TR201908592A2 - AN OPTICAL DEVICE TO MEASURE THE THICKNESS OF THE CARTRIDGE - Google Patents

AN OPTICAL DEVICE TO MEASURE THE THICKNESS OF THE CARTRIDGE Download PDF

Info

Publication number
TR201908592A2
TR201908592A2 TR2019/08592A TR201908592A TR201908592A2 TR 201908592 A2 TR201908592 A2 TR 201908592A2 TR 2019/08592 A TR2019/08592 A TR 2019/08592A TR 201908592 A TR201908592 A TR 201908592A TR 201908592 A2 TR201908592 A2 TR 201908592A2
Authority
TR
Turkey
Prior art keywords
cartilage
light
fiber optic
thickness
light source
Prior art date
Application number
TR2019/08592A
Other languages
Turkish (tr)
Inventor
Canpolat Murat
Original Assignee
Akdeniz Ueniversitesi
Akdeni̇z Üni̇versi̇tesi̇ Döner Sermaye İşletme Müdürlüğü
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akdeniz Ueniversitesi, Akdeni̇z Üni̇versi̇tesi̇ Döner Sermaye İşletme Müdürlüğü filed Critical Akdeniz Ueniversitesi
Priority to TR2019/08592A priority Critical patent/TR201908592A2/en
Publication of TR201908592A2 publication Critical patent/TR201908592A2/en

Links

Abstract

Buluş; artroskopik inceleme sırasında kıkırdak kalınlığının spektroskopik ölçümünün yapılmasını sağlayan optik bir tıbbi cihaz ve kıkırdak kalınlığının belirlenmesi için bir yöntem ile ilgilidir. Bu cihazda LED ışık kaynakları ve fotodiyot kullanılarak kıkırdak kalınlığı gerçek zamanlı olarak belirlenmekte olup, kullanılan yöntem invazif değildir.Meet; It relates to an optical medical device that enables spectroscopic measurement of cartilage thickness during arthroscopic examination and a method for determining cartilage thickness. In this device, cartilage thickness is determined in real time using LED light sources and photodiode, and the method used is non-invasive.

Description

TARIFNAME KIKIRDAK KALINLIGINI ÖLÇMEK IÇIN BIR OPTIK CIHAZ Bulusun Ilgili Oldugu Teknik Alan Bulus; artroskopik inceleme sirasinda kikirdak kalinliginin spektroskopik ölçümünün yapilmasini saglayan bir tibbi cihaz ve kikirdak kalinliginin belirlenmesi için bir yöntem ile Bulusla Ilgili Teknigin Bilinen Durumu (Önceki Teknik) Eklem kikirdagi; kaygan bir yüzeye sahip olup, eklemler arasinda sürtünmeyi azaltan ve yüklenme kuvvetlerinin dengeli geçisini saglayan özellesmis bir bag dokusudur. Eklem kikirdagi çesitli sekillerde hasar görebilir. Yillar içinde eskiyerek önce yumusar sonra saçaklanarak dökülür ve altindaki kemik ortaya çikar. Halk arasinda kireçlenme olarak bilinen bu duruma osteoartrit veya artroz adi verilir ve yasla birlikte ortaya çikan asinma ve eskimenin sonucunda olusmaktadir. Ayrica; asiri hareket, fazla kilo, vücut agirlik dengesinin bozulmasi ve alinan sert darbeler de eklem hasarlarina neden olmaktadir. Otuz binden fazla artroskopik girisimin kayitlarinin incelendigi bir çalismada, bu girisimlerin %61'inde kikirdak yaralanmasina rastlanmistir.[2] Bunlarin %19'u odaksal (yaygin olmayan) kondral ya da osteokondral lezyonlardir.[3,4] Evre III ve IV tek odaksal kikirdak defekti insidansi ise %5.2'dir.[5] Akut yaralanmalarda bu oran yükselmektedir. Travmatik hemartrozu olan hastalarin %20'sinde kikirdak yaralanmasi da vardir.[6] Kikirdak defektlerinin büyük bir çogunlugu (%58-80) medial femoral kondilde görülür.[7] Bunu patella ve lateral tibia platosu takip eder. Daha az siklikta ise lateral femoral kondil, troklea ve medial tibial platoda görülürler.[3] Hastalarin üçte birinden fazlasinda menisküs yirtigi ya da ön çapraz bag yaralanmasi kikirdak defektine eslik etmektedir.[5] Kikirdak bilegi kiriklarinin en az %79'una bir kikirdak yaralanmasi eslik etmektedir. Bu yaralanmalarin %69'unda talusta, %46'sinda distal tibiada, %45"inde fibulada, %41"inde de medial malleolde kikirdak Iezyonu saptanmistir.[8] Omuzda ise özellikle elin bas üstünde kullanildigi sporlarla ugrasan sporcularin %5-17'sinde kikirdak yaralanmasina rastlanmaktadir. Eklem kikirdagi hastaliklarinin tedavisinde konservatif (non-farmakolojik, farmakolojik, fizik tedavi, viskosupleman tedavi) ve cerrahi (artroskopik debridman, yüksek tibial osteotomi, protez ve artrodez) birçok yöntem gelistirilmistir. Hastaligin erken tanisi, dogru teshisi, uygulanacak tedavinin basarisi için büyük önem tasimaktadir. Bu amaçla eklem kikirdaginin erken evre dejenerasyonunun degerlendirilmesinde, biyokimyasal, biyomekanik ve elektromekanik birçok yöntem denenmistir. Günümüzde kikirdak dejenerasyonunu göstermek için invaziv olmayan X-ray, manyetik rezonans görüntüleme (MRG) ve minimal invaziv olan artroskopi, mekanik indentasyon yöntemlerinden yararlanilmaktadir. Ancak, kikirdak dejenerasyonunun degerlendirilmesinde kullanilan tüm yöntemler eklem kikirdaginin yapisal özellikleri hakkinda yeterli bilgiyi saglamamaktadir. Kikirdak hasarini belirlemek amaciyla kikirdak kalinligi ölçülerek hasarin önemine göre bir tedavi yöntemi uygulanmakta olup, bu yöntemlerden biri indentasyon testidir. Bu yöntemde kikirdak laboratuvar ortaminda analiz edilebilmekte, hastalar üzerinde ölçüm yapilamamaktadir. Bu sebeple, rutinde kullanimi mümkün olmamaktadir. Kikirdak hasarini belirlemek için, yüksek çözünürlüklü ultrason (US) ve manyetik rezonans görüntüleme (MRl) diger seçeneklerdendir. Ancak, pahali olmasi ve kolay ulasilabilir olamamalari bu sistemlerin kullanimlarini da sinirlamaktadir. Bu neden ile kikirdak hasarini belirlemek üzere kikirdak kalinligini ölçmek için yeni sistemlerin gelistirilmesine ihtiyaç vardir. alinarak kikirdagin üç boyutlu görüntüsünün olusturuldugu bir yöntem ve sistem kikirdak ile etkilesiminden yararlanilarak kikirdak kalinligini teshis etmek için bir yöntem ile ilgilidir. Fakat, mevcut sistemler cerrahi operasyon sirasinda kikirdak kalinligini belirlemeye uygun degildir. Mevcut teknikte, kikirdak kalinliginin spektroskopik olarak belirlendigi çalismalar da mevcut olup [12]; bu çalismalarda kikirdak üzerinde spektrometre ile ölçümler alinmakta, alinan ölçümlerden hemoglobin absorpsiyon spektrumlari elde edilerek, bu spektrumlar ile kikirdak kalinliklari arasindaki iliski incelenmektedir. Bu mevcut yöntemlerde; Spektroskopik ölçüm almak için spektrometre kullanmak ve Spektroskopik analiz yapmak gerekmektedir. Spektroskopik ölçüm almak hem pahali hem de fazla analiz gerektirmektedir. Mevcut çözümlerin konu hakkindaki yetersizligi nedeniyle ilgili teknik alanda bir gelistirme yapilmasi gerekli kilinmistir. Söz konusu bulus teknigin bilinen durumundaki dezavantajlarin giderildigi, invazif olmayan ve gerçek zamanli ölçüm alinabilen kikirdak kalinligi ölçmek için bir yöntem ve tibbi cihaz ile ilgilidir Bulusun Kisa Açiklamasi ve Amaçlari Mevcut bulusta, kikirdak kalinliginin ölçülmesi için bir tibbi cihaz ve bu cihazin çalisma yöntemi açiklanmaktadir. Bulusun bir amaci; tahribatsiz bir sekilde kikirdak kalinligi ölçümü saglamaktir. Bulusun bir diger amaci; artroskopik muayene sirasinda gerçek zamanli kikirdak kalinligi ölçümü saglamaktir. Bulus konusu sistem ile laboratuvar ortamina gerek kalmadan kikirdak kalinligi ölçümü etkin bir sekilde yapilabilmekte ve alinan sonuçlara göre kikirdak hasari belirlenebilmektedir. Bulusu Açiklayan Sekillerin Tanimlari Sekil 1: Kikirdak kalinligini ölçmek için yapilan optik cihazin sematik görünüsü. Sekil 2: Kikirdak kalinligini ölçmek için kullanilan optik probun ucu. Sekil 3: Optik prob çikisinda isik siddetlerini ölçmek için kalibrasyon Ünitesi. Sekil 4: Optik prob ile kikirdak kalinligi ölçümünün sematik görünüsü. Bulusu Olusturan UnsurIarinIKisimlarinlParçalarin Tanimlari Bu bulus ile gelistirilen kikirdak kalinligi ölçüm cihazinin daha iyi açiklanabilmesi için sekillerde yer alan parça ve kisimlar numaralandirilmis olup, her bir numaranin karsiligi asagida verilmektedir: Elektronik kart Elektronik kart ile fotodiyot arasinda bir elektriksel baglanti 1) Birinci isik kaynagi 2) Birinci isik kaynaginin baglandigi fiber optik kablo 3) Ikinci isik kaynagi 4) Ikinci isik kaynaginin baglandigi fiber optik kablo ) Fotodiyot 6) Yansiyan isigi fotodiyota tasiyan fiber optik kablo Elektronik kart ile birinci isik kaynagi arasinda bir elektriksel baglanti Elektronik kart ile ikinci isik kaynagi arasinda bir elektriksel baglanti 11 Elektronik gösterge paneli 12 Elektronik kart ile elektronik gösterge paneli arasinda bir elektriksel baglanti 13 Optik birlestirici 14 Optik birlestiricinin çikisinda bulunan fiber optik kablo Plastik koruyucu kilif 16 Fiber optik prob Fiber optik prob ucu Beyaz yansitici standart Beyaz yansitici standarta gönderilen isik 21 Kikirdak 22 Kikirdagin altindaki kemik 23 Isik yörüngesi 24 Beyaz yansitici standarttan geri yansiyan isik Sabitleyici 18)lsik siddeti kalibrasyon ünitesi 26)Cihazi açma kapama dügmesi Bulusun Ayrintili Açiklamasi Bulus, artroskopik muayene sirasinda kikirdak kalinligini, özellikle eklem kikirdak kalinligini, ölçmek için birtibbi cihaz ve bu cihazin çalisma yöntemi ile ilgilidir. Bulusa konu cihazin çalisma prensibi; kikirdaga (21) optik birlestiricinin çikisinda bulunan fiber optik kablo (14) ile gönderilen farkli dalga boylarindaki isigin kikirdak (21) ve kikirdagin altindaki kemik (22) ile etkileserek difüzyona ugramasi ve bir kisminin geri yansimasi, yansiyan isigi fotodiyota tasiyan fiber optik kablo (6) tarafindan toplanmasi, isik siddeti degerinin fotodiyot (5) ile ölçülmesi, alinan verilerin kalibrasyondan sonra elde edilen veriler ile beraber elektronik kart (7) üzerindeki yazilim ile degerlendirilmesi sonucunda kikirdak kalinliginin gerçek zamanli olarak hesaplanmasina dayanmaktadir. Bulusa konu kikirdak kalinligi ölçmek için tibbi cihaz; 500-600 nm arasinda herhangi bir dalga boyunda emisyon yapan bir birinci isik kaynagi (1), 700-900 nm arasinda herhangi bir aralikta emisyon yapan bir ikinci isik kaynagi (3), bir optik birlestirici (13), birinci isik kaynagindan (1) çikan isigin optik birlestiriciye (13) tasinmasi için birinci isik kaynaginin (1) baglandigi fiber optik kablo (2), ikinci isik kaynagindan (3) çikan isigin optik birlestiriciye (13) tasinmasi için ikinci isik kaynaginin (3) baglandigi fiber optik kablo (4), isigin fiber optik proba (16) tasinmasini saglayan optik birlestiricinin çikisindaki fiber optik kablo (14), kikirdaktan geri yansiyan isigin siddetini ölçmek için kullanilan fotodiyot (5), kikirdakta difüzyona ugradiktan sonra yansiyan isigi fotodiyota tasiyan fiber optik kablo (6), fiber optik kablolari saran bir plastik koruyucu kilif (15), içerisinde optik birlestiricinin çikisindaki fiber optik kabloyu (14) ve yansiyan isigi fotodiyota tasiyan fiber optik kabloyu (6) ihtiva eden bir fiber optik prob (16), fotodiyot akimini dijitale çevirmek için üzerinde analog dijital dönüstürücü, mikroislemci ile isik kaynaklari için sürücüleri olan bir elektronik kart (7), elektronik kart (7) ile fotodiyot (5) arasinda bir elektriksel baglanti (8), elektronik kart (7) ile birinci isik kaynagi (1) arasinda bir elektriksel baglanti (9), elektronik kart (T) ile ikinci isik kaynagi (3) arasinda bir elektriksel baglanti (10), kikirdak kalinligi degerlerinin gösterildigi bir elektronik gösterge paneli (11), elektronik kart (7) ile elektronik gösterge paneli (11) arasinda bir elektriksel baglanti (12) ve cihazi açma-kapama dügmesi (26) içermektedir. Bulus konusu fiber optik prob (16) tüp seklinde olup; içerisinde isik kaynaklarindan gelen isigin kikirdaga tasinmasini saglayan optik birlestiricinin çikisindaki fiber optik kablo (14) ve kikirdakta difüzyona ugradiktan sonra yansiyan isigi fotodiyota tasiyan fiber optik kablo (6) bulunmaktadir. Fiber optik prob (16), tercihen çelik bir tüp formundadir ve fiber optik prob ucunda (17) bu fiber optik kablolar (14, 6) ve sabitleyici (25) bulunmaktadir. Fiber optik prob ucundan (17), prob içerisindeki bu iki fiber optik kablonun çikisi bulunmaktadir. Bulusa konu cihazda; birinci isik kaynagindan (1) çikan isik, birinci isik kaynaginin (1) baglandigi fiber optik kablo (2) ile optik birlestiriciye (13) tasinmaktadir. Benzer sekilde ikinci isik kaynagindan (3) çikan isik da ikinci isik kaynaginin (3) baglandigi fiber optik kablo (4) ile optik birlestiriciye (13) tasinmaktadir. Her iki isik kaynagindan gelen isik optik birlestiricinin (13) çikisina bagli olan fiber optik kablo (14) ile fiber optik proba (16) tasinmaktadir. Fiber optik proba (16) isigi ileten fiber optik kablo (14) ve geri yansiyan isigi fotodiyota (5) tasiyan fiber optik kablo (6) bir plastik koruyucu kilif (15) içerisinde birlikte bulunmaktadirlar. Fiber optik prob ucunda (17) hem isigi kikirdaga tasiyan fiber optik kablo (14) hem de kikirdaktan geri yansiyan isigi fotodiyota tasiyan fiber optik kablo (6) uçlari bulunmaktadir. Fiber optik prob ucu (17) kikirdak kalinligi ölçümü yapilacak bölgeye hafifçe degdirildiginde, optik birlestiricinin çikisindaki fiber optik kablo (14) ucu ile isik kikirdaga iletilmekte, kikirdak (21) ve kikirdagin altindaki kemik (22) ile etkileserek difüzyona ugradiktan sonra isigin bir kismi geri yansimaktadir. Kikirdak (21) ve kemik (22) içinde difüzyona ugradiktan sonra dagilan isigin fiber optik kablo (6) tarafindan toplanan kisminin yörüngesi (23) hem kikirdak (21) hem de (22) kemigin içinde geçmektedir. Fotodiyota (5) gelen farkli dalga boylarindaki isik siddetlerinin degeri yörüngelerinin (23) kemigin (22) içindeki uzunluklarina baglidir. Fotodiyota (5) gelen isik siddetleri elektrik akimina dönüstürülür. Fotodiyot (5) üzerinde olusan bu elektrik akimini bir elektriksel baglanti (8) ile elektronik karta (7) aktarilir. Her iki dalga boyu için sirasi ile yapilan ölçümler elektronik kartta (7) analiz edilir ve analiz sonucu elektronik gösterge paneline (11) elektriksel baglanti (12) ile aktarilir. Elektronik kart (7) ayni zamanda birinci isik kaynagina (1) elektriksel baglantisi (9) ve ikinci isik kaynagina (3) elektriksel baglantisi (10) ile bagli olup, her iki isik kaynagini kontrol etmektedir. Fiber optik prob (16) her ölçüm öncesi isik siddeti kalibrasyon ünitesi (18) ile kalibre edilmektedir. Kalibrasyon islemi için; fiber optik prob (16) isik siddeti kalibrasyon ünitesine (18) yerlestirilmekte. Fiber optik kablo (14) ile her iki dalga boyunda isik sirasi ile beyaz yansitici standart Üzerine gönderilmekte (20) ve beyaz yansitici standarttan geri yansiyan (24) isik optik proptaki optik fiber (6) tarafinda toplanmakta ve fotodiyota (5) iletilmektedir. Her iki dalga boyu için isik siddetleri (Skal(7\.1) ve Skal(7\.2)) ölçülmektedir. Daha sonra bulusa konu cihazla kikirdak (21) üzerinde ölçümler (SkikOM) ve Skik(7\.2)) alinmaktadir. Ortam isiginin etkisini elimine etmek için fiber optik prob (16) ölçüm geometrisinde iken isik kaynaklari kapatilarak arka plan ölçümü (Sbg) alinmaktadir. Alinan verilerin degerlendirmesinde elektronik kart (7') üzerinde yapilan islemlerden birincisi, kikirdak üzerinde alinan ölçümlerden arka plan ölçümünü çikararak her iki dalga boyundaki isik için kikirdaktan geri yansiyan net isik siddetlerini ((SkikÜL'l) -Sbg) ve (Skik(7b2)- Sbg)) hesaplamaktir. Kalibrasyon islemi için yapilan islemlerden ilki birinci isik kaynagi ile kikirdak üzerinde alinan net isik siddetini beyaz yansitici standart (19) üzerinde alinan ölçüme bölmektir ((Skik(ki) -Sbg)/ Skai(7ti)). Ayni kalibrasyon islemi ikinci isik kaynagi içinde yapilmaktadir. Bu kalibrasyon islemleri ile kikirdak üzerinde alinan ölçümler isik kaynaklarinin siddetlerinden bagimsiz hale getirilmektedir. Bir sonraki islem ise Esitlik 1 deki ifade ile kalinlik parametresini (r) hesaplamaktir. (sm(aa-sbgyrskaiuzn ( s' ' ) Burada SkikUn) ve Sk.k()\2); sirasiyla birinci isik kaynagi (500-600 nm arasinda) ve ikinci isik kaynagi (700-900 nm arasinda) ile kikirdak (21) üzerinde alinan ölçümlerin degerlerinin ifade etmektedir. Skai()\1) ve Skai()\2) ise; sirasiyla birinci isik kaynagi (1) ve ikinci isik kaynagi (3) ile isik siddeti kalibrasyon ünitesindeki (18) beyaz yansitici standart (19) üzerinde alinan ölçüm degerlerini ifade etmektedir. Burada, r parametresi, kikirdak kalinligi hakkinda bilgi saglamaktadir. Hasarsiz olan kikirdak üzerinde alinan ölçümde kikirdak kalin oldugundan, isik kemige ulasip kan tarafindan absorplanmadigi için 500- 600 nm dalga boyu araliginda (A1, birinci isik kaynagi) isik siddetindeki düsüs fazla degildir. Dolayisi ile r parametresi büyük olur. Eger kikirdak ince ise, birinci dalga boyunda gönderilen isik (A1) kemikte bulunan kan tarafindan daha fazla absoplanir ve r parametresi küçülür. Ikinci isik kaynagindan (3) gelen isigin kan tarafindan absorpsiyonu düsük oldugundan, kikirdak kalinligini ölçmede belirleyici olan birinci isik kaynagindan (1) gelen isigin siddetindeki degisimdir. Esitlik l formülüne göre hesaplanan r parametresi ile kikirdak kalinligi arasinda iliski farkli kalinliklardaki kikirdak dokulari üzerinde ölçümler alinarak belirlenmis olup, kikirdak kalinligi (k) ile r parametresi arasindaki iliski asagidaki gibidir: 1' = F(k) (Esitlik ii) Bulusa konu yöntemin ilk asamasinda kikirdaklar üzerinde ölçümler alinip, sonrasinda kikirdak kalinliklari mikrometre ile ölçülerek Esitlik ll'deki r ile k arasindaki fonksiyon (F) belirlenmektedir. Bulusa konu yöntemin ikinci asamasinda ise, fonksiyon (F) bilindigi için ölçülen r parametresinden kikirdak kalinligi (k) Esitlik III formülü kullanilarak elektronik kart üzerinde (7) hesaplanmaktadir. k = F-1(r) (Esitlik iii) Bulusta kullanilan isik kaynaklari LED formunda olup, birinci isik kaynaginin (1) dalga boyu araliginda hemoglobin absorpsiyonu yüksek, ikinci isik kaynaginin (3) dalga boyu araliginda ise hemoglobin absorpsiyonu düsüktür. Hemoglobin kikirdakta bulunmamakta, ancak kikirdak altindaki kemikte bulunmaktadir. Eger kikirdak kalin ise isik kemige ulasmaz ve her iki dalga boyundaki isigin kikirdakta geri yansiyan siddetleri birbirlerine yakin olur. Ancak, kikirdak kalinligi az olursa her iki dalga boyundaki isik kemige ulasir ve kan tarafindan absorplanirlar. Birinci isik kaynaginin (1) yaydigi isigin hemoglobin tarafindan absorpsiyonu daha yüksek oldugu için geri yansiyan isik siddeti düsük olur. Bundan dolayi, Esitlik I"daki r parametresinin degeri küçük olur. Burada, r, teshis parametresi olarak adlandirilmakta olup kikirdak kalinliginin azalmasi ile azalmaktadir. TR DESCRIPTION AN OPTICAL DEVICE FOR MEASURING CARTILAR THICKNESS Technical Field to which the Invention Relates Invention; A medical device that enables spectroscopic measurement of cartilage thickness during arthroscopic examination and a method for determining cartilage thickness. State of the Art Related to the Invention (Prior Art) Articular cartilage; It is a specialized connective tissue that has a slippery surface and reduces friction between joints and ensures balanced transmission of loading forces. Joint cartilage can be damaged in various ways. As it ages over the years, it first softens and then falls out, revealing the bone underneath. This condition, popularly known as calcification, is called osteoarthritis or arthrosis and occurs as a result of wear and tear that occurs with age. Moreover; Excessive movement, excess weight, impaired body weight balance and hard blows also cause joint damage. In a study where the records of more than thirty thousand arthroscopic procedures were examined, cartilage injury was found in 61% of these procedures.[ 2] 19% of these are focal (rare) chondral or osteochondral lesions.[ 3,4] Stage III and IV are single focal. The incidence of cartilage defects is 5.2%. [ 5] This rate increases in acute injuries. 20% of patients with traumatic hemarthrosis also have cartilage injury.[ 6] The majority of cartilage defects (58-80%) are seen in the medial femoral condyle.[ 7] This is followed by the patella and lateral tibial plateau. Less frequently, they are seen in the lateral femoral condyle, trochlea and medial tibial plateau.[ 3] In more than one-third of the patients, meniscus tear or anterior cruciate ligament injury accompanies the cartilage defect.[ 5] At least 79% of cartilage ankle fractures involve a cartilage injury. It accompanies. Cartilage lesion was detected in the talus in 69% of these injuries, in the distal tibia in 46%, in the fibula in 45%, and in the medial malleolus in 41%.[ 8] As for the shoulder, 5-17% of the athletes involved in sports where the hand is used above the head are affected. Cartilage injury is observed in Many conservative (non-pharmacological, pharmacological, physical therapy, viscosupplement therapy) and surgical (arthroscopic debridement, high tibial osteotomy, prosthesis and arthrodesis) methods have been developed in the treatment of joint cartilage diseases. Early diagnosis and correct diagnosis of the disease is of great importance for the success of the treatment to be applied. For this purpose, many biochemical, biomechanical and electromechanical methods have been tried in the evaluation of early stage degeneration of joint cartilage. Today, non-invasive X-ray, magnetic resonance imaging (MRI) and minimally invasive arthroscopy and mechanical indentation methods are used to demonstrate cartilage degeneration. However, not all methods used in the evaluation of cartilage degeneration provide sufficient information about the structural properties of articular cartilage. In order to determine cartilage damage, a treatment method is applied according to the severity of the damage by measuring the cartilage thickness, one of these methods is the indentation test. In this method, cartilage can be analyzed in a laboratory environment, but measurements cannot be made on patients. For this reason, it is not possible to use it routinely. High-resolution ultrasound (US) and magnetic resonance imaging (MRI) are other options to determine cartilage damage. However, the fact that these systems are expensive and not easily accessible also limits their use. For this reason, there is a need to develop new systems to measure cartilage thickness to determine cartilage damage. It is related to a method in which a three-dimensional image of the cartilage is created and a method to diagnose the thickness of the cartilage by using the system's interaction with the cartilage. However, current systems are not suitable for determining cartilage thickness during surgery. In the current technique, there are also studies in which cartilage thickness is determined spectroscopically [12]; In these studies, measurements are taken on the cartilage with a spectrometer, hemoglobin absorption spectra are obtained from the measurements, and the relationship between these spectra and cartilage thicknesses is examined. In these existing methods; To take spectroscopic measurements, it is necessary to use a spectrometer and perform spectroscopic analysis. Taking spectroscopic measurements is both expensive and requires much analysis. Due to the inadequacy of existing solutions on the subject, it has been necessary to make a development in the relevant technical field. The invention in question is related to a method and medical device to measure cartilage thickness, which eliminates the disadvantages of the known state of the art and can be measured non-invasively and in real time. Brief Description and Purposes of the Invention. In the present invention, a medical device for measuring cartilage thickness and the working method of this device are described. One purpose of the invention is; To provide non-destructive measurement of cartilage thickness. Another purpose of the invention is; To provide real-time cartilage thickness measurement during arthroscopic examination. With the system of the invention, cartilage thickness measurement can be made effectively without the need for a laboratory environment, and cartilage damage can be determined according to the results. Definitions of Drawings Explaining the Invention Figure 1: Schematic view of the optical device made to measure cartilage thickness. Figure 2: Tip of the optical probe used to measure cartilage thickness. Figure 3: Calibration Unit for measuring light intensities at the optical probe output. Figure 4: Schematic view of cartilage thickness measurement with optical probe. Definitions of Elements and Parts Composing the Invention In order to better explain the cartilage thickness measuring device developed with this invention, the parts and parts in the figures are numbered and the equivalent of each number is given below: Electronic card An electrical connection between the electronic card and the photodiode 1) First light source 2) First Fiber optic cable to which the light source is connected 3) Second light source 4) Fiber optic cable to which the second light source is connected ) Photodiode 6) Fiber optic cable that carries the reflected light to the photodiode An electrical connection between the electronic card and the first light source An electrical connection between the electronic card and the second light source connection 11 Electronic display panel 12 An electrical connection between the electronic card and the electronic display panel 13 Optical coupler 14 Fiber optic cable at the output of the optical coupler Plastic protective sheath 16 Fiber optic probe Fiber optic probe tip White reflective standard Light sent to the white reflective standard 21 Cartilage 22 Cartilage bone underneath 23 Light orbit 24 Light reflected back from the white reflective standard Stabilizer 18)Light intensity calibration unit 26)Device on/off button Detailed Description of the Invention The invention is a medical device to measure cartilage thickness, especially joint cartilage thickness, during arthroscopic examination and the working method of this device It is related to. The operating principle of the device subject to the invention; The light of different wavelengths sent to the cartilage (21) via the fiber optic cable (14) at the exit of the optical coupler interacts with the cartilage (21) and the bone (22) under the cartilage, diffusion and some of it is reflected back, and the fiber optic cable (6) carries the reflected light to the photodiode. ) is based on real-time calculation of the cartilage thickness as a result of measuring the light intensity value with the photodiode (5) and evaluating the received data with the data obtained after calibration with the software on the electronic card (7). Medical device for measuring cartilage thickness, which is the subject of the invention; A first light source (1) emitting at any wavelength between 500-600 nm, a second light source (3) emitting at any wavelength between 700-900 nm, an optical combiner (13) from the first light source (1). The fiber optic cable (2) to which the first light source (1) is connected in order to carry the light coming out of the optical coupler (13), the fiber optic cable (4) to which the second light source (3) is connected in order to carry the light coming out of the second light source (3) to the optical coupler (13). ), fiber optic cable (14) at the output of the optical coupler, which allows the light to be carried to the fiber optic probe (16), photodiode (5), which is used to measure the intensity of the light reflected back from the cartilage, fiber optic cable (6), which carries the reflected light to the photodiode after diffusion in the cartilage, fiber A plastic protective sheath (15) surrounding the optical cables, a fiber optic probe (16) containing the fiber optic cable (14) at the output of the optical coupler and the fiber optic cable (6) that carries the reflected light to the photodiode, an analog digital probe (16) on it to convert the photodiode current into digital. a converter, an electronic card (7) with drivers for the microprocessor and light sources, an electrical connection (8) between the electronic card (7) and the photodiode (5), an electrical connection between the electronic card (7) and the first light source (1). (9), an electrical connection (10) between the electronic card (T) and the second light source (3), an electronic display panel (11) where cartilage thickness values are displayed, a connection between the electronic card (7) and the electronic display panel (11). It contains electrical connection (12) and device on-off button (26). The fiber optic probe (16) subject to the invention is tube-shaped; It contains the fiber optic cable (14) at the output of the optical coupler, which allows the light coming from the light sources to be carried to the cartilage, and the fiber optic cable (6) that carries the reflected light to the photodiode after diffusion in the cartilage. The fiber optic probe (16) is preferably in the form of a steel tube, and there are fiber optic cables (14, 6) and stabilizer (25) at the fiber optic probe tip (17). There is an exit from the fiber optic probe tip (17) for these two fiber optic cables inside the probe. In the device subject to the invention; The light coming out of the first light source (1) is carried to the optical coupler (13) via the fiber optic cable (2) to which the first light source (1) is connected. Similarly, the light coming from the second light source (3) is carried to the optical coupler (13) via the fiber optic cable (4) to which the second light source (3) is connected. The light coming from both light sources is carried to the fiber optic probe (16) via the fiber optic cable (14) connected to the output of the optical coupler (13). The fiber optic cable (14) that transmits the light to the fiber optic probe (16) and the fiber optic cable (6) that carries the reflected light to the photodiode (5) are located together in a plastic protective sheath (15). The fiber optic probe tip (17) has both the fiber optic cable (14) ends that carry the light to the cartilage and the fiber optic cable (6) ends that carry the light reflected back from the cartilage to the photodiode. When the fiber optic probe tip (17) is lightly touched to the area where the cartilage thickness will be measured, the light is transmitted to the cartilage with the fiber optic cable (14) tip at the exit of the optical coupler, and after diffusion by interacting with the cartilage (21) and the bone (22) under the cartilage, some of the light is returned. is reflected. The trajectory (23) of the part of the scattered light collected by the fiber optic cable (6) after diffusion in the cartilage (21) and bone (22) passes through both the cartilage (21) and the bone (22). The value of the light intensities at different wavelengths incident on the photodiode (5) depends on the length of the orbits (23) inside the bone (22). The light intensities incident on the photodiode (5) are converted into electric current. This electric current occurring on the photodiode (5) is transferred to the electronic card (7) via an electrical connection (8). The measurements made respectively for both wavelengths are analyzed on the electronic card (7) and the analysis result is transferred to the electronic display panel (11) via electrical connection (12). The electronic card (7) is also connected to the first light source (1) with its electrical connection (9) and to the second light source (3) with its electrical connection (10), and it controls both light sources. The fiber optic probe (16) is calibrated with the light intensity calibration unit (18) before each measurement. For the calibration process; The fiber optic probe (16) is placed in the light intensity calibration unit (18). With the fiber optic cable (14), light at both wavelengths is sent to the white reflective standard (20) respectively, and the light reflected back from the white reflective standard (24) is collected by the optical fiber (6) in the optical probe and transmitted to the photodiode (5). Light intensities (Scal(7\.1) and Scal(7\.2)) are measured for both wavelengths. Then, measurements (SkikOM) and Skik(7\.2)) are taken on the cartilage (21) with the device subject to the invention. In order to eliminate the effect of ambient light, background measurement (Sbg) is taken by turning off the light sources while the fiber optic probe (16) is in the measurement geometry. The first of the operations performed on the electronic card (7') in the evaluation of the data received is to obtain the net light intensities reflected back from the cartilage for both wavelengths of light ((SkikÜL'l) -Sbg) and (Skik(7b2)- by subtracting the background measurement from the measurements taken on the cartilage. Sbg)) is to calculate. The first of the operations performed for the calibration process is to divide the net light intensity received on the cartilage with the first light source by the measurement taken on the white reflective standard (19) ((Skik(ki) -Sbg)/ Skai(7ti)). The same calibration process is performed for the second light source. With these calibration processes, measurements taken on the cartilage are made independent of the intensities of the light sources. The next process is to calculate the thickness parameter (r) using the expression in Equation 1. (sm(aa-sbgyrskaiuzn ( s' ' ) Here SkikUn) and Sk.k()\2); It refers to the values of measurements taken on the cartilage (21) with the first light source (between 500-600 nm) and the second light source (between 700-900 nm), respectively. If Skai()\1) and Skai()\2); It refers to the measurement values taken on the first light source (1) and the second light source (3), respectively, and the white reflective standard (19) in the light intensity calibration unit (18). Here, the r parameter provides information about cartilage thickness. In the measurement taken on undamaged cartilage, since the cartilage is thick and the light does not reach the bone and is not absorbed by the blood, the decrease in light intensity in the 500-600 nm wavelength range (A1, first light source) is not much. Therefore, the r parameter becomes large. If the cartilage is thin, the light sent at the first wavelength (A1) is absorbed more by the blood in the bone and the r parameter becomes smaller. Since the absorption of the light coming from the second light source (3) by the blood is low, the decisive factor in measuring cartilage thickness is the change in the intensity of the light coming from the first light source (1). The relationship between the r parameter calculated according to the equation l formula and the cartilage thickness has been determined by taking measurements on cartilage tissues of different thicknesses, and the relationship between the cartilage thickness (k) and the r parameter is as follows: 1' = F(k) (Equation ii) The first method of the method subject to the invention In the first step, measurements are taken on the cartilages, and then the cartilage thickness is measured with a micrometer and the function (F) between r and k in Equation II is determined. In the second stage of the method subject to the invention, since the function (F) is known, the cartilage thickness (k) is calculated from the measured r parameter on the electronic card (7) using the formula of Equation III. k = F-1(r) (Equation iii) The light sources used in the invention are in LED form, and the hemoglobin absorption is high in the wavelength range of the first light source (1), and the hemoglobin absorption is low in the wavelength range of the second light source (3). Hemoglobin is not found in cartilage, but is found in the bone beneath the cartilage. If the cartilage is thick, the light does not reach the bone and the intensities of both wavelengths of light reflected back to the cartilage are close to each other. However, if the cartilage thickness is low, light of both wavelengths reaches the bone and is absorbed by the blood. Since the absorption of the light emitted by the first light source (1) by hemoglobin is higher, the intensity of the reflected light is low. Therefore, the value of the r parameter in Equation I becomes small. Here, r is called the diagnostic parameter and decreases with decreasing cartilage thickness. TR

TR2019/08592A 2019-06-11 2019-06-11 AN OPTICAL DEVICE TO MEASURE THE THICKNESS OF THE CARTRIDGE TR201908592A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TR2019/08592A TR201908592A2 (en) 2019-06-11 2019-06-11 AN OPTICAL DEVICE TO MEASURE THE THICKNESS OF THE CARTRIDGE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2019/08592A TR201908592A2 (en) 2019-06-11 2019-06-11 AN OPTICAL DEVICE TO MEASURE THE THICKNESS OF THE CARTRIDGE

Publications (1)

Publication Number Publication Date
TR201908592A2 true TR201908592A2 (en) 2020-12-21

Family

ID=75573302

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2019/08592A TR201908592A2 (en) 2019-06-11 2019-06-11 AN OPTICAL DEVICE TO MEASURE THE THICKNESS OF THE CARTRIDGE

Country Status (1)

Country Link
TR (1) TR201908592A2 (en)

Similar Documents

Publication Publication Date Title
US8688199B2 (en) Tissue assessment
US8170649B2 (en) Arrangement and method for assessing tissue qualities
US6522407B2 (en) Optical detection dental disease using polarized light
US6179611B1 (en) Dental optical coherence domain reflectometry explorer
US6594518B1 (en) Device and method for classification of tissue
US20200305717A1 (en) Optical Detection Method and Device for Optical Detection of the Condition of Joints
JP5658146B2 (en) Blood vessel inner wall analyzer
JP2009538156A (en) Raman analysis of the organization
EP2091416A1 (en) Obtaining optical tissue properties
RU2532296C2 (en) Vascular wall analysis device and method for analysing vascular wall
RU2524131C2 (en) Method of optical detection and device for optical detection of joint state
WO2000069333A1 (en) Optical detection of dental disease using polarized light
TR201908592A2 (en) AN OPTICAL DEVICE TO MEASURE THE THICKNESS OF THE CARTRIDGE
JP2023513101A (en) Raman spectroscopy method and system
RU2243002C2 (en) Method and device for determining needle end position in biological tissues
WO2012127378A1 (en) An apparatus for optical analysis of an associated tissue sample
Green et al. Fibre optic probes for hysteroscopic measurement of uterine hypoxia
WO2010064200A1 (en) Method and device for optically examining the condition of joints
Bos Combining needle arthroscopy with near-infrared spectroscopy to assess articular cartilage quality
Belokonev et al. Visualization and Spectral Analysis of Pubic Periosteum Atrophy
RU2241506C2 (en) Method for diagnosing destructive dystrophic transformation in articulation cartilage
JP2005074188A (en) Biological information measuring method and biological information measuring apparatus
Stachowiak et al. Instrumental possibilities of skin parameters assessment—literature review
CN116982915A (en) Image and spectrum combined detection system based on endoscope and application method thereof
Sasaki et al. Spectroscopic Quantitative Measurement of the Cartilage Surface using Arthroscopy Correlates with a Conventional Macroscopic Grading System