TR201906035A1 - DURABLE SUPERHYDROPHOBIC COATINGS WITH SELF-ORGANIZED HYERARCHIC STRUCTURES - Google Patents

DURABLE SUPERHYDROPHOBIC COATINGS WITH SELF-ORGANIZED HYERARCHIC STRUCTURES Download PDF

Info

Publication number
TR201906035A1
TR201906035A1 TR2019/06035A TR201906035A TR201906035A1 TR 201906035 A1 TR201906035 A1 TR 201906035A1 TR 2019/06035 A TR2019/06035 A TR 2019/06035A TR 201906035 A TR201906035 A TR 201906035A TR 201906035 A1 TR201906035 A1 TR 201906035A1
Authority
TR
Turkey
Prior art keywords
surface coating
coating method
superhydrophobic surface
glass slides
superhydrophobic
Prior art date
Application number
TR2019/06035A
Other languages
Turkish (tr)
Inventor
Çeli̇k Nusret
Törün İlker
Serdar Önses Mustafa
Original Assignee
T C Erciyes Ueniversitesi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T C Erciyes Ueniversitesi filed Critical T C Erciyes Ueniversitesi
Priority to TR2019/06035A priority Critical patent/TR201906035A1/en
Priority to PCT/TR2019/051108 priority patent/WO2020218989A1/en
Publication of TR201906035A1 publication Critical patent/TR201906035A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1681Antifouling coatings characterised by surface structure, e.g. for roughness effect giving superhydrophobic coatings or Lotus effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2401/00Form of the coating product, e.g. solution, water dispersion, powders or the like
    • B05D2401/10Organic solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2501/00Varnish or unspecified clear coat
    • B05D2501/10Wax
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2601/00Inorganic fillers
    • B05D2601/20Inorganic fillers used for non-pigmentation effect
    • B05D2601/22Silica

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Surface Treatment Of Glass (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Abstract

Bu buluş, darbe ve aşınma dayanımına ve yüksek su statik temas açısı özelliğine sahip olan, ağırlıkça 0,1 gram karnauba mumu kristallerinin, 20 mL kloroform içerisine eklenerek 100-120 ºC’de 5-15 dakika boyunca ısıtılarak çözündürülmesi, çözünme işlemi tamamlandıktan sonra çalkalama yapılarak oda sıcaklığına kadar soğutulması, 0,4 gram hidrofobik nanopartiküller ilave edilip 5-15 dakika boyunca karıştırılması, cam lamların, içerisinde etil alkol ve aseton bulunan yıkama kabına alınarak ultrasonik cihazında temizlenmesi, cam lamların azot ile kurutulması ve UV-ozon cihazında 20-30 dakika boyunca bekletilmesi, hidrofobik nanopartiküller ilave edilmiş süspansiyonun, 2-3 bar'lık sabit basınçta en az 20 cm mesafeden, sprey tabancası ile cam lamlar üzerine kaplama yapılması adımlarını içeren bir süperhidrofobik yüzey kaplama yöntemi ile ilgilidir. Bu şekilde, Bu amaçla hiyerarşik bir şekilde düzenlenmiş mikro ve nano boyutta yapıların kendiliğinden oluşturulması ve yüksek su iticilik (su temas açısı >150o ve yuvarlanma açısı <10o) ve yüksek mekanik dayanıma sahip süperhidrofobik kaplamaların üretilmesi amaçlanmaktadır.The present invention is to dissolve 0.1 grams of carnauba wax crystals in 20 mL chloroform by heating for 5-15 minutes at 100-120 ºC, with impact and abrasion resistance and high water static contact angle property, after the dissolution process is completed. cooling it to room temperature, adding 0.4 grams of hydrophobic nanoparticles and mixing for 5-15 minutes, taking the glass slides into the washing container with ethyl alcohol and acetone in the ultrasonic device, drying the glass slides with nitrogen and 20-30 in the UV-ozone device. Holding for minutes relates to a method of superhydrophobic surface coating comprising the steps of coating the suspension with hydrophobic nanoparticles added on glass slides with a spray gun at a constant pressure of 2-3 bar at a distance of at least 20 cm. In this way, it is aimed to create hierarchically arranged micro and nano-sized structures by themselves and to produce superhydrophobic coatings with high water repellency (water contact angle> 150o and rolling angle <10o) and high mechanical strength.

Description

TARIFNAME KENDILIGINDEN DÜZENLENEN HIYERARSIK YAPILAR ILE DAYANIKLI SÜPERHIDROFOBIK KAPLAMALAR Teknik Alan Bu bulus, kendiliginden düzenlenen hiyerarsik yapilar ile dayanikli süperhidrofobik Önceki Teknik Süperhidrofobik kaplama teknigi, lotus (nilüfer) çiçeginin özelliklerinden yararlanilarak olusturulmus bir yöntemdir. Lotus çiçeginin yüzeyinde kirlenmeyi önleyici bir yapi bulunmaktadir. Bitkinin yapragina düsen yagmur damlalari yapragin üzerinden kayarak yere düser ve ayni zamanda yüzeydeki kir ve tozlari da beraberinde sürükler. Nesnelerin yüzeyinde bu dokuyu olusturmayi esas alinarak olusturulan teknikle yüzeyde bir mikro-nano tabaka olusturularak hidrofobik özellik göstermesi saglanir. Böylelikle nesne hem kirlenmez hem de islanmaz. DESCRIPTION WITH SELF ORGANIZED HIERARCHY STRUCTURES DURABLE SUPERHYDROPHOBIC COATINGS Technical Area This invention is characterized by stable superhydrophobic structures with self-organizing hierarchical structures. Prior Art Superhydrophobic coating technique is one of the characteristics of lotus (water lily) flower. It is a built-in method. Contamination on the surface of the lotus flower There is a preventive structure. Raindrops falling on the leaf of the plant It slides over the leaf and falls to the ground and also removes dirt and dust from the surface. drags along. Based on creating this texture on the surface of objects With the technique created, a micro-nano layer is formed on the surface and hydrophobic feature is provided. In this way, the object does not get dirty and does not get wet.

Lotus bikisinden esinlenerek gelistirilen süperhidrofobik kaplamalarin, günlük yasantimizda kullanim alanlari gün geçtikce artmaktadir. Süperhidrofobik kaplamalarin su ve bazi düsük yüzey gerilimine sahip sivilara karsi itici özellik göstermesi kaplamalarin birçok alanda kullanilabilmesinin önünü açmaktadir. Bu kaplamalar ayrica korozyon, buzlanma, buglanma ve kirlenme önleyici özelligine de sahiptirler. Superhydrophobic coatings inspired by the lotus bikini usage areas in our lives are increasing day by day. superhydrophobic repellent property of coatings against water and some liquids with low surface tension This paves the way for coatings to be used in many areas. This The coatings also have anti-corrosion, icing, fogging and anti-fouling properties. they also have.

Süperhidrofobik kaplamalar: o Suyu ve diger sivilari geçirmedigi için islanmazlar. 0 Su ve nem ana materyale dogrudan temas etmedigi için paslanmazlar. o Suyu üzerinde tutmadigi için buz tutmazlar. o Uygulanan materyaller kir ve leke tutmazlar. 0 Ürün yüzeyinin nefes almasini engellemez, hava ve buhar geçirgendir. o Minimum -3ÜOC, maksimum 220°C'ye kadar dayaniklidir. o Özelligini kaybetmesi durumunda tekrar uygulamayla etkisi devam ettirilebilir. Superhydrophobic coatings: o They do not get wet because they do not pass water and other liquids. 0 Since water and moisture do not come into direct contact with the parent material, they do not rust. They do not hold ice because they do not hold water on them. o The applied materials are dirt and stain resistant. 0 It does not prevent the breathing of the product surface, it is air and vapor permeable. o It is durable up to a minimum of -3ÜOC, a maximum of 220°C. o If it loses its properties, its effect will continue with reapplication. can be carried.

Süperhidrofobik kaplama her türlü yüzeye, (ör: tüm tekstil ve deri yüzeylerine, cam, seramik yüzeylere, tas ve ahsap yüzeylere, elektronik ürünlerin yüzeylerine) uygulanabilmektedir. Superhydrophobic coating can be applied to any surface (eg: all textile and leather surfaces, glass, ceramic surfaces, stone and wooden surfaces, surfaces of electronic products) applicable.

Süperhidrofobik kaplama tehlikeli islerde çalisan meslek gruplari için avantajli bir yöntem sunmaktadir. Çalisanlar su tutmaz ve geçirmez kaplamali, nefes alabilen elbiseler sayesinde tehlikeden korunabilirler. Ayrica bu kaplamalar sayesinde gemilerin dis yüzeyindeki sürtünme katsayisi düsürülerek, yakittan tasarruf saglanabilir ve gemi bakim periyodlari uzatilarak geminin aktif çalisma süresi arttirilabilir. Superhydrophobic coating is an advantageous for occupational groups working in hazardous jobs. offers a method. Workers are water-repellent and with impermeable coating, breathable They can be protected from danger by wearing clothes. Thanks to these coatings By reducing the friction coefficient on the outer surface of the ships, fuel savings The active working time of the ship can be provided and the ship maintenance periods can be extended. can be increased.

Devletler patent dokümaninda bahsedilen bulus, gelistirilmis bir süperhidrofobik kaplama islemi ile ilgilidir. Bir baglayici maddenin süperhidrofobik kaplamaya entegrasyonunu arttirmak için karbon dioksit kullanilarak saglam bir süperhidrofobik kaplama üretilmektedir. Karbon dioksit, diyatomlu toprak gibi süperhidrofobik bir materyalin interstisyel bosluklarini süzmek ve doldurmak için kullanilabilmektedir. Bu bosluklarin süperhidrofobik malzemede kullanilmasi, diger bilesenlerin (örnegin baglayicilarin) bosluklara girmesini etkili bir sekilde engellemektedir. Böylece, bulusun kaplama formülasyonlari daha saglamdir ve uygulandiklari alt tabakalara güçlü bir sekilde yapisabilir. The invention mentioned in the states patent document is an improved superhydrophobic related to the coating process. of a binder to a superhydrophobic coating. a robust construction using carbon dioxide to increase the integration of superhydrophobic coating is produced. such as carbon dioxide, diatomaceous earth to filter and fill the interstitial spaces of a superhydrophobic material can be used. Using these voids in superhydrophobic material, effectively prevent other components (e.g. connectors) from entering spaces. hinders. Thus, the coating formulations of the invention are more robust and can adhere strongly to the substrates to which they are applied.

Literatürdeki uygulamalarda süperhidrofobik kaplamalarin darbe ve asinma dayanimlarinin endüstriyel uygulamalar için yeteri kadar iyi olmadigi gözlemlenmistir. Hem yüksek su iticilik (yüksek statik temas açisi ve düsük yuvarlanma açisi) hem de yüksek darbe ve asinma dayanimi saglama zorlugu literartürde bilinen temel problemlerden birisidir. Süperhidrofobik kaplamalarin dayanimlarini artirmak istenirken su iticiliklerinin düsmesine sebep olunmaktadir. Impact and abrasion of superhydrophobic coatings in applications in the literature their strength is not good enough for industrial applications. has not been observed. Both high water repellency (high static contact angle and low rolling angle) as well as the difficulty of providing high impact and abrasion resistance It is one of the main problems known in the literature. Superhydrophobic coatings While it is desired to increase their resistance, water repellency is caused to decrease.

Teknikte genel olarak tennoset polimerler kullanilarak süperhidrofobik kaplamalarin dayanimlari artirilmaya çalisilmaktadir. The art generally uses tennoset polymers to use superhydrophobic trying to increase the strength of the coatings.

Bulusun Kisa Açiklamasi Bulusun amaci, yüksek su iticilik (su temas açisi >150° ve yuvarlanma açisi <10°) ve yüksek mekanik dayanima sahip süperhidrofobik kaplamalarin üretilmesidir. Bu amaçla hiyerarsik bir sekilde düzenlenmis mikro ve nano boyutta yapilarin kendiliginden olusturulmasi esas alinmaktadir. Brief Description of the Invention The aim of the invention is high water repellency (water contact angle >150° and rolling angle <10°) and the production of superhydrophobic coatings with high mechanical strength. This hierarchically arranged micro- and nano-sized structures for this purpose. It is based on self-creation.

Bulusun diger bir amaci, süperhidrofobik kaplamalarin dayanimlarini gelistirmek için, ucuz, temini kolay, tamamen bitkisel ve gida katkida kullanilan bir malzeme olan karnauba mumu ya da altematiflerinin dogal mumlar; madensel mumlar, bitkisel mumlar, hayvansal mumlarve sentetik mumlar). kullanilmasidir. Another object of the invention is to improve the strength of superhydrophobic coatings. It is a cheap, easy to obtain, completely herbal and food additive material for natural waxes of carnauba wax or its alternatives; mineral candles, vegetable waxes, animal waxes, and synthetic waxes). is to be used.

Bulusun diger bir amaci, yüksek su iticiligine sahip kaplamalarin florokarbonlu bilesikler kullanilmadan elde edilmesidir. Another object of the invention is to provide high water repellency coatings with fluorocarbon is obtained without the use of compounds.

Bulusun diger bir amaci, kullanilan üretim reçetesinin kolayligi, hammaddelerin ueuzlugu, kolay temini bakimindan, sanayi uygulamalannda kolay adapte edilebilir bir yöntemi elde edilmesidir. Another aim of the invention is the convenience of the production recipe used, It can be easily adapted in industrial applications in terms of its wideness, easy availability obtaining a method.

Bulusun Ayrintili Açiklamasi Bulus, yüksek dayanikliliga sahip bir süperhidrofobik yüzey kaplama yöntemi olup, - agirlikça 0,1 gram karnauba mumu kristallerinin, 20 mL kloroform içerisine eklenerek 100-120 oC”de 5-15 dakika boyunca isitilarak çözündürülmesi, - çözünme islemi tamamlandiktan sonra çalkalama yapilarak oda sicakligina kadar sogutulmasi, - 0,4 gram alkil silan, tercihen dodesil trikloro silan ile hidrofobik hale getirilmis silika nanopartiküller ilave edilip 5-15 dakika boyunca karistirilmasi, - cam lamlarin, içerisinde etil alkol ve aseton bulunan yikama kabina alinarak ultrasonik cihazinda temizlenmesi, - cam lamlarin azot ile kurutulmasi ve UV-ozon eihazinda 20-30 dakika boyunca bekletilmesi, - hidrofobik hale getirilmis silika nanopartiküller ilave edilmis süspansiyonun, 2-3 bar'lik sabit basinçta, en az 20 cm mesafeden sprey tabancasi ile cam lamlar üzerine kaplama yapilmasi, - atmosferik ortamda kurumaya birakilmasi adimlarini içermektedir. Detailed Description of the Invention The invention is a superhydrophobic surface coating method with high durability. - 0.1 grams by weight of carnauba wax crystals, 20 mL of chloroform by adding it to it and heating it at 100-120 oC for 5-15 minutes. to dissolve, - After the dissolution process is completed, it is shaken and brought to room temperature. cooling up, - become hydrophobic with 0.4 grams of alkyl silane, preferably dodecyl trichlorosilane brought silica nanoparticles were added and simmered for 5-15 minutes. mixing, - glass slides, washing cabinet containing ethyl alcohol and acetone cleaning in the ultrasonic device, - drying of glass slides with nitrogen and UV-ozone for 20-30 minutes to be kept throughout, - added hydrophobic silica nanoparticles Spray the suspension at a constant pressure of 2-3 bar, from a distance of at least 20 cm. coating on glass slides with a gun, - It includes the steps of leaving it to dry in atmospheric environment.

Kamauba mumu kristalleri 20 mL kloroform içerisine agirlikça 0,1 gram eklenerek 105°C°de 10 dakika boyunca isitilmaktadir. Kamauba mumu kloroform içerisinde homojen bir sekilde çözündükten sonra kontrollü bir sekilde oda sicakligina kadar sogumasi saglanmaktadir. Soguma esnasinda çalkalama yapilip oda sicakligina ulasildiginda 0,4 gram hidrofobik hale getirilmis silika nanopartikülleri ilave edilip dakika boyunca vortex cihazi yardimiyla karistirilmasi saglanmaktadir. Çözücü olarak kullanilan kloroform çok uçucu oldugu için mikro- nano boyutta kendiliginden düzenlenen hiyerarsik bosluklu yapilar olusmaktadir. Bu sebepten ötürü bu çözücü ile hazirlanan kaplamalarda etanol, toluen, methanol, aseton gibi çözücülerle hazirlanan kaplamalara kiyasla çok yüksek darbe ve asinma dayanimi gözlemlenmistir. Bunun sebebi ise kloroform ve etil asetatin karnauba mumunu diger çözücülere göre fazlasiyla iyi çözmesinden (çap dagilimlari ortalama 5 nm ± 1 nm) sonra olusan karisimdan kaynaklanmaktadir. Diger çözücüler ile yapilan deneylerde tanecik boyutunun yaklasik 2 - 7 mm araliginda oldugu belirlenmistir. Kamauba wax crystals were added to 20 mL of chloroform by adding 0.1 grams by weight. It is heated at 105°C for 10 minutes. Kamauba wax in chloroform After dissolving homogeneously, it is brought to room temperature in a controlled manner. cooling is provided. During cooling, it can be shaken and brought to room temperature. Once reached, 0.4 grams of hydrophobic silica nanoparticles were added. It is mixed with the help of a vortex device for minutes. Chloroform used as a solvent is very volatile, so it is micro-nano-sized. hierarchical gap structures are formed which are self-organized. Because of that Therefore, coatings prepared with this solvent can be used as ethanol, toluene, methanol, acetone. very high impact and abrasion resistance compared to coatings prepared with solvents has not been observed. This is because chloroform and ethyl acetate form carnauba wax. It dissolves very well compared to other solvents (diameter distributions average 5 nm ± It is due to the mixture formed after 1 nm). made with other solvents In the experiments, it was determined that the particle size was between 2 and 7 mm.

Bulus konusu yöntemde kullanilan kamauba mumu çözücü içerisinde dagitildiktan sonra çap dagilimlari ortalama 5 nm (± 1 nm) ölçülmektedir. Bu denli küçük çaplara sahip olan kamauba mumu islevsellestirilmis silika nanopartiküllerinin sivi iticiliklerini bozmadan dayanimi arttirmaktadir. Bu kaplamalarin statik su temas açisi 175° ± 3° ve yuvarlanma açisi 2° ± l° olarak karakterize edilmistir. After the kamauba wax used in the method of the invention is dispersed in the solvent, Then the diameter distributions are measured at an average of 5 nm (± 1 nm). For such small diameters liquid silica nanoparticles with kamauba wax functionalized It increases the strength without disturbing their repellency. Static water contact of these coatings angle of 175° ± 3° and roll angle as 2° ± 1°.

Bu bulus yönteminde kaplamalarin dayanimlarini arttirmak için ilk defa dogal bir malzeme olan kamauba mumu, hidrofobik nanopartiküller ile birlikte kullanilmistir. Teknikteki uygulamalarda, Ilor bazli olmayan düsük yüzey enerjisine sahip alkil silanlar kullanilmakta ve statik temas açisi düsmektedir. Bu yöntemde Hor içermeyen alkil silan kullanilmasina ragmen bu tür bir sorun gözlemlenmemistir. Kaplamalar hem tlorokarbonlu bilesenler içerrnemekte hem de 1750 ± 30 gibi yüksek bir statik temas açisina ve 2D ± 10 gibi bir kayma açisina sahiptir. In this invention method, for the first time, a natural coating is used to increase the strength of the coatings. material, kamauba wax, together with hydrophobic nanoparticles used. In technical applications, non-Ilor based low surface alkyl silanes with high energy are used and the static contact angle is reduced. This Although the method uses Hor-free alkyl silane, this kind of problem does not occur. not observed. The coatings do not contain both fluorocarbon components and It has a high static contact angle of 1750 ± 30 and a slip angle of 2D ± 10 has.

Hidrofilik silika nanopartiküllerinin hidrofobik hale getirilmesi için alkil silan, tercihen dodesiltriklorosilan ile modifiye edilmektedir. 2 gram silika nanopartikülleri 40 mL toluen içerisine eklenerek manyetik balik yardimi ile karistirilmaktadir. Homojen bir karismadan sonra 1 mL alkil silan yavas yavas toluen silika nanopartikülleri karisimina eklenmektedir. Bu çözelti 3 saat boyunca karistirilmaktadir. Karistirma isleminden sonra bu çözelti 15 dakika boyunca santritüj cihazi ile santritüjlenmektedir. Santritüj isleminden sonra elde edilen hidrofobik silika nanopartiküller firinda 80 ° C de kurutulmaktadir. Kurutma islemi yaklasik olarak 12 saat sürmektedir. Alkyl silane for hydrophobicization of hydrophilic silica nanoparticles, preferably modified with dodecyltrichlorosilane. 2 grams of silica nanoparticles were added to 40 mL of toluene and the magnetic fish are mixed. After homogeneous mixing, 1 mL of alkyl silane slowly toluene is added to the silica nanoparticles mixture. This solution for 3 hours are mixed. After mixing, this solution is stirred for 15 minutes. centrifuged with centrifuge device. Obtained after centrifugation The hydrophobic silica nanoparticles are dried in the oven at 80 °C. drying process takes approximately 12 hours.

Içerisinde etil alkol ve aseton bulunan yikama kabina cam lamlar (1x1 cm2) alinip ultrasonik cihazinda 10 dakika boyunca temizleme islemi gerçeklestirilmektedir. Glass slides (1x1 cm2) were taken from the washing cabinet containing ethyl alcohol and acetone. The cleaning process is carried out in the ultrasonic device for 10 minutes.

Islem sonunda cam lamlar azot ile kurutulup, UV-ozon cihazinda 30 dakika boyunca temizlenmesi saglanmaktadir. At the end of the process, the glass slides are dried with nitrogen and in the UV-ozone device for 30 minutes. Cleaning is provided throughout.

Bulusun bir uygulamasinda, yüzey temizligi için etil alkol veya alkollü mendiller kullanilabilmektedir. In one embodiment of the invention, ethyl alcohol or alcohol wipes for surface cleaning can be used.

Elde edilen süspansiyon 2-3 bar'lik sabit bir basinçta iç çapi 0,35 mm7lik nozül basligina sahip sprey tabancasi yardimi ile kaplama islemi için hazirlanmis cam lam üzerine (1 x 1 cm2) kaplama yapilmaktadir. Sprey ile kaplama islemi 30 cm mesafeden ve 90° açi ile yapildiktan sonra atmosferik ortamda kurumaya birakilmaktadir. Laboratuvar ortami disinda da sprey siseleri ile kaplama yapilabilmektedir. The resulting suspension was injected into a nozzle with an inner diameter of 0.35 mm at a constant pressure of 2-3 bar. Glass slide prepared for coating with the help of a spray gun with a head (1 x 1 cm2) coating is applied on it. Spray coating process 30 cm After it is done from a distance and at a 90° angle, it is allowed to dry in the atmospheric environment. are dropped. Coating with spray bottles outside the laboratory environment can be done.

Elde edilen nihai solüsyon ürünün raf ömrü testi yapilmis ve üründe kullanilan nanopartiküllerde herhangi bir çökme gözlemlenmemistir. The shelf life test of the final solution obtained was carried out and the product used in the product was tested. No precipitation was observed in the nanoparticles.

Bulusun tercih edilen bir uygulamasinda, alkil silan kullanilarak hidrofobik hale getirilmis silika nanopartiküller yerine, titanyum dioksit, demir oksit ve çinko oksit nanopartikülleri kullanilabilir. In a preferred embodiment of the invention, it is rendered hydrophobic using alkyl silane. Titanium dioxide, iron oxide, and zinc oxide are substituted for silica nanoparticles. nanoparticles can be used.

Bulusun tercih edilen bir uygulamasinda, karanauba mumu çözücüsü olarak kloroform yerine etil asetat kullanilmaktadir. Iki çözücü için de ayni deneysel sonuçlar alinmaktadir. Örnek Analizleri Kaplama yapilmis altliklarin su iticilik özellikleri statik temas açisi ve yuvarlanma açisi ölçümleri goniyometre cihazi ile karakterize edilmektedir. Hazirlanan kaplamalarin darbe ve asinma dayanimlari, su sprey darbe testi, su jeti darbe testi, uzun süreli su damla darbe testi ve agirlikla asindirma testi ile belirlenmektedir. In a preferred embodiment of the invention, it is used as a karanauba wax solvent. Ethyl acetate is used instead of chloroform. Same experimental for both solvents. results are received. Sample Analysis Water repellency properties of coated substrates, static contact angle and rolling Angle measurements are characterized by the goniometer device. prepared impact and abrasion resistance of coatings, water spray impact test, water jet impact test, It is determined by long-term water drop impact test and weight abrasion test.

Yapilan darbe ve asinma testlerinin yüzeyde meydana getirdigi tahripler SEM ve AFM cihazlari ile karakterize edilmistir. 1 cm2 yüzey alanina sahip süperhidrofobik kaplanmis numune 100 gram agirlik altinda 1000 kumluk silisyum karbür asindiriçi yüzeyinde hareket ettirilerek süperhidrofobik kaplamanin asinma dayanimi ineelenmistir. Süperhidrofobik kaplama asindirici üzerinde yaklasik 150 cm hareket ettirilmesine ragmen statik su temas açisi halen 165° ± 2° ve yuvarlanma açisi 7° ± l° olmaktadir ve halen yüksek sivi iticiligini korumaktadir. Süperhidrofobik kaplanmis numune Silisyum karbürün yüzeyinde her 10 cm hareketten sonra statik temas açisi ölçülerek bu islem 15 defa tekrarlanmistir. Silisyum asindiricinin yüksek asindirici özelligine ragmen kaplamanin süperhidrofobik özelligini korumasi gelistirilen yöntemin yüksek mekanik dayanimina sahip oldugunu göstermektedir. The damage caused by the impact and abrasion tests on the surface is done by SEM and It is characterized by AFM devices. Superhydrophobic coated sample with a surface area of 1 cm2 weighed 100 grams. by moving the 1000 grit silicon carbide in the abrasive surface under The abrasion resistance of the superhydrophobic coating has been studied. superhydrophobic Even though the coating is moved about 150 cm on the abrasive, static water the contact angle is still 165° ± 2° and the roll angle is 7° ± 1° maintains its liquid repellency. Superhydrophobic coated sample Silicon carbide This process is done 15 times by measuring the static contact angle after every 10 cm of movement on the surface. is repeated. Despite the high abrasive properties of silicon abrasive, The protection of the superhydrophobic property of the coating is the result of the high level of the developed method. shows that it has mechanical strength.

Su ile darbe testlerine son derece dayanimli oldugu görülmüstür. Su jeti darbe testinde tazyikli su altinda 45 dakika boyunca su darbesi uygulanan süperhidrofobik kaplamanin statik temas açisi halen 168° ± 20 ve yuvarlanma açisinin 4O ± 10 oldugu görülmektedir. Tazyikli suyun süperhidrofobik yüzeyde 32,0 kPa basinç olusturmasina ragmen kaplamanin statik temas açisini halen muhafaza etmesi kaplamanin yüksek darbe dayanimina sahip oldugunu göstermektedir. 400 bin su damlasinin (1 damla : 30 cm mesafeden kaplama üzerinde darbe olusturmasina ragmen statik temas açisi halen 160° ± 2° ve yuvarlanma açisinin 10° ± 2° oldugu görülmektedir. Bir su damlasinin kaplama yüzeyinde 3,9 kPa degerinde basinç olusturmasina ragmen süperhidrofobik kaplamanin statik temas açisini muhafaza etmesi kaplamanin yüksek darbe dayanimina sahip oldugunu göstermektedir. It has been observed that it is extremely resistant to impact tests with water. water jet blow In the test, superhydrophobic water hammer was applied for 45 minutes under pressurized water. the static contact angle of the pavement is still 168° ± 20 and the rolling angle is 4O ± 10. is seen. 32.0 kPa pressure of pressurized water on superhydrophobic surface Although the coating still maintains the static contact angle It shows that the coating has high impact resistance. 400 thousand drops of water (1 drop: impact on the coating from a distance of 30 cm) The static contact angle is still 160° ± 2° and the roll angle is 10°. It is seen that it is ± 2°. At 3.9 kPa on the coating surface of a water droplet Although it creates pressure, the static contact angle of the superhydrophobic coating to protect the coating has high impact resistance. shows.

Su sprey testinde 2,5 cm mesafeden sprey tabancasi yardimiyla yüzeye su püskürtülüp yüzeyde darbe olusturularak kaplamanin darbe dayanimi belirlenmektedir. 1000 turluk islemin sonunda süperhidrofobik kaplamanin statik temas açisi halen (1660 ± 20) ve yuvarlanma açisinin 6O ± 20 oldugu görülmüstür. In the water spray test, water is applied to the surface from a distance of 2.5 cm with the help of a spray gun. impact resistance of the coating by spraying and creating impact on the surface is determined. Static effect of the superhydrophobic coating at the end of 1000 cycles of treatment. The contact angle is still (1660 ± 20) and the rolling angle is 6O ± 20.

Claims (3)

ISTEMLERREQUESTS 1. Darbe ve asinma dayanimina ve yüksek su statik temas açisi özelligine sahip olan ve, - agirlikça 0,1 gram kamauba mumu kristallerinin, 20 mL kloroform çözündürülmesi, - çözünme islemi tamamlandiktan sonra çalkalama yapilarak oda - 0,4 gram hidrofobik nanopartiküller ilave edilip 5-15 dakika boyunca karistirilmasi, - cam lamlarin, içerisinde etil alkol ve aseton bulunan yikama kabina alinarak ultrasonik cihazinda temizlenmesi, - cam lamlarin azot ile kurutulmasi ve UV-ozon cihazinda 20-30 dakika boyunca bekletilmesi, - hidrofobik nanopartiküller ilave edilmis süspansiyonun, 2-3 bar'lik sabit basinçta en az 20 cm mesafeden, sprey tabancasi ile cam lamlar üzerine kaplama yapilmasi, - atmosferik ortamda kurumaya birakilmasi adimlari ile karakterize edilen bir süperhidrofobik yüzey kaplama yöntemi.1. Having resistance to impact and abrasion and high water static contact angle, - dissolving 0,1 grams of kamauba wax crystals by weight in 20 mL of chloroform, - shaking after the dissolution process is completed - 0.4 grams of hydrophobic nanoparticles are added and 5 - Stirring for 15 minutes, - Cleaning the glass slides in an ultrasonic device by taking them into a washing cabinet containing ethyl alcohol and acetone, - Drying the glass slides with nitrogen and keeping them in the UV-ozone device for 20-30 minutes, - Suspension with hydrophobic nanoparticles added, 2- A superhydrophobic surface coating method characterized by the steps of coating glass slides with a spray gun from a distance of at least 20 cm at a constant pressure of 3 bar, - letting it dry in atmospheric environment. 2. Karanauba mumu çözücüsü olarak kloroform yerine etil asetat kullanilmasi ile karakterize edilen Istem l”deki gibi bir süperhidrofobik yüzey kaplama yöntemi.2. A superhydrophobic surface coating method as in claim 1, characterized by using ethyl acetate instead of chloroform as the solvent of karanauba wax. 3. Kloroform içerisinde çözündükten sonra çap dagilimlari ortalama 5 nm (+- 1) ölçülen karnauba mumu ile karakterize edilen Istem l”deki gibi bir süperhidrofobik yüzey kaplama yöntemi. . Statik su temas açisi 172-178O ve yuvarlanma açisi 1-3o olarak ölçülen kaplamalar elde edilmesi ile karakterize edilen Istem 1°deki gibi bir süperhidrofobik yüzey kaplama yöntemi. . Süspansiyon olarak dodesil triklorosilan kullanilmasi ile karakterize edilen Istem lideki gibi bir süperhidrofobik yüzey kaplama yöntemi. . Yüzey temizligi etil alkol veya alkollü mendiller ile saglanabilen cam lamlarin kaplanmasi ile karakterize edilen Istem 1'deki gibi bir süperhidrofobik yüzey kaplama yöntemi. . 0,35 mm”lik nozül basligina sahip sprey tabancasi yardimi ile kaplama islemi için hazirlanmis cam lam üzerine püskürtme yapilmasi ile karakterize edilen Istem l”deki gibi bir süperhidrofobik yüzey kaplama yöntemi. . Sprey ile kaplama isleminin 30 cm mesafeden ve 900 açi ile yapilmasi ile karakterize edilen Istem 17deki gibi bir süperhidrofobik yüzey kaplama yöntemi.3. A superhydrophobic surface coating method as in Claim 1, characterized by carnauba wax whose diameter distribution is measured at an average of 5 nm (+- 1) after dissolving in chloroform. . A superhydrophobic surface coating method as in Claim 1, characterized by obtaining coatings with a static water contact angle of 172-178O and a rolling angle of 1-3o. . A superhydrophobic surface coating method as in claim 1, characterized by the use of dodecyl trichlorosilane as the suspension. . A superhydrophobic surface coating method as in Claim 1, characterized by coating glass slides, the surface cleaning of which can be achieved with ethyl alcohol or alcohol wipes. . A superhydrophobic surface coating method as in Claim 1, characterized by spraying on a glass slide prepared for coating with the help of a spray gun with a 0.35 mm nozzle head. . A superhydrophobic surface coating method as in Claim 17, characterized in that the spray coating process is carried out at a distance of 30 cm and at an angle of 900.
TR2019/06035A 2019-04-24 2019-04-24 DURABLE SUPERHYDROPHOBIC COATINGS WITH SELF-ORGANIZED HYERARCHIC STRUCTURES TR201906035A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TR2019/06035A TR201906035A1 (en) 2019-04-24 2019-04-24 DURABLE SUPERHYDROPHOBIC COATINGS WITH SELF-ORGANIZED HYERARCHIC STRUCTURES
PCT/TR2019/051108 WO2020218989A1 (en) 2019-04-24 2019-12-18 Robust superhydrophobic coatings with self- assembled hierarchical structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2019/06035A TR201906035A1 (en) 2019-04-24 2019-04-24 DURABLE SUPERHYDROPHOBIC COATINGS WITH SELF-ORGANIZED HYERARCHIC STRUCTURES

Publications (1)

Publication Number Publication Date
TR201906035A1 true TR201906035A1 (en) 2020-11-23

Family

ID=72941738

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2019/06035A TR201906035A1 (en) 2019-04-24 2019-04-24 DURABLE SUPERHYDROPHOBIC COATINGS WITH SELF-ORGANIZED HYERARCHIC STRUCTURES

Country Status (2)

Country Link
TR (1) TR201906035A1 (en)
WO (1) WO2020218989A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112724436A (en) * 2020-12-28 2021-04-30 陕西科技大学 Super-hydrophobic radiation self-cooling material and preparation method thereof
CN114753182B (en) * 2022-03-28 2023-08-25 中国科学院化学研究所 Material for agricultural simulation of surface hydrophobicity degree of blade and preparation method thereof
CN115895005A (en) * 2022-11-28 2023-04-04 深圳供电局有限公司 Super-hydrophobic RTV preparation method
CN116179004B (en) * 2023-03-22 2024-05-17 北京华楚路美交通科技有限公司 Method for preparing super-hydrophobic anti-fouling paint by self-assembly method and application

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10493488B2 (en) * 2014-04-18 2019-12-03 The University of Masachusetts Methods and formulations for durable superhydrophic, self-cleaning, and superhydrophobic polymer coatings and objects having coatings thereon
WO2017220591A1 (en) * 2016-06-20 2017-12-28 Université de Mons Omniphobic surface coatings
GB2579968B (en) * 2017-08-31 2023-05-24 Kimberly Clark Co Non-fluorinated water-based compositions with plant-based materials for generating superhydrophobic surfaces

Also Published As

Publication number Publication date
WO2020218989A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
TR201906035A1 (en) DURABLE SUPERHYDROPHOBIC COATINGS WITH SELF-ORGANIZED HYERARCHIC STRUCTURES
JP4755418B2 (en) Process for the production of surfactant-free aqueous suspensions based on nanostructured hydrophobic particles and their use
JP4499469B2 (en) Method for forming removable antifouling and water repellent surface coating
Pandit et al. Development of stain resistant, superhydrophobic and self-cleaning coating on wood surface
Wu et al. A versatile and efficient method to fabricate durable superhydrophobic surfaces on wood, lignocellulosic fiber, glass, and metal substrates
Tu et al. Fabrication of robust, damage-tolerant superhydrophobic coatings on naturally micro-grooved wood surfaces
JP5284099B2 (en) Improved treatment composition and method of forming the same
CA2666110C (en) Treatments and kits for creating transparent renewable surface protective coatings
JP2005517052A (en) Method for producing protective layer having properties of repelling dirt and water
US7914897B2 (en) Superhydrophobic coating
US20110136400A1 (en) Textile substrates having self-cleaning properties
US20070014970A1 (en) Dispersion of water in hydrophobic oxides for producing hydrophobic nanostructured surfaces
Gupta et al. Development of natural wax based durable superhydrophobic coatings
Arminger et al. Facile preparation of superhydrophobic wood surfaces via spraying of aqueous alkyl ketene dimer dispersions
CN105940062B (en) Aqueous surface coating composition and modified particles
CN108300299B (en) Protective coating composition with anti-skid function, coated product and preparation method of coated product
Yang et al. Preparation and characterization of hydrophilic silicon dioxide film on acrylate polyurethane coatings with self-cleaning ability
JP2011140625A (en) Oil repellent coating article and method of producing the same
Rosu et al. Sustainable and long-time ‘rejuvenation’of biomimetic water-repellent silica coating on polyester fabrics induced by rough mechanical abrasion
CN109923180A (en) Nonfluorinated coating and finishing agent
CN107629570A (en) A kind of ceramic sanitary appliance self-cleaning composition
KR20030042015A (en) Composition for Producing Surfaces which are Difficult to Wet
WO2016044880A1 (en) Liquid repellent article and process for the preparation of the article
Rayón et al. Enhancing the mechanical features of clay surfaces by the absorption of nano-SiO2 particles in aqueous media. Case of study on Bronze Age clay objects
Hu et al. Preparation of superhydrophobic SiO2 coating on stainless steel substrate