TR202002499A2 - Take-off, Navigation and Landing Support System for UNMANNED VEHICLES - Google Patents

Take-off, Navigation and Landing Support System for UNMANNED VEHICLES

Info

Publication number
TR202002499A2
TR202002499A2 TR2020/02499A TR202002499A TR202002499A2 TR 202002499 A2 TR202002499 A2 TR 202002499A2 TR 2020/02499 A TR2020/02499 A TR 2020/02499A TR 202002499 A TR202002499 A TR 202002499A TR 202002499 A2 TR202002499 A2 TR 202002499A2
Authority
TR
Turkey
Prior art keywords
unmanned aerial
aerial vehicle
theodolite
processor
distance
Prior art date
Application number
TR2020/02499A
Other languages
Turkish (tr)
Inventor
Levent Güner Dr
Original Assignee
Aselsan Elektronik Sanayi Ve Tic A S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aselsan Elektronik Sanayi Ve Tic A S filed Critical Aselsan Elektronik Sanayi Ve Tic A S
Priority to TR2020/02499A priority Critical patent/TR202002499A2/en
Priority to FR2101579A priority patent/FR3107361B1/en
Priority to ES202130135A priority patent/ES2849625B2/en
Publication of TR202002499A2 publication Critical patent/TR202002499A2/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0094Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • G01C21/1652Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments with ranging devices, e.g. LIDAR or RADAR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/51Relative positioning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/102Simultaneous control of position or course in three dimensions specially adapted for aircraft specially adapted for vertical take-off of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Abstract

Buluş, GNSS sinyallerinin karıştırıldığı/olmadığı ortamlarda, insansız hava araçlarının (1) kalkış, seyrüsefer ve iniş aşamalarında kullanılabilecek bir konum bulma destek sistemi ile ilgilidir. Bunun için insansız hava aracına (1), 360 derece retro-reflektif yansıma yapabilen, birbirine 45 derecelik açıyla sabitlenmiş prizmalar (2) yerleştirilmektedir. Yer ölçme sisteminin (3) bir parçası olan teodolit (7), insansız hava aracı (1) üzerindeki prizmalara (2) optik olarak nişan alarak insansız hava aracını (1) takip eder ve anlık olarak insansız hava aracıyla (1) arasındaki mesafeyi ölçerek bakış hattının kendi eksenine göre yan ve yükseliş açıları ile birlikte işlemciye gönderir. İşlemci de teodolit (7) ve ataletsel navigasyon sisteminden (8) gelen verileri kullanarak insansız hava aracının (1) mutlak konumunu hesaplar. Hesaplanan konum bilgisi ise yer ölçme sistemi (3) tarafından anlık olarak insansız hava aracına (1) gönderilir.The invention relates to a position finding support system that can be used in the take-off, navigation and landing stages of unmanned aerial vehicles (1) in environments where GNSS signals are mixed or not. For this purpose, prisms (2) that can make 360-degree retro-reflective reflection and are fixed at an angle of 45 degrees to each other are placed on the unmanned aerial vehicle (1). The theodolite (7), which is a part of the ground measuring system (3), follows the unmanned aerial vehicle (1) by optically aiming at the prisms (2) on the unmanned aerial vehicle (1) and instantly measures the distance between it and the unmanned aerial vehicle (1). It sends it to the processor along with the side and elevation angles of the line according to its axis. The processor also calculates the absolute position of the unmanned aerial vehicle (1) using the data from the theodolite (7) and the inertial navigation system (8). The calculated location information is instantly sent to the unmanned aerial vehicle (1) by the ground measuring system (3).

Description

TARIFNAME INSANSIZ HAVA ARAÇLARI için KALKIS, SEYRUSEFER VE INIS DESTEK Teknik Alan Bulus GNSS sinyallerinin karistirildigi/olmadigi ortamlarda, kalkis, seyrüsefer ve inis asamalarinda kullanilabilecek bir konum bulma destek sistemi ile ilgilidir. DESCRIPTION DEPARTURE, NAVIGATION AND LANDING SUPPORT for UNMANNED AERIES Technical Area In the environments where the invention GNSS signals are mixed or not, take-off, navigation and landing It is about a locating support system that can be used in stages.

Teknigin Bilinen Durumu Küçük sinif IHA sistemleri bünyelerinde barindirdiklari ataletsel seyrüsefer algilayicilarinin düsük hassasiyetinden ötürü GNSS=e (Global Navigation Satellite System / Küresel Konumlama Sistemi) bagimli seyrüsefer mimarilerine sahiptir. GNSS sinyalleri karistirildiginda bu tip sistemler kalkis yapamamaktadirlar. Uçus halindeki sistemler de seyrüsefer hassasiyetlerini kaybetmekte veya düsmektedirler. State of the Art Small-class UAV systems contain inertial navigation. Due to the low sensitivity of its sensors, GNSS=e (Global Navigation Satellite System / Global Positioning System) has dependent navigation architectures. GNSS When the signals are mixed, this type of systems cannot take off. in flight systems also lose or decrease their navigation accuracy.

Kullanilan ataletsel algilayicilarin hassasiyetlerinin arttirilmasi hava araci basina birim maliyetleri arttirmakta ve sistemin pahalilasmasi da kirim durumunda katlanilacak maliyetlerin artmasina sebep olmaktadir. Çesitli sensbrler ve yöntemler ile bu tip yavas uçan sistemlerin seyrüsefer hassasiyetlerini arttirmaya yönelik çalismalar mevcuttur. Increasing the sensitivity of the inertial sensors used, unit per aircraft increases costs and the system becomes more expensive, which will be incurred in the event of a crash. lead to increased costs. Navigation of such slow-flying systems with various sensors and methods There are studies to increase their sensitivity.

Görüntü tabanli sistemler ve yükseklik verisinden faydalanan konum destek sistemleri mevcut olmakla birlikte arzu edilen konum hassasiyetini GNSS sistemlerinin karistirildigi uzun süreler boyunca koruyabilen küçük sinif IHA sistemleri bulunmamaktadir. Image-based systems and position support systems that leverage altitude data Although available, the desired location accuracy of GNSS systems small class UAV systems that can protect for long periods of time when mixed does not exist.

Hassas inis için görüntü tabanli, örüntü tanima sistemleri mevcuttur. Ancak bu sistemlerin dikey menzilleri kisadir. 3D stereo kameralar vb. sistemler ucusun son 10- metresi içinde hassas olarak çalisabilmektedir.Image-based, pattern recognition systems are available for precise landing. However, this the vertical range of the systems is short. 3D stereo cameras etc. last 10- It can work sensitively within its meter.

GNSS sinyalleri karistirildiginda hava aracinda konum bilgisi olmadigindan kalkis yapilamamakta ya da riskli olarak yapilmaktadir. Bazi sistemlerde lazer altimetre bulunmadigindan irtifa bilgisi barometrik altimetre ve GNSS harmani ile tespit edilmektedir. Böyle bir sistemde GNSS karistirildiginda hava aracinin yerden yükseklik bilgisi de güvenilmez olabilmektedir. When the GNSS signals are mixed, there is no position information in the aircraft. cannot be done or it is done risky. Laser altimeter on some systems altitude information is detected with a blend of barometric altimeter and GNSS. is being done. When GNSS is mixed in such a system, the ground clearance of the aircraft information can also be unreliable.

Link sistemlerinin bazilari, RF takip yapabilen ve konik tarama paternlerine sahip yönlü anten sistemleri olmakla birlikte genellikle anten ve hava araci GNSS konumundan faydalanarak hava aracina bakmaktadir. GNSS sinyali kesildiginde yer istasyonu koordinatlari daha önceden bilinen koordinatlar oldugu için mevcut olsa da hava araci koordinatlari kisa süre içinde geçersiz olmakta ve yer anten grubunun hava aracini takip yetenegi azalmakta veya takipten düsmektedir. Some of the link systems are directional with RF tracking and conical scanning patterns. Although there are antenna systems, usually the antenna and the aircraft are from the GNSS position. He takes advantage of the aircraft and looks at it. When the GNSS signal is lost, the ground station Although the coordinates of the aircraft exist because they are previously known coordinates, the aircraft coordinates become invalid in a short time and the ground antenna group will overtake the aircraft. follow-up ability is decreasing or dropping out of follow-up.

Teknigin bilinen durumunda, küçük sinif IHA sistemlerinde GNSS sinyallerinin karistirildigi/olmadigi ortamlarda seyrüsefer yapabilmek için birçok çözüm sunulmustur: . Arazi destekli seyrüsefer sistemleri radar altimetre verisine ihtiyaç duymakta ancak radar altimetreler boyutlari ve maliyetleri nedeniyle küçük çok rotorlu sistemlerde kullanilamamaktadir. o Lazer altimetre sistemleri her zaman güvenilir irtifa verisi saglayamamaktadir. In the state of the art, GNSS signals are used in small class UAV systems. Many solutions have been offered for navigating in mixed/unmixed environments: . Land assisted navigation systems need radar altimeter data however, radar altimeters are small multi-rotor systems due to their size and cost. cannot be used in systems. o Laser altimeter systems do not always provide reliable altitude data.

. Görüntü temelli sistemler daha önceden hava aracina ya da yer kontrol istasyonuna yüklenmis konum bilgisi islenmis arazi fotograflarinin ayirt edici özelliklerine kilitlenerek hava aracinin konumunu bulmaya çalismak esasina dayanmaktadir. Bu tip sistemlerde hava aracina ilave kamera entegre edilmesi gerekmektedir. Görülen manzaranin degisik hava kosullari altinda tanimlanabilmesi ve ilgi noktalarinin çikarimi konum destegi saglasa da yüksek hassasiyette konumlandirma yapmak her zaman mümkün olmamaktadir. . Image-based systems have previously been attached to aircraft or ground control systems. distinguishing location information-processed terrain photographs uploaded to the based on trying to locate the aircraft by locking in its features. is based on. In this type of systems, additional cameras should be integrated into the aircraft. required. Under the different weather conditions of the landscape seen Although it can be defined and the extraction of points of interest provides location support, it has a high Precise positioning is not always possible.

. Optik aki temelli hiz destek sistemleri görsel odometri sistemleri olarak seyrüsefer sisteminin hatalarinin artis hizini zaman içinde azaltsalar da konum hassasiyetinin zamanla azalmasinin önüne geçememektedirler. . Optical flux-based speed support systems are used as visual odometry systems. Although they reduce the rate of increase in navigation system errors over time, location They cannot prevent the decrease in sensitivity over time.

- Radar tabanli bir sistem tarafindan hava aracinin takip edilmesi durumunda daha uzun menzilli bir konum bilgisi edinilebilir. Ancak radar tabanli sistemlerin yerleri de tespit edilebilir ve maliyetleri yüksektir. - In case the aircraft is tracked by a radar-based system a longer range position information can be obtained. However, radar-based systems locations can also be detected and costs are high.

EP2818958A3 numarali patent basvurusunda, GPS sistemi ile donatilmis Retro- reflektif prizmaya robotik total station (teodolit) ile mesafe ölçümü yaparak link üzerinden konum bilgilerinin aktarilmasi ve böylelikle hava aracinin uçtugu alanlarda GPS sinyalinin olmadigi durumlarda (tünel vb.) uçusa imkan saglanmasi ifade edilmektedir. Bu patent basvurusunun mesafe ölçümü ve hava aracinin takibi ile ilgili bölümleri yöntem olarak ayni olmakla birlikte yer istasyonu konum kaynagi olarak bilinen nokta ya da GPS önerilmistir. Bu anlamda ataletsel navigasyon sistemi ile entegre edilmis bir robotik teodolit kullanan bir yer ölçme sisteminin kullanilmasi, konum kaynagi olarak GNSS sistemlerine ihtiyaç duyulmamasi ve mutlak konum ve istikamet acisi bilgisinin ataletsel navigasyon sisteminden saglanmasi ile diger buluslardan ayrilmaktadir. nokta veya GPS'in kendisi kullanilmis ancak pozisyon belirleme cihazi mahiyeti hakkinda bilgi verilmemistir ve konumu nasil tespit ettigi açik degildir. GPS sinyalinin hava aracinda olmadigi durum için yer istasyonunda konumun nasil bulunacagi ifade edilmemistir. GPS ya da elle girmek ya da baska bir konum bulma cihazi kullanilabilecegi ifade edilmistir ancak bu cihazin ne olabilecegi ve nasil GPS sinyallerinin karistirildigi ortamda görev yapabilecegi belli degildir. Bahsedilen doküman, mesafe ölçümüne dayanan pozisyon bilgisini aktarmak disinda bir özellige yukaridaki patente benzer içerikte olup yine benzer problemleri tasimaktadir. bulundugu bölgede GPS*in karistirildigi durumlarda konum ve istikamet açisi ölçümlerinin nasil yapilacagi açik degildir veya daha önceden ölçülmüs bir nokta kullanilabilir. Oysa GPS karistirmasi altinda daha önceden konumu belirlenmemis bir mevziiye intikal ve bu mevziden uçus operasyonu yapilacagi durumda bu yöntemler mutlak (gerçek) konum üzerinden çalisma yürütemezler. Bu durumda hava aracinin mutlak konumu bilinmediginden hava araci tarafindan elektro-optik faydali yükü ile hedef konumlarinin ölçümleri ve aktarimi mümkün olamaz. In the patent application number EP2818958A3, Retro- link to the reflective prism by measuring distance with a robotic total station (theodolite) transfer of position information over the In the absence of a GPS signal (tunnel, etc.) it means providing the opportunity to fly. is being done. This patent application is related to distance measurement and aircraft tracking. Although the sections are the same in method, the ground station is used as a location source. known point or GPS is suggested. In this sense, with the inertial navigation system, using a geometering system using an integrated robotic theodolite, No need for GNSS systems as a location source and absolute location and By providing the heading angle information from the inertial navigation system, other differs from inventions. point or GPS itself used but positioning device nature No information has been given about it, and it is not clear how it determined its location. of the GPS signal A statement of how the position will be found at the ground station for the case when the aircraft is not present. has not been made. GPS or manual entry or other locator It has been stated that it can be used, but what this device can be and how GPS can be used. It is not clear whether it can function in the environment where the signals are mixed. Said The document has a property other than transmitting position information based on distance measurement. It has similar content to the above patent and has similar problems. Position and heading angle in cases where GPS* is confused in the area It is not clear how to make measurements or a previously measured point can be used. However, under GPS interference, a previously undetermined These methods are used in case of transfer to the position and in case of flight operation from this position. they cannot operate over absolute (real) location. In this case, the aircraft with an electro-optical payload by the aircraft since its absolute position is not known. measurements and transmission of target positions are not possible.

Sonuç olarak yukarida anlatilan olumsuzluklardan dolayi ve mevcut çözümlerin konu hakkindaki yetersizligi nedeniyle ilgili teknik alanda bir gelistirme yapilmasi gerekli görülmüstü r.As a result, due to the above-mentioned negativities and existing solutions It is necessary to make an improvement in the relevant technical field due to the inadequacy of the seen r.

Bulusun Amaci Bulusun amaci, küresel konumlama sistemlerinin (GNSS) karistirildigi veya kullanilamadigi ortam ve durumlarda mini ve küçük dikine kalkisli çok rotorlu ya da helikopter tipindeki insansiz hava araçlarinin (IHA) kalkis, seyir ve inis uçus asamalarinda insansiz hava aracinin bagil ya da mutlak konumunu yüksek hassasiyette hesaplayarak uçusa / göreve devam etmesini saglamaktir. Purpose of the Invention The aim of the invention is to use global positioning systems (GNSS) In environments and situations where it cannot be used, mini and small vertical lift multi-rotor or takeoff, cruise and landing flight of helicopter type unmanned aerial vehicles (UAV) the relative or absolute position of the drone at high It is to ensure that it continues the flight / mission by calculating it with precision.

Bulus, çogu diger destek sistemine kiyasla uçus durumlarinin hepsinde uçusun ilk saniyesinden son anina kadar kullanilabilme ve “yer istasyonu koordinat hassasiyeti + azami +l-10 cm” hassasiyetinde mutlak konum bulma özelligine sahiptir. Ayrica +i'-1O cm hassasiyetinde bagil konum ve irtifa bilgisi verebilmektedir. Compared to most other support systems, the invention is the first flight in all flight situations. second to last moment and “ground station coordinate precision + It has an absolute position finding feature with a maximum sensitivity of +1-10 cm. Also +i'-1O It can give relative position and altitude information with cm sensitivity.

Bulus, çok rotorlu veya helikopter tipinde dikine inis kalkis yapan küçük sinif IHA'Iara monte edilen bir adet 360 derece rerto-reflektif prizma ve kalkis öncesi bu prizmaya kilitlenerek yan, yükselis açisi ve mesafe ölçümü yapan bir robotik teodolit ve robotik teodolit ile donatilmis ve bünyesinde ilave bir entegre ataletsel ölçüm sistemi bulunduran yer ölçme sistemi tarafindan hesaplanan mutlak konum bilgisinin RF veya kablolu bir sistem ile IHA link sistemine beslenmesi ve IHA link sistemi üzerinden hava aracina gönderilmesi esasina dayanir. Böylelikle görev esnasinda GNSS sinyalleri olmadiginda bile çok hassas ~(+/-10 cm) hassasiyetinde mesafe ölçümü yapilarak elde edilen konum bilgisi ile hassas kalkis, seyrüsefer ve inis saglanir. Bu haliyle GNSS olmadigi durumlarda bile, yer istasyonu koordinatlari daha önceden tespit edilmis olmak kaydiyla, RTK (Real-Time Kinematic / Gerçek Zamanli Kinematik) GNSS sistemleri kadar hassas konumlandirma mümkündür. The invention is intended for small-class UAVs with vertical take-off and landing of the multi-rotor or helicopter type. a 360 degree retro-reflective prism mounted on the prism and a robotic theodolite and robotic instrument that measures side, elevation and distance by locking equipped with theodolite and an additional integrated inertial measurement system RF or RF or absolute position information calculated by the geometering system It is fed to the UHA link system with a cable system and airborne through the UHA link system. It is based on sending to the vehicle. Thus, GNSS signals during the mission even when there is no With the obtained location information, precise take-off, navigation and landing are provided. As such, GNSS ground station coordinates have already been determined, even in the absence of RTK (Real-Time Kinematic / Real-Time Kinematic) GNSS as precise positioning as possible.

Robotik teodolit (total station) sistemleri tarafindan prizmaya mesafe ölçümü yapilarak konum bulunmasini saglayan çalismalar mevcuttur. Ancak bu çalismalarda yer istasyonunun konumu ya GPS'ten alinmakta ya da bilinen bir nokta ve istikamet açisi hatti üzerine konumlandirilmak zorunda kalinmaktadir. Bulus ise ataletsel navigasyon sistemi ile tümlesik çalisan robotik teodolitin bakis hatti dogrudan kuzeyle yapilan istikamet açisini vermekte ve mesafe ölçümü ile insansiz hava aracinin dünya düzlemine göre gerçek konumunu anlik olarak ve devamli hesaplayabilmektedir.By measuring the distance to the prism by robotic theodolite (total station) systems, There are studies that provide location finding. However, in these studies station's location is either obtained from GPS or a known point and bearing It has to be positioned on the line. The invention is inertial navigation. The line of sight of the robotic theodolite working integrated with the system is made directly with the north. It gives the heading angle and the distance measurement and the world of the unmanned aerial vehicle. It can calculate its real position instantaneously and continuously with respect to the plane.

Ataletsel ölçüm birimi tümlesik bir güç kaynagi ile çalisir vaziyette intikal edebilmekte ve kuruldugu yerde robotik teodolitin monte edilmesi ve veri baglantilarinin yapilmasi ile bulunulan noktanin koordinatlari ile bakilan hattin istikamet açisinin devamli ve anlik olarak hesaplanabildigi bir ölçüm istasyonu olusturulmaktadir. Tümlesik bir yer ölçme sistemi olusturulmasi ve bu sistemin hava aracini takip görevinde GPS veya bilinen nokta gibi harici desteklere ihtiyaç duymamasi özelligi ile diger buluslardan ayrilmaktadir. Bu bulus ayni zamanda kablolu çok rotorlu gözetleme sistemlerinin de hassas olarak kalkis ve inisine de imkan tanimaktadir. The inertial measurement unit can be delivered in working condition with an integrated power supply. and mounting the robotic theodolite at the place where it is installed and making data connections The coordinates of the current point and the direction angle of the line viewed are continuous and instantaneous. A measurement station is created where it can be calculated as Measuring an integral location GPS or known GPS system in the task of following the aircraft. It is different from other inventions with the feature that it does not need external supports such as a point. is separating. This invention also applies to wireline multi-rotor surveillance systems. It also allows precise take-off and landing.

Yukarida ifade edilen basvurulardakinin aksine bulusta, ataletsel navigasyon sistemi ile tümlesik çalisan ve istenen bölgeye GPS karistirmasi altinda çalisir halde intikal edebilen i' tasinabilen bir yer ölçme sistemi kullanilmaktadir. Böylelikle yer istasyonu daima mutlak konum ve hassas istikamet açisi bilgilerine sahip olacak ve uçusun ilk asamasi olan kalkistan inise kadar geçen tüm evrelerde mutlak konum (cografi konum) ile harekat yapabilecektir. Contrary to the above-mentioned applications, in the invention, with the inertial navigation system integrated and transferred to the desired region in working condition under GPS interference. A portable geometering system is used. Thus, the ground station will always have absolute position and precise heading angle information and Absolute location (geographic location) in all phases from calcification to descent will be able to operate with

Yer istasyonunda ataletsel navigasyon sistemi ile entegre robotik teodolit sisteminden olusan topçu yer ölçme cihazi kullanilmasi durumunda daha önceden konum tespiti yapilmamis bir noktaya çalisir vaziyette intikal eden topçu yer ölçme sistemi üç ayak üzerine kurulur. Bulundugu konumu, yuvarlanma, yunuslama ve gerçek kuzeyle yapilan istikamet açisini devamli ve otomatik olarak hesaplayan yer ölçme sistemi, robotik teodolit ile entegre çalisarak hava aracinin mesafesinin ölçülmesi suretiyle hava aracinin dünyaya göre mutlak koordinatlarinin devamli olarak hesaplanmasini saglamaktadir. From the robotic theodolite system integrated with the inertial navigation system at the ground station In case of using artillery ground measuring device, previously The artillery ground measurement system, which was transferred to an unbuilt point in working condition, has three legs. is built on. Position, roll, pitch and true north Ground measuring system that continuously and automatically calculates the direction angle made, by measuring the distance of the aircraft by working integrated with the robotic theodolite. continuous calculation of the vehicle's absolute coordinates with respect to the earth. it provides.

Robotik, mesafe ölçerli teodolit kullanimi ile tüm takip ve mesafe ölçme islemleri optik olarak çok dar bir hüzme ile yapildigindan dolayi RF karistirma sistemleri ya da baska sistemler tarafindan tespit edilmesi ve karistirilmasi mümkün degildir. With the use of robotic theodolite with rangefinder, all tracking and distance measurement processes can be performed optically. Because it is made with a very narrow beam, RF mixing systems or other It is not possible to detect and mix by systems.

Robotik, mesafe ölçerli teodolit tarafindan prizmaya yapilan mesafe ölçümü yer istasyonunun koordinatlari ve istikamet açisindan faydalanarak mutlak konuma dönüstürülebilmekte ve hava aracina dünyaya göre mutlak konum bilgisi aktarilabilmektedir. Hava aracinin takibi tamamen optik esasli olarak yapildigi için herhangi bir radar tabanli RF takip sistemine ihtiyaç yoktur. Ayrica optik temelli mesafe ölçme sistemi RF karistiricilardan etkilenmez, optik olarak da karistirilmasi fiilen çok Bulusa konu sistem, kablolu çok rotorlu IHA temelli devamli gözetleme sistemlerinin statik görevlerinde hassas kalkis, hassas inis ve hassas konumlandirma faaliyetlerini de gerçeklestirebilmektedir. Görüntü tabanli sistemlerin ilk kalkis anindan itibaren konum destek imkâni bulunmamaktadir. RTK'Ii sistemler hassasiyet olarak yöntemle benzerlik gösterse de GNSS karistirmasi altinda çalismaz. Distance measurement to the prism by the robotic, distance-measuring theodolite to the absolute position by making use of the coordinates and direction of the station. absolute position information relative to the world. can be transferred. Since the tracking of the aircraft is done entirely on optical basis, There is no need for any radar-based RF tracking system. Also optical based distance The measuring system is not affected by RF jammers, and it is actually very difficult to mix optically. The system that is the subject of the invention is based on the cabled multi-rotor UAV-based continuous surveillance systems. Precise take-off, precise landing and precise positioning activities in static missions can also be realized. From the first take off of image-based systems location support is not available. Systems with RTK are used as sensitivity. Although it looks similar, it does not work under GNSS interference.

Bulusun yapisal ve karakteristik özellikleri ve tüm avantajlari asagida verilen sekiller ve bu sekillere atiflar yapilmak suretiyle yazilan detayli açiklama sayesinde daha net olarak anlasilacaktir. The structural and characteristic features and all advantages of the invention are given in the following figures and It is clearer thanks to the detailed explanation written by making references to these figures. will be understood as

Sekillerin Açiklamasi Sekil 1, çok rotorlu bir insansiz hava araci ve üzerindeki 360 derece retro-reflektif prizmayi göstermektedir. Description of Figures Figure 1, a multi-rotor unmanned aerial vehicle and its 360-degree retro-reflective shows the prism.

Sekil 2, ataletsel navigasyon sistemi ve entegre robotik teodolitten olustan yer ölçme sistemini göstermektedir. Figure 2, geometering consisting of an inertial navigation system and an integrated robotic theodolite shows the system.

Sekil 3, bulus konusu sistemde konum ve yönelimini bilen yer ölçme sistemi tarafindan IHAiya mesafe ölçülerek hesaplanan mutlak konum bilgilerinin RF veri linki 'üzerinden IHAiya aktarimini göstermektedir. Figure 3 is shown by the geometering system, which knows its position and orientation in the inventive system. The absolute position information calculated by measuring the distance to the IHA is transmitted via the RF data link. It shows the IHAiya transmission.

Sekil 4, bulus konusu sistemde kendi konum ve yönelimini bilen yer ölçme sistemi tarafindan IHA'ya mesafe ölçülerek hesaplanan kalkis noktasi ve hava araci mutlak konum bilgilerinin kablolu baglanti 'üzerinden IHA'ya aktarimi gösterilmektedir. Çizimlerin mutlaka ölçeklendirilmesi gerekmemektedir ve mevcut bulusu anlamak için gerekli olmayan detaylar ihmal edilmis olabilmektedir. Figure 4 is a geometering system that knows its own position and orientation in the subject system. The departure point calculated by measuring the distance to the UAV and the aircraft absolute The transfer of location information to the UAV over the 'wired connection' is shown. Drawings do not necessarily need to be scaled and to understand the present invention Unnecessary details may be omitted.

Parça Referanslarinin Açiklamasi Insansiz hava araci Prizma Yer ölçme sistemi Mekanik arabirim Teodolit 39591993!“9 8. Ataletsel navigasyon sistemi 9. Paralelleme aparati . Yer kontrol istasyonu 11. Kablolu baglanti 12. Kalkis/inis noktasi Bulusun Detayli Açiklamasi Bu detayli açiklamada, bulusun tercih edilen yapilanmalari, sadece konunun daha iyi anlasilmasina yönelik olarak ve hiçbir sinirlayici etki olusturmayacak sekilde açiklanmaktadir. Description of Part References Unmanned aerial vehicle Prism ground measuring system Mechanical interface Theodolite 39591993!“9 8. Inertial navigation system 9. Paralleling apparatus . ground control station 11. Wired connection 12. Takeoff/landing point Detailed Description of the Invention In this detailed description, preferred embodiments of the invention are merely better suited to the subject. for understanding and without any limiting effect is explained.

Sistemin çalisabilmesi için çok rotorlu (drone) ya da helik0pter tipindeki insansiz hava araci (1) yatayda 360 derece, dikeyde genis bir açi araliginda isinin geldigi yöne (retro- reflektif) yansima yapabilen, birbirine 45 derecelik açiyla sabitlenmis prizmalar (2) ile donatilmistir. Insansiz hava araci (1) kendi oto pilot sistemine ve haberlesme modülüne sahiptir. Insansiz hava araci (1) tercihen dikine kalkis ve inis kabiliyetli olup hassas olarak inis ve kalkis gereksinimi içeren kablolu gözetleme sistemi ya da kesif maksatli IHA sisteminin bir parçasidir. In order for the system to work, multi-rotor (drone) or helicopter type unmanned aerial vehicles The tool (1) rotates 360 degrees horizontally and a wide angle range vertically in the direction of the beam (retro- with reflective prisms (2) fixed at an angle of 45 degrees to each other. is equipped. The unmanned aerial vehicle (1) has its own autopilot system and communication It has module. The unmanned aerial vehicle (1) is preferably capable of vertical take-off and landing. A wired surveillance system or a reconnaissance system that requires precise take-off and landing. It is part of the purpose-built UAV system.

Yer ölçme sistemi (3) gerektiginde çalisir vaziyette sirt çantasinda tasinabilen, gerektiginde üç ayak (4) üzerine kurulabilen ve insansiz hava aracini (1) takip ettigi anda statik olarak görev yapan bir sistemdir. Bilesenleri bir adet ataletsel navigasyon sistemi (8), ataletsel navigasyon sisteminin (8) monte edildigi bir plaka (5), plakanin (5) üst yüzeyindeki mekanik arabirim (6), mekanik arabirime (6) üstten takilan, hedef takip yetenegine sahip motorize eksenli, mesafe ölçme özellikli robotik teodolit (7), islemci / bilgisayar, güç kaynagi ve üç ayaktan (4) olusmaktadir. Teodolit (7) ve ataletsel navigasyon sisteminin (8) referans eksen takimlari fabrika seviyesinde yapilan bir yön esleme ölçümü ile önceden kalibre edilmektedir. The ground measuring system (3) can be carried in a backpack in working condition when necessary, It follows the unmanned aerial vehicle (1), which can be installed on three legs (4) when necessary. It is a static system. Its components are one inertial navigation system (8), a plate (5) on which the inertial navigation system (8) is mounted, the plate (5) mechanical interface (6) on its upper surface, attached to the mechanical interface (6) from the top, target tracking Robotic theodolite (7) with motorized axis and distance measuring capability, processor / It consists of computer, power supply and tripod (4). Theodolite (7) and inertial reference axes of the navigation system (8) is a direction set at the factory level. It is pre-calibrated with a match measurement.

Yer ölçme sistemi (3) bilinen bir konumda ilklendirildiginde veya ilk konumu GNSS'den aldiginda seyrüsefer çözümü olusturmaya baslamakta ve sabit ya da hareketli olarak konum, yönelim, hiz ve açi bilgilerini vermektedir. Sistemde bulunan yer ölçme sisteminin (3) islemcisi, ataletsel navigasyon sisteminden (8) gelen konum, dünyaya göre yuvarlanma, yunuslama ve istikamet (kuzeye göre açi) açilari ve robotik teodolitin (7) bakis hattinin kendi eksen takimina göre verdigi yan ve yükselis açilarini harmanlayarak teodolitin (7) bakis hattinin kuzeyle yaptigi açiyi ve dünyaya göre yükselis açisini otomatik olarak hesaplamaktadir. Böylelikle yer ölçme sistemini (3) yere tam olarak paralellemeye gerek kalmaksizin teodolitin (7) bakis hattinin açisal bilgileri ve yer ölçme sisteminin (3) konum bilgisi devamli olarak hesaplanmaktadir. When the geotagging system (3) is initialized at a known location or initialized from GNSS When it is received, it starts to create a navigation solution and can be fixed or mobile. It provides location, orientation, speed and angle information. Location measurement in the system the processor of the system (3), the position from the inertial navigation system (8), roll, pitch, and heading (angle relative to north) angles and robotic theodolite (7) shows the lateral and elevation angles of the line of sight relative to its axis set. by blending the angle of the view line of the theodolite (7) with the north and with respect to the earth. It automatically calculates the elevation angle. Thus, the ground measuring system (3) the angular line of sight of the theodolite (7) without the need to be fully paralleled to the ground. and the location information of the earth measuring system (3) are calculated continuously.

Yer ölçme sistemi (3) çalisir vaziyette tasinarak insansiz hava aracinin (1) kalkis alaninin yakinina kurulur. Teodolit (7) yer ölçme sistemine (3) takilarak elektriksel ve sinyal baglantilari yapilir. Operatör tarafindan insansiz hava araci (1) üzerindeki prizmaya (2), teodolit (7) ile optik olarak nisan alinir. Daha sonra teodolit (7) otomatik hedef takip moduna geçer. Otomatik hedef takibinde teodolit (7) prizmaya (2) devamli olarak mesafe ölçümü yapar ve prizmanin (2) hareket etmesi durumunda prizmayi (2) mesafe ölçümü, faz kaymasi ve Optik yöntemler kullanarak takip eder. Teodolit (7) tarafindan ölçülen mesafe, teodolitin (7) kendi eksen takimina göre yan ve yükselis açilari ile birlikte yer ölçme sistemi (3) islemcisine gönderilir. Ataletsel navigasyon sisteminden (8) gelen konum, yuvarlanma, yunuslama ve gerçek kuzeye göre açi bilgisi ile harmanlanarak insansiz hava aracinin (1) mutlak konumu hesaplanir.The ground measuring system (3) can be carried in working condition and the unmanned aerial vehicle (1) takes off. installed near the field. Theodolite (7) is attached to the ground measuring system (3) and electrical and signal connections are made. On the unmanned aerial vehicle (1) by the operator The prism (2) is optically aimed with the theodolite (7). Then theodolite (7) is automatic. switches to target tracking mode. In automatic target tracking, theodolite (7) is continuous to the prism (2). It measures the distance and in case the prism (2) moves, it measures the prism (2). distance measurement follows using phase shift and Optical methods. Theodolite (7) The distance measured by the lateral and elevation of the theodolite (7) relative to its axle It is sent to the geometer (3) processor along with its angles. inertial navigation position, roll, pitch, and angle with respect to true north The absolute position of the unmanned aerial vehicle (1) is calculated by blending it with the information.

Hesaplanan bu konum kablo veya RF sinyaller araciligi ile insansiz hava aracinin (1) yer kontrol istasyonuna (10) sevk edilir. Yer kontrol istasyonu (10) bu konum bilgisini insansiz hava aracina (1) RF üzerinden veya kablolu gözetleme sistemi için kablolu baglanti (11) üzerinden gönderir. Insansiz hava aracina (1) kalkis komutu yer kontrol istasyonu (10) tarafindan gönderildiginde, yer ölçme sistemi (3), robotik, motorize hareket edebilen eksenli, mesafe ölçerli optik teodolit (7) vasitasiyla hava aracindaki prizmayi (2) takip ederek devamli olarak insansiz hava aracinin (1) konumunu ölçer ve kablolu baglanti (11) üzerinden veya kablosuz olarak insansiz hava aracina (1) gönderilmesi için yer kontrol istasyonuna (10) gönderir. This calculated position is transmitted to the unmanned aerial vehicle (1) via cable or RF signals. it is sent to the ground control station (10). The ground control station (10) receives this position information. to the drone (1) over RF or wired for a wired surveillance system sends it over connection (11). Takeoff command to the unmanned aerial vehicle (1) ground control When sent by the station (10), the ground measuring system (3), robotic, motorized in the aircraft by means of the optical theodolite (7) with movable axis, rangefinder. continuously measures the position of the unmanned aerial vehicle (1) by following the prism (2) and to the drone (1) via wired connection (11) or wirelessly sends it to the ground control station (10) to be sent.

Sistemde, yer kontrol istasyonunun (10) bulundugu yerin konumu ve istikamet açisi çesitli sekillerde hesaplanabilir. Yer ölçme sistemi (3) kullanildiginda mutlak konum ve gerçek kuzeye göre istikamet açisi bilgileri ataletsel navigasyon sistemi (8) tarafindan otomatik ve devamli olarak hesaplanmaktadir. In the system, the location and direction angle of the ground control station (10) can be calculated in various ways. Absolute position and Heading angle information relative to true north is provided by the inertial navigation system (8). It is calculated automatically and continuously.

Sistemin bir kullanimi da kablolu çok rotorlu gözetleme sisteminin bir parçasi olan, güç ve veri iletisimini kablolu baglantidan (11) yapan bir gözetleme sisteminin hassas kalkis, havada kalma ve hassas inis ihtiyaçlarini karsilamaktir. Kablolu çok rotorlu gözetleme sisteminin insansiz hava aracinin (1) kalkis/inis pistinin (12) koordinatlari operatör tarafindan pist üzerindeki insansiz hava aracina (1) nisan alinarak bulunduktan sonra teodolit (7) otomatik takip moduna alinarak insansiz hava aracina (1) devamli olarak mesafe ölçülmesi ile elde edilen ilk konuma göre göreceli konum bilgisi (bagil konum) yer kontrol istasyonu (10) araciligiyla yine kablolu baglanti (11) üzerinden insansiz hava aracina (1) aktarilir. One use of the system is the power, which is part of the wired multi-rotor surveillance system. and sensitive of a surveillance system that makes data communication from the wired connection (11). to meet takeoff, hover and precision landing needs. Wired multi-rotor coordinates of the take-off/landing runway (12) of the drone (1) of the surveillance system by aiming at the unmanned aerial vehicle (1) on the runway by the operator After being found, the theodolite (7) is put into automatic tracking mode and sent to the unmanned aerial vehicle. (1) relative position relative to the initial position obtained by measuring distance continuously information (relative position) via ground control station (10) again via wired connection (11) It is transferred to the unmanned aerial vehicle (1) via

Sistemin bir baska kullanim alani da yine GNSS sinyallerinin kullanilamadigi durumlarda, deniz üssü gibi kritik tesisleri kisitli bir harekat yariçapi içinde koruyan insansiz deniz araçlarinin konumunun karadan hassas olarak ölçülmesi ve araca aktarilmasidir. Another usage area of the system is that GNSS signals cannot be used. in situations that protect critical facilities, such as naval bases, within a limited radius of operation. precise measurement of the position of unmanned sea vehicles from land and is the transfer.

Bulusun tercih edilen bir uygulamasinda, mesafe ölçümü örnegin 1550 nm dalga boyunda göze zararsiz bir lazer mesafe ölçer ile de yapilabilir. Bu durumda mesafe ölçümü menzili artar. In a preferred embodiment of the invention, distance measurement is for example 1550 nm waveform. It can also be done with an eye-safe laser rangefinder. In this case the distance measurement range increases.

Bulusun tercih edilen bir uygulamasinda ise mesafe ölçümü yapan lazer ayni zamanda haberlesme ve veri transferi amaciyla da kullanilabilir. Bu durumda yer ölçme sistemi (3) tarafindan ölçülen mesafeye dayali olarak bulunan konum bilgisi, diger baglanti verileri ve IHA görüntüleri lazer isin demeti üzerinden aktarilabilir. Böyle bir durumda sistem bütünüyle RF karistirmadan bagimsizlasir. In a preferred embodiment of the invention, the distance measuring laser is also It can also be used for communication and data transfer. In this case, the ground measuring system The location information found based on the distance measured by (3), other link data and UHA images can be transmitted over the laser beam. In such a case the system is completely independent of RF interference.

Claims (4)

ISTEMLERREQUESTS 1. Insansiz hava araçlarinin (1) küresel konumlama sistemi kullanmadan kalkis, seyrüsefer ve inis yapmasini saglayan bir konum bulma destek sistemi olup özelligi; o insansiz hava araci (1) 'üzerine sabitlenen, 360 derece retro-reflektif yansima yapabilen, birbirine 45 derecelik açiyla sabitlenmis prizmalar (2), o bulundugu yerin konumunu, dünyaya göre yuvarlanma açisini, yunuslama açisini ve gerçek kuzeye göre açisini belirleyen ve islemciye gönderen ataletsel navigasyon sistemi (8), 0 bir mekanik arabirim (6) ile ataletsel navigasyon sisteminin (8) üst kismina irtibatlandirilan, insansiz hava araci (1) 'üzerindeki prizmalara (2) optik olarak nisan alinmasini saglayan ve insansiz hava aracini (1) takip eden, anlik olarak insansiz hava araciyla (1) arasindaki mesafeyi ölçerek bakis hattinin kendi eksenine göre yan ve yükselis açilari ile birlikte islemciye gönderen motorize eksenli teodolit (7), o teodolit (7) ve ataletsel navigasyon sisteminden (8) gelen verileri kullanarak insansiz hava aracinin (1) mutlak konumunu hesaplayan islemci içeren, hesaplanan konum bilgisini anlik olarak insansiz hava aracina (1) içermesidir.1. It is a position finding support system that enables unmanned aerial vehicles (1) to take off, navigate and land without using a global positioning system; o prisms fixed on the drone (1), capable of 360-degree retro-reflective reflection, fixed at an angle of 45 degrees to each other (2), which determine the position of its location, roll angle with respect to the earth, pitch and angle with respect to true north, and send it to the processor The inertial navigation system (8) is connected to the upper part of the inertial navigation system (8) via a mechanical interface (6), which enables optical aiming of the prisms (2) on the unmanned aerial vehicle (1) and follows the unmanned aerial vehicle (1). the unmanned aerial vehicle using the data coming from the motorized axis theodolite (7), the theodolite (7) and the inertial navigation system (8), which instantly measures the distance between the unmanned aerial vehicle (1) and sends it to the processor along with the lateral and elevation angles of the line of sight according to its axis. it contains the processor that calculates the absolute position of the vehicle (1) and instantly includes the calculated position information to the unmanned aerial vehicle (1). 2. Istem 1'e uygun bir sistem olup özelligi; yer ölçme sisteminin (3) ilettigi konum bilgisini insansiz hava aracina (1) kablolu veya kablosuz olarak gönderen yer kontrol istasyonu (10) içermesidir.2. It is a system according to claim 1 and its feature is; the ground control station (10) that transmits the location information transmitted by the ground measurement system (3) to the unmanned aerial vehicle (1), either wired or wirelessly. 3. Istem 1'e uygun bir sistem olup özelligi; yer ölçme sisteminde (3) yer alan, insansiz hava aracina (1) odaklanarak aralarindaki mesafeyi hesaplayan ve islemcinin belirledigi konum bilgisini insansiz hava aracina (1) aktaran bir lazer mesafe ölçer içermesidir.3. It is a system according to claim 1 and its feature is; It contains a laser distance meter located in the ground measuring system (3), which focuses on the unmanned aerial vehicle (1), calculates the distance between them and transfers the position information determined by the processor to the unmanned aerial vehicle (1). 4. Istem 1ie uygun bir sistem olup özelligi; teodolitten (7) aldigi mesafe bilgisiyle insansiz hava aracinin (1) kalkis yaptigi konumu belirleyen, seyr'üsefer sirasinda insansiz hava aracinin (1) kalkis yaptigi noktaya göre bagil konumunu hesaplayan bahsedilen islemciyi içermesidir. istem 'lie uygun bir sistem olup özelligi; yer ölçme sisteminin (3), ataletsel navigasyon sisteminin (8) monte edildigi ve 'üst yüzeyine mekanik arabirimin (6) irtibatlandirildigi bir plaka (5) içermesidir.4. It is a system in accordance with claim 1 and its feature is; It includes the said processor, which determines the position from which the unmanned aerial vehicle (1) takes off with the distance information it receives from the theodolite (7), and calculates the relative position of the unmanned aerial vehicle (1) according to the point from which it takes off during navigation. It is a system suitable for the request and its feature is; the geometering system (3) includes a plate (5) on which the inertial navigation system (8) is mounted and the mechanical interface (6) is connected to its upper surface.
TR2020/02499A 2020-02-19 2020-02-19 Take-off, Navigation and Landing Support System for UNMANNED VEHICLES TR202002499A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TR2020/02499A TR202002499A2 (en) 2020-02-19 2020-02-19 Take-off, Navigation and Landing Support System for UNMANNED VEHICLES
FR2101579A FR3107361B1 (en) 2020-02-19 2021-02-18 TAKE-OFF, NAVIGATION AND LANDING SUPPORT SYSTEM FOR UNMANNED AERIAL VEHICLES
ES202130135A ES2849625B2 (en) 2020-02-19 2021-02-19 SUPPORT SYSTEM FOR THE TAKEOFF, NAVIGATION AND LANDING OF UNMANNED AIR VEHICLES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2020/02499A TR202002499A2 (en) 2020-02-19 2020-02-19 Take-off, Navigation and Landing Support System for UNMANNED VEHICLES

Publications (1)

Publication Number Publication Date
TR202002499A2 true TR202002499A2 (en) 2021-08-23

Family

ID=76730616

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2020/02499A TR202002499A2 (en) 2020-02-19 2020-02-19 Take-off, Navigation and Landing Support System for UNMANNED VEHICLES

Country Status (3)

Country Link
ES (1) ES2849625B2 (en)
FR (1) FR3107361B1 (en)
TR (1) TR202002499A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116202500B (en) * 2023-05-06 2023-07-21 石家庄科林电力设计院有限公司 Power transmission tower pile foundation design point location device and method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100860771B1 (en) * 2008-01-11 2008-09-30 한국유지관리 주식회사 System for acquiring inside space information of underground space and shielding structure
EP2511658A1 (en) * 2011-04-14 2012-10-17 Hexagon Technology Center GmbH Measuring system and method for new point determination
EP2511781A1 (en) * 2011-04-14 2012-10-17 Hexagon Technology Center GmbH Method and system for controlling an unmanned aircraft
US9758239B2 (en) 2011-04-14 2017-09-12 Hexagon Technology Center Gmbh System and method for controlling an unmanned air vehicle
JP5882951B2 (en) 2013-06-14 2016-03-09 株式会社トプコン Aircraft guidance system and aircraft guidance method
KR101391764B1 (en) * 2014-01-29 2014-05-07 국방과학연구소 The method of harmonization between inertial navigation system and total station
EP3062066A1 (en) * 2015-02-26 2016-08-31 Hexagon Technology Center GmbH Determination of object data by template-based UAV control
WO2017026956A2 (en) * 2015-08-13 2017-02-16 Aselsan Elektronik Sanayi Ve Ticaret Anonim Sirketi An artillery surveying device
FR3040097B3 (en) * 2015-08-14 2017-09-08 Aselsan Elektronik Sanayi Ve Ticaret Anonim Sirketi INSTRUMENT FOR TOPOGRAPHY OF ON-BOARD ARTILLERY BASED ON INERTIAL NAVIGATION TECHNOLOGY, WITH A MOTORIZED ARM
JP6693765B2 (en) 2016-02-26 2020-05-13 株式会社トプコン Flight object tracking method and flight object guidance system
JP6944790B2 (en) * 2017-02-22 2021-10-06 株式会社トプコン Controls, optics, control methods, unmanned aerial vehicle tracking systems and programs
JP6508320B1 (en) 2017-12-28 2019-05-08 D−Plan株式会社 Control system of unmanned aircraft

Also Published As

Publication number Publication date
FR3107361B1 (en) 2023-02-10
ES2849625B2 (en) 2022-09-27
ES2849625A1 (en) 2021-08-19
FR3107361A1 (en) 2021-08-20

Similar Documents

Publication Publication Date Title
EP2118713B1 (en) Precision approach control
US10527720B2 (en) Millimeter-wave terrain aided navigation system
CN110192122B (en) System and method for radar control on unmanned mobile platforms
TW518422B (en) Positioning and proximity warning method and system thereof for vehicle
US20180046177A1 (en) Motion Sensing Flight Control System Based on Smart Terminal and Terminal Equipment
EP1906151A2 (en) Imaging and display system to aid helicopter landings in brownout conditions
CN108255190B (en) Accurate landing method based on multiple sensors and tethered unmanned aerial vehicle using same
CN112335190B (en) Radio link coverage map and impairment system and method
JP2021519434A (en) Navigation devices and methods
GB2571711A (en) Drone control system
Marcon et al. Vision-based and differential global positioning system to ensure precise autonomous landing of UAVs
EP3699645A1 (en) Systems and methods for vehicle navigation
Kong et al. A ground-based multi-sensor system for autonomous landing of a fixed wing UAV
Burdziakowski et al. Accuracy of a low-cost autonomous hexacopter platforms navigation module for a photogrammetric and environmental measurements
TR202002499A2 (en) Take-off, Navigation and Landing Support System for UNMANNED VEHICLES
GB2607752A (en) Aircraft landing guidance support system, and aircraft landing integrated support system including same
RU120077U1 (en) ON-BOARD RADIOTECHNICAL COMPLEX OF NAVIGATION AND LANDING OF MARINE BASING AIRCRAFT
EP3751233B1 (en) Multi-aircraft vision and datalink based navigation system and method
Danko et al. Robotic rotorcraft and perch-and-stare: Sensing landing zones and handling obscurants
US20230030222A1 (en) Operating modes and video processing for mobile platforms
Vadlamani et al. Preliminary design and analysis of a lidar based obstacle detection system
RU2813215C1 (en) Complex of autonomous landing aids for unmanned aircraft
Krasil’shchikov et al. Analysis of conditions for ensuring operation of an intertial satellite navigation system of an unmannded aerial vehicle during interference
Joo et al. Enhancement of UAV-Based Spatial Positioning Using the Triangular Center Method with Multiple GPS
Tomé et al. Evaluation of a DGPS/IMU integrated navigation system