-methylpentene-1-based It represents copolymers called olefin copolymers. These copolymers have high light transmittance due to their crystalline and special characteristic structure. In addition, due to its unique structure, it has at least 10 times higher gas permeability values than polyolefins such as LDPE and LLDPE, which are used extensively in the packaging industry. All equivalent products that meet the mechanical values of tensile strength 10 IVIPA and Elongation at break 10% by molecular weight can be used. It can be used primarily in the structure that is the subject of the invention. LDPE (low density polyethylene): A group of plastics called low density polyethylene and developed for general packaging film production will be used. It contains slip additives based on erucamide and oleamide and antiblock additives called amorphous silica. Melt Flow Index Value (MFI/MFR) of the relevant component complies with the ISO 1133 standard and all equivalent products that meet the mechanical values of tensile strength 10 MPA and elongation at break °/o300 in accordance with the ASTM D882 standard can be used. A group of plastics called LLDPE (linear low density polyethylene), butene linear low density polyethylene, developed for general packaging film production, will be used. The content includes slip additives based on erucamide and oleamide and antiblock additives called amorphous silica. It must be within the range of 2 9/10 minutes with the Melt Flow Index Value of the relevant component. The density value must be lower than 0.92 g/cm3 in accordance with ASTM D1505 standard. All equivalent products that meet the tensile strength of 20 MPA and elongation at break of 300% mechanical values in accordance with the ASTM D882 standard can be used. EVA copolymer is used in the scope of the invention to improve water vapor permeability and thermal adhesion properties of the packaging. The VA (Vinyl Acetate) content of the EVA copolymer used can vary between 12% and 21%. The Melt Flow Index Value of the relevant component should be in the range of 9/10 minutes. Density value in accordance with ASTM D1505 standard: Ultra LD 730 and later EscoreneTM Ultra LD 705. MJ coded EVA copolymer or equivalents can be used. Maleic grafted copolymers (PE.g.MA or POE.g.MA) are used to limit the incompatibility and phase separation between LDPE/PMP blends, and grafted copolymers preferably varying by 5-10% by weight can be included in the blend content of the invention. Polyolefin elastomer graft maleic anhydride or Linear Low Density Polyethylene graft maleic anhydride can be used as grafted copolymer. The maleic anhydride vaccine rate must be above 0.5%. It must be between 0.935 g/cm3 and 1.02 g/cm3 in accordance with the Melt Flow Index standard of the relevant component. Polyglycerol ester is used as an anti-fog agent. One of the most important technical features of packages suitable for the passive modified atmosphere technique is that no condensation should form on the packaging surface during storage. In order to prevent fog formation, various vegetable or animal oils are added to the packaging structure, which migrate to the surface and change the surface energy of the packaging or the surface energy by dissolving in the water droplets accumulated on the surface. Within the scope of the invention, a plant-based sorbital ester component was included in the blend production processes. The ratio of the relevant component in the structure may vary between 1-5% by weight. Within the scope of the invention, the patented product of Croda® company is used. Since anti-fog feature is of great importance for packaging, an anti-fog agent is preferably used at a rate of 2% by weight in the polymer blend formulation. Within the scope of mass production, this rate can be changed between 1-5%, depending on the features required. With the invention, polymer blends with selective and high gas permeability properties that can create an atmospheric composition compatible with the respiration rate of fresh fruits and vegetables are obtained for plastic packaging applications. Alloys with the desired selective and high gas permeability properties are obtained by adding an isotactic polymethylpentene (PMP) copolymer into low density polyethylene (LDPE) at rates varying up to 75% by weight. LDPE/PMP blends and the polymers contained in the blend are produced using a twin-screw extruder in accordance with the melt blending method. Within the scope of the invention, the twin-screw extruder screw configuration has been redesigned to obtain a homogeneous and balanced structure at the highest level. Figure-1 shows a representative view of the screw configuration (10) used in the production of LDPE/PMP blends in a twin-screw extruder. Accordingly, the screw configuration (10) used in the production of the LDPE/PMP blends subject to the invention in the twin screw extruder is in the form of 4 56x56 screws, respectively. The production method of the polymer blend subject to the invention is as follows: PIVIP, LDPE or LLDPE, ethylene-vinyl acetate copolymer, maleic anhydride acid LDPE and polyglycerol ester are mixed in the mixer until they become a homogeneous mixture. The vila configuration of the twin screw extruder with L/D 48/1 is adjusted to position the incompatibility between phases and phase separations in the desired ranges, o Extruder barrel temperatures range from 220 °C in the area where the raw materials will enter the extruder to gradually reaching 260 °C up to the head mold. The resulting blend is fed to the twin screw extruder from the main dosing and the polymer blend is obtained at the extruder exit. In the preferred embodiment of the invention, direct production can be made without the need for mixing with twin screw extruders with gravimetric main and side dosers. In the production method mentioned above, the melt blending method is used, and the extruder screw diameter. It can vary between 26-70 mm. Screw rotation speed can vary between 200-500 rpm depending on the desired production capacity. The blends obtained by the production method subject to the invention are used in the production of passive modified atmosphere packaging films. Packaging film production is carried out by blow film extrusion method. The screw diameter of the blow film machine can vary between 20-70 mm, and the head mold diameter can vary between 50-500 mm depending on the desired packaging size. There is no need for a special screw configuration for film production. For the production of packaging film, extruder barrel temperatures must be adjusted between 220-260 °C. The packaging film thickness to be produced can vary between 15-100 microns to meet the requirements, based on the atmospheric composition inside the packaging required by the product to be preserved, product respiration rate and packaging gas permeability values. With the blend structure and production process subject to the invention, all desired technical values, especially the gas permeability values that are needed to extend the shelf life of the product to be preserved and the mechanical properties that the packaging must have, can be easily created. While the oxygen permeability (OTR) values of the films obtained with the polymer blends of the invention were determined according to the ASTM F2622 standard, the carbon dioxide gas permeability (COTR) values were determined according to the ASTM F2476 standard. Table-1 shows the oxygen permeability results of the packaging films obtained with the LDPE/PMP blend subject to the invention, compared to the packaging films used in the current technique, at different temperatures, and table-2 gives the carbon dioxide permeability results. Table-1: Oxygen permeability of the packaging films obtained with the LDPE/PMP blend, which is the subject of the invention, at different temperatures, compared to the packaging films used in the current technique. Oxygen Permeability (cc/m2.day.atm) Sample Name Table-2: Obtained with the LDPE/PMP blend, which is the subject of the invention. Carbon dioxide permeability of the packaging films used at different temperatures compared to the packaging films used in the current technique Carbon Dioxide Permeability (cc/m2.day.atm) Sample Name LDPE/PMP blend(20u) Cannot be measured Cannot be measured Cannot be measured Cannot be measured LDPE/PMP blend(15p) Cannot be measured Cannot be measured Cannot be measured Table- As can be understood from 1 and Z, high gas permeability values can be obtained from the micro-perforation technique, which is widely used today with the polymer blend of the invention. High gas permeability properties are obtained due to the structural feature of the PMP copolymer and the phase separation between LDPE and PMP polymers. Although the LDPE/PMP blends in Tables 1 and 2 have a composition of 70%/30% by weight, gas permeability values that are twice as high as those of micro-perforated packages were obtained. By increasing the PMP ratio in the blend or by changing the thickness of the packaging produced from the blend, permeability values can easily be increased to much higher values. There is no problem such as closing the pores, as in micro-perforated packages. Thanks to the LDPE/PMP blend structure, there is a more homogeneously distributed gas permeability compared to perforated packages. In other words, according to the micro-perforated structure, each region of the package shows similar gas permeability values. Gas permeability analyzes were also carried out on packaging film samples with a thickness of 100 microns from the blends subject to the invention, in order to ensure that the obtained values were consistent with the literature information. Table-? Oxygen and carbon dioxide gas permeability of 100 micron thick packaging films obtained from LDPE/PMP blends at 25 0C and 90% RH (Relative Humidity) conditions are shown in Table-4. Oxygen and carbon dioxide gas permeabilities determined at C and 90% RH (Relative Humidity) conditions are given in Table-3: Oxygen and carbon dioxide gas permeabilities determined at 25 °C and 90% RH (Relative Humidity) conditions of 100 micron thick packaging films obtained from LDPE/PMP blends. carbon dioxide gas permeability 16. 15. S9` SAMPLES 'ö 8 E 6 âî 8 â E 5 Table-4: Oxygen and carbon dioxide gas permeability 0: 5. g h i- E E SAMPLES 5 .8, a s :es: 8 .8, 'g 6 PMP 147.982 ±1.1 - Cannot be measured - According to the values in Table-3, the gas permeability value is 2 compared to LDPE-derived packages, Carbon dioxide values can be increased up to 5 times and carbon dioxide values can be increased up to 4.5 times. As can be seen from table 4, where the results of the analyzes performed by reducing the packaging thickness to 20 microns are shared, much higher permeability values can be obtained by reducing the packaging thickness. When the permeability increases are examined by considering the thickness increase and PMP ratios together, gas permeability increases that are much higher than the reduction in packaging thickness are observed. This is thought to be due to the increase in LDPE and PMP phase separations in the blend structure as the packaging gets thinner. However, it provides an advantage for cost-effective adjustment of packaging permeability as desired. Beyond the table, mechanical values obtained as a result of the tensile test performed according to ASTM D882 standard are given. Mechanical tests were carried out on 100 micron thick films made from LDPE/PMP blends to represent packages suitable for preservation in a neutral modified atmosphere. Analysis results show that tensile strength values increase in proportion to the rate of PMP copolymer added to the structure, and in parallel, % elongation at break values decrease. These determined values clearly show that the blends can be used in packaging production without any problems. Table-5: Mechanical analysis results of 100 micron thick packaging films obtained from LDPE/PMP blends according to ASTM D882 standard. Elasticity SAMPLES Tensile Strength (M Pa) Tensile Strength at Break Elongation at Braek (%) Modulus LDPE and SEM images of films produced from PMP copolymers were obtained from cross-sections using a scanning electron microscope. In figure-2, SEM images taken from the cross-sections of films produced from LDPE copolymer are given, and in figure-3, SEM images taken from the cross-sections of films produced from PMP copolymer are given. SEM images clearly show that the films have a very homogeneous structure and do not contain any impurities. Figure-4 shows cross-sectional SEM images of 20 micron thick packages produced from LDPE/PMP blends containing 20% PMP copolymer by weight, and figure-5 shows cross-sectional SEM images of 20 micron thick packages produced from LDPE/PMP blends containing 30% PMP copolymer. The layered structure seen in the SEM images represents the phase separation of the components in LDPE and PMP blends. In addition to the high gas permeability values of PMP copolymers, Green bananas are caused by the packaging film made of 100% LDPE. The packaging film has an inner volume of 4L and dimensions of 200x300mm. 500 g of green bananas are placed in the packaging film. Table 6 shows the preservation of green bananas in a packaging film made of 100% LDPE and the atmospheric atmosphere inside the packaging. The analysis results of changes in composition over time are given. The average ethylene concentration calculated after 14 days is 0.00554 ppm/g.l.day. Table-6: Storage of green bananas in packaging film made of 100% LDPE and analysis results of changes in atmospheric composition over time as an indicator of shelf life. Experimental study 2, 'Green bananas, packaging film made of LDPE/PMP blend containing 10% PMP copolymer were stored inside and their shelf life was analyzed. The packaging film has an internal volume of 4L and dimensions of 200x300mm. 510 g of green bananas were placed inside the packaging film. In Table-7, the analysis results of the time-dependent changes in the atmospheric composition inside the packaging as an indicator of the preservation and shelf life of green bananas in the packaging film produced from LDPE/PMP blend containing 10% PlVIP copolymer are given. The average ethylene concentration calculated after 14 days is 0.00472 ppm/g.l.day. Table-7: Storage of green bananas in packaging film produced from LDPE/PMP blend containing 10% PMP copolymer and analysis results of changes in atmospheric composition over time as an indicator of shelf life. Experimental study 3,' Green bananas, LDPE/PMP containing 25% PMP copolymer They were stored in packaging film produced from the blend and their shelf life was analyzed. The packaging film has an internal volume of 4L and dimensions of 200X300mm. 508 g of green bananas were placed inside the packaging film. In Table-8, the analysis results of the changes in the atmospheric composition over time are given as an indicator of the preservation and shelf life of green bananas in the packaging film produced from LDPE/PMP blend containing 25% PMP copolymer. The average ethylene concentration calculated after 14 days is 0.00218 ppm/g.l.day. Table-8: Analysis results of changes in atmospheric composition over time as an indicator of green banana preservation and shelf life in the packaging film produced from LDPE/PlVIP blend containing 25% PMP copolymer. LDPE, LLDPE, PE.g.MA and PMP copolymers have different technical properties. It seems possible that a production similar to the potential invention can be achieved by using different types of plants in different ratios. Apart from this, it does not seem possible to use the components in film production processes as a mixture without being processed in a twin screw extruder. RESOURCES . Gokkurt, T., Findik, F., Unal, H., & Mimaroglu, A. (2012). Extension large Shelf Life of Fresh Food Using Nanomaterials Food Packages. Polymer-Plastics United Nations Children's Emergency Fund (UNICEF). (2011). Levels and Trends in Child Mortality, Estimates Developed by the UN Inter-agency Group for Child Mortality Estimation. FAO (2008). The State of Food Insecurity in the World High Food Prices and Food Security-Threats and Opportunities, Food and Agriculture Organization of the United Nations, Rome, Italy. Mirabella, N., Castellani, V., and Sala, S. (2014). Current options for the valorization of food manufacturing waste: a review, Journal of Cleaner Production, vol. 65, pp. 28-41. C. Beretta, F. Stoessel, U. Baier, and 8. Hellweg. (2013). "Quantifying food losses and the potential for reducing large amounts in Switzerland," Waste Management, vol. 33, no. 3, pp. 764-773. Ghosh, P. R., Fawcett, D., Sharma, S. B., & Poinern, G. E. J. (2016). Progress towards Sustainable Utilization and Management of Food Wastes in the Global Economy. International Journal of Food Science, 1-22. De Laurentiis, V., Corrado, S., & Sala, S. (2018). Quantifying household waste of fresh fruits and vegetables in the EU. Waste Management, 77, 238-251. Gustavsson, J., Cederberg, C., Sonesson, U., Otterdijk, R. Van., and Meybeck, A. (2011). Global Food Losses and Food Waste: Extent, Causes and Prevention, Food and Agriculture Organization of the United Nations, Rome, Italy, Gerland, P., Raftery, A.E., Sevöikova, H., et al., (2014). World population. Zhuang, H., Barth, M. M., & Cisneros-Zevallos, L. (2014). Modified Atmosphere Packaging for Fresh Fruits and Vegetables. Innovations in Food Packaging, 445- Esturk, O., Ayhan, Z., & Gokkurt, T. (2013). Production and Application of Active Packaging Film with Ethylene Adsorber to Increase the Shelf Life of Broccoli (Brassica oleraceaL. var. ltalica). Packaging Technology and Science, 27(3), 179-191. 12.Altieri , G., Genovese, F., Matera, A., Tauriello, A., & Di Renzo, G. C. (2018). Characterization of an innovative device controlling gaseous exchange in packages for food products. Postharvest Biology and Technology, 138, 64-73. 13.Tumwesigye , K. S., Sousa, A. R., Oliveira, J. C., & Sousa-Gallagher, M. J. (2017). Evaluation of novel bitter cassava film for equilibrium modified atmosphere packaging of cherry tomatoes. Food Packaging and Shelf Life, 13, Mastromatteo, M., Conte, A., Del Nobile, M.A., (2010). Combined use of modified atmosphere packaging and natural compounds for food preservation. Food Eng. . Tajeddin, B., Ahmadi, B., Sohrab, F., & Chenarbon, H. A. (2018). Polymers for Modified Atmosphere Packaging Applications. Food Packaging and Preservation, 457-499. Mangaraj, S., Goswami, T., Mahajan, P., (2009). Applications of plastic films for modified atmosphere packaging of fruits and vegetables: a review. Food Eng. Faisant, J. B., A'i't-Kadi, A., Bousmina, M., & Desche"nes, L. (1998). Morphology, thermomechanical and barrier properties of polypropylene-ethylene vinyl alcohol blends. Polymer, 39(3). ), 533-545. 18.Yeh, J.-T., Chao, C.-H. (2000). modified polyamide (MPA) and modified polyethylene (MPE)/polyamide (PA) blends. Journal of Applied Polymer FROUNCHI, M., DADBIN, S., SALEHPOUR, Z., & NOFERESTI, M. (2006). PP/EPDM blend nanocomposites. Journal of Membrane Donadi, S., Modesti, M., Lorenzetti, A., & Besco, S. (2011). PET/PA nanocomposite blends with improved gas barrier properties: Effect of processing Scafati, S. T. , Boragno, L., Losio, S., Conzatti, L., Lanati, S., Sacchi, M. C., & Stagnaro, P. (2013). Innovative films with tunable permeability for fresh vegetable packaging applications. , 131(6), Merkel, K., LenZa, J., Rydarowski, H., Pawlak, A., & Wrzalik, R. (2016). Characterization of structure and properties of polymer films made from blends of polyethylene with poly(4-methyl-1-pentene).Journal of Materials Research, HV mag WD der ::pm HV mag WD det Spot :0 pm 00 ICV G 000 2 7 S mm ETE ` METU CEHTRAL LAB 2075 HV mag WD det spot ›_-2Ü m TR TR TR

TR2020/10595A 2020-07-03 2020-07-03 Polymer blends and packaging films produced from these blends for fresh fruit and vegetable packaging applications TR202010595A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TR2020/10595A TR202010595A2 (en) 2020-07-03 2020-07-03 Polymer blends and packaging films produced from these blends for fresh fruit and vegetable packaging applications
PCT/TR2021/050022 WO2022005415A1 (en) 2020-07-03 2021-01-14 Polymer blends for fresh fruit and vegetable packaging applications and packaging films produced from these blends

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2020/10595A TR202010595A2 (en) 2020-07-03 2020-07-03 Polymer blends and packaging films produced from these blends for fresh fruit and vegetable packaging applications

Publications (1)

Publication Number Publication Date
TR202010595A2 true TR202010595A2 (en) 2022-01-21

Family

ID=79317094

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2020/10595A TR202010595A2 (en) 2020-07-03 2020-07-03 Polymer blends and packaging films produced from these blends for fresh fruit and vegetable packaging applications

Country Status (2)

Country Link
TR (1) TR202010595A2 (en)
WO (1) WO2022005415A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2677176B2 (en) * 1993-11-29 1997-11-17 東洋製罐株式会社 Laminated body and package formed from the same
CN1262592C (en) * 2002-07-08 2006-07-05 北京崇高纳米科技有限公司 Fruit and vegetable fresh-keeping plastic film and method for making the same
CN102079834A (en) * 2010-11-03 2011-06-01 国家农产品保鲜工程技术研究中心(天津) Method for preparing modified atmosphere fresh-keeping film for fruits and vegetables
CN105348614A (en) * 2015-12-07 2016-02-24 北京印刷学院 Controlled release active gas adjustment fresh-keeping packaging material and preparation method thereof

Also Published As

Publication number Publication date
WO2022005415A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
Ahmed et al. Compression molded LLDPE films loaded with bimetallic (Ag-Cu) nanoparticles and cinnamon essential oil for chicken meat packaging applications
TWI608042B (en) Freshness keeping film
CN1073590C (en) Films useful in the modified atmosphere packaging of perishable food
Di Maio et al. Development and oxygen scavenging performance of three‐layer active PET films for food packaging
EP3496946A1 (en) Oxygen barrier plastic material
JP2017140008A (en) Packaging container suitable for freshness preservation of vegetable and fruit and superior in anti-fogging property, and packaging body using the same
WO2017090567A1 (en) Packaging container, and package using same
JP2017124841A (en) Packaging container suitable for holding content fresh and package using same
JP6636980B2 (en) Package suitable for maintaining freshness of fruits and vegetables, and method for maintaining freshness of fruits and vegetables
Wang et al. Development and application of low-density polyethylene-based multilayer film incorporating potassium permanganate and pumice for avocado preservation
JP3824915B2 (en) Freshness-keeping packaging material, fruit and vegetable packaging, and freshness-keeping packaging method
TR202010595A2 (en) Polymer blends and packaging films produced from these blends for fresh fruit and vegetable packaging applications
Chinsirikul et al. Porous ultrahigh gas‐permeable polypropylene film and application in controlling in‐pack atmosphere for asparagus
JP6636981B2 (en) A package excellent in freshness keeping performance of fruits and vegetables, and a method of keeping freshness of fruits and vegetables
JP2022132509A (en) Package storing vegetables and fruits, and method for retaining freshness of vegetables and fruits
Wang et al. Ethylene scavenging film based on low-density polyethylene incorporating pumice and potassium permanganate and its application to preserve avocados
JP6728104B2 (en) Packaging for fruits and vegetables and method for maintaining freshness of fruits and vegetables
JP2017095166A (en) Packaging container suitable for keeping freshness of fruit and vegetables, and package body using the same
JP2504414B2 (en) Anti-fog multi-layer film
JPS6344837A (en) Method for keeping freshness of green vegetable
JPS6211049A (en) Freshness retaining of vegetable and fruit
JP2003335904A (en) Packaging film excellent in gas permeability and method for producing the same
JPS63119647A (en) Packaging bag for vegetable and fruit having vigorous physiological action
TWI803699B (en) Membrane material for storing fruits and vegetables
JP2018199500A (en) Package excellent in freshness keeping performance of vegetables and fruits including chinese cabbage, and freshness keeping method of vegetables and fruits