TR201904095A2 - THE METHOD OF OBTAINING A BIO-DEGRADABLE GEL - Google Patents

THE METHOD OF OBTAINING A BIO-DEGRADABLE GEL Download PDF

Info

Publication number
TR201904095A2
TR201904095A2 TR2019/04095A TR201904095A TR201904095A2 TR 201904095 A2 TR201904095 A2 TR 201904095A2 TR 2019/04095 A TR2019/04095 A TR 2019/04095A TR 201904095 A TR201904095 A TR 201904095A TR 201904095 A2 TR201904095 A2 TR 201904095A2
Authority
TR
Turkey
Prior art keywords
obtaining
biodegradable gel
gel
biodegradable
linking
Prior art date
Application number
TR2019/04095A
Other languages
Turkish (tr)
Inventor
Murat Aydin Hali̇l
Original Assignee
Hacettepe Ueniversitesi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hacettepe Ueniversitesi filed Critical Hacettepe Ueniversitesi
Priority to TR2019/04095A priority Critical patent/TR201904095A2/en
Priority to PCT/TR2020/050212 priority patent/WO2020190240A2/en
Publication of TR201904095A2 publication Critical patent/TR201904095A2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/40Polyesters derived from ester-forming derivatives of polycarboxylic acids or of polyhydroxy compounds, other than from esters thereof
    • C08G63/42Cyclic ethers; Cyclic carbonates; Cyclic sulfites; Cyclic orthoesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/87Non-metals or inter-compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Materials For Medical Uses (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Buluş, oda sıcaklığında herhangi bir dış etkiye gerek duyulmadan kendi kendini (otonom olarak) iyileştirebilen, yüksek mukavemet ve esneme özelliklerine aynı anda sahip olan ve küçük gerinim değerlerinde lineer kapasitans cevabını nanomikro Farad seviyelerinde sunabilen transparan biyobozunur bir jel (elastomer) elde etme yöntemi (100) ile ilgilidir.The invention is a method of obtaining a transparent biodegradable gel (elastomer) that can heal itself (autonomously) at room temperature without the need for any external influence, has high strength and elastic properties at the same time, and can offer a linear capacitance response at small strain values at nanomicro Farad levels (100 ) is about.

Description

TARIFNAME BIYOBOZUNUR BIR JE L ELDE ETME YÖNTEMI Teknik Alan Bulus, oda sicakliginda herhangi bir dis etkiye gerek duyulmadan kendi kendini (otonom olarak) iyilestirebilen, yüksek mukavemet ve esneme özelliklerine ayni anda sahip olan ve küçük geriniin degerlerinde lineer kapasitans cevabini nano- mikro Farad seviyelerinde sunabilen transparan biyobozunur bir jel (elastomer) elde etme yöntemi ile ilgilidir. Önceki Teknik Biyobozunur malzemeler, biyolojik ajanlarin etkinliginde bozunarak dogadaki döngüye katilabilen malzemelerdir. Bu parçalanmanin sonunda ortaya COz, N2 gibi bazi dogal gazlar, su ve inorganik tuzlar çikmaktadir. Biyobozunur malzemeler günümüzde plastiklerin çevreye verdigi zarardan dolayi tercih konusu olmus ve gelistirilmeleri amaciyla birçok çalisma yapilmis, yapilmaya da devam edilmektedir. Bu teknoloji ile üretilmis olan ürünler çevre dostudur. Biyobozunur malzemeler, plastik sektörünün yani sira saglik sektöründe de kullanim alanina sahiptir. Bu malzemeler hammadde kaynagina göre nisasta bazli, selüloz bazli, kimyasal sentez yoluyla elde edilenler ve bakteri tarafindan üretilenler olarak gruplandirilmaktadir. Biyobozunur malzemelerin bir türü olan biyobozunur jeller elastomer yapisinda üretilebilinektedir. Sentez sirasinda olusturulan çapraz baglarin miktari arttikça malzemenin nihai dayanimi artmakta ancak esneme özellikleri düsmektedir. B u sebeple giyilebilir elektronik cihaz uygulamalari, biyomaizeme ve doku mühendisligi alanlarinda kullanilmak üzere, esneme özellikleri ve mukavemetleri es zamanli olarak yüksek olan ayni zamanda zamanla bozunabilen, zarar görme durumunda ise herhangi bir dis uyarana ihtiyaç duymadan kendini iyilestiren biyobozunur bir jele ihtiyaç duyulmaktadir. DESCRIPTION METHOD OF OBTAINING A BIODEGRADABLE GEL Technical Area The invention is self-sufficient at room temperature without any external influence. same high strength and resilience properties, able to (autonomously) recover The linear capacitance response at the values of small strain and obtain a transparent biodegradable gel (elastomer) that can deliver at micro Farad levels. relates to the method. Prior Art Biodegradable materials are degraded in the activity of biological agents and materials that can be included in the cycle. At the end of this disintegration, such as CO2, N2 some natural gases, water and inorganic salts are released. Biodegradable materials Nowadays, plastics have become the subject of preference because of the damage they cause to the environment and Many studies have been done and continue to be done in order to develop is being done. The products produced with this technology are environmentally friendly. Biodegradable materials are used in the health sector as well as the plastics industry. has. These materials are starch-based, cellulose-based, as those obtained by chemical synthesis and those produced by bacteria are grouped. Biodegradable gels, a type of biodegradable materials It can be produced in elastomer structure. Crosslinks formed during synthesis As the amount increases, the ultimate strength of the material increases, but its flexural properties increase. is falling. For this reason, wearable electronic device applications, biomaize and for use in tissue engineering, its flexural properties and whose strengths are simultaneously high and which can degrade over time, in case of damage, it can self-stimulate without the need for any external stimulus. There is a need for a biodegradable gel that improves

Teknigin bilinen durumunda yer alan CN106750416 sayili Çin patent dokümaninda kendi kendini iyilestirme ve pH yanit özelliklerine sahip enjekte edilebilir bir hidrojelden bahsedilmektedir. Hidrojel elde etme islemi sirasinda kimyasal reaktiflerin eklenmesi gerekmez ve sonradan saflastirmaya ihtiyaç duyulmaz. Elde edilen hidrojel toksik degildir ve kullanima hazirdir. Hidrojel; N-karboksietil kitosan çözeltisi ve PEGDA polimer çözeltisinin birbirine karistirilmasi ve çapraz baglanmasi ile elde edilinektedir. Bu çözeltiler ile elde edilen hidrojel, kendi kendini iyilestirme özelligine sahip olur ve bu özellik için çevresel uyarima ihtiyaç duymaz. Elde edilen hidrojel, biyolojik olarak parçalanabilen biyomedikal malzemelerin yapiminda kullanilmaktadir. Hidrojel disaridan uygulanan gerinim degisikliklerinden sonra kendi kendini iyilestirme performansi sergiler. In the Chinese patent document numbered CN106750416, which is in the state of the art an injectable with self-healing and pH-response properties. hydrogel is mentioned. During the hydrogel making process, chemical reagents do not need to be added and no post-purification is required. in hand The hydrogel produced is non-toxic and ready to use. hydrogel; N-carboxyethyl mixing chitosan solution and PEGDA polymer solution and cross obtained by binding. The hydrogel obtained with these solutions It has the ability to heal itself and requires environmental stimulation for this feature. does not hear. The resulting hydrogel is a biodegradable biomedical used in the manufacture of materials. Hydrogel externally applied strain exhibits self-healing performance after changes.

Teknigin bilinen durumunda yer alan CN106009003 sayili Çin patent dokümaninda enjekte edilebilir kendi kendini tamir eden bir hidrojel, hazirlama yöntemi ve biyolojik doku mühendisliginde uygulanmasindan bahsedilmektedir. Jel suda çözünürlügü artirilan dogal polimer kitosan ve sodyum hiyalüronat türevi çözeltisinin karistirilmasi ile elde edilir. Elde edilen jel, yüksek mukavemete, iyi biyouyumluluga ve bozunurluga sahiptir ve ticari biyomedikal ürünlerde kullanilmaktadir. Kullanilacak yara alanina göre istenildigi gibi sekillendirilebilir. In the Chinese patent document numbered CN106009003, which is in the state of the art an injectable self-healing hydrogel, its preparation method and Its application in biological tissue engineering is mentioned. in gel water Natural polymer chitosan and sodium hyaluronate derivative with increased solubility obtained by mixing the solution. The resulting gel has high strength, good It is biocompatible and degradable and is used in commercial biomedical products. is used. It can be shaped as desired according to the wound area to be used.

Jel, ortasindan mekanik hasar gördügünde, ara bosluk zamanla kademeli olarak küçülür ve sonunda tamamen kaybolur. When the gel is mechanically damaged in the middle, the intermediate space will gradually decrease over time. shrinks and eventually disappears completely.

Yukarida yer alan patent dokümanlarindan da görülecegi üzere Önceki teknikte kendi kendini iyilestiren jellerin olmasina ragmen bunlarin hiçbiri sicaklik, UV ve diger etmenler olinaksizin kendi kendini tedavi etme özelligine sahip degildir. As can be seen from the above patent documents, in the previous art Although there are self-healing gels, none of them are heat, UV and It does not have the ability to self-medicate, regardless of other factors.

Bulusun Kisa Açiklamasi Bu bulusun amaci, esneme özelligi ve mukavemeti es zamanli olarak yüksek olan ve yapay deri, kas: tendon vb. esneyebilir yumusak doku rejenerasyonuna yardimci olacak doku iskelelerinin hazirlanmasinda kullanilan biyobozunur bir jel elde etme yöntemi gerçeklestirmektir. Brief Description of the Invention The aim of this invention is to provide high flexibility and strength simultaneously. and artificial leather, muscle: tendon etc. Aids in stretchable soft tissue regeneration Obtaining a biodegradable gel used in the preparation of scaffolds to be to implement the method.

Bu bulusun bir baska amaci, Vücut içine yerlestirildikten sonra zamanla bozunup, yerini yeni olusan dokuya birakarak ikinci bir cerrahi islein ihtiyacini ortadan kaldiran biyobozunur bir jel elde etme yöntemi gerçeklestirmektir. Another purpose of this invention is to decompose over time after being placed in the Body, It is replaced by newly formed tissue, eliminating the need for a second surgical procedure. is to perform a method of obtaining a biodegradable gel that removes

Bu bulusun bir baska amaci, kopan parçalarinin birbirine temas ettirilmesi ile otonom sekilde kendini iyilestiren ve tamamen ilk halindeki özelliklere sahip olan biyobozunur bir jel elde etme yöntemi gerçeklestirmektir. Another object of this invention is to bring the broken parts into contact with each other. autonomously self-healing and fully primitive is to realize a method of obtaining a biodegradable gel.

Bu bulusun baska bir amaci, çok küçük gerinim degerlerinde nano-mikro Farad seviyelerinde kapasitif cevap verine özelligi sunan biyobozunur bir jel elde etme yöntemi gerçeklestinnektir. Another object of this invention is nano-micro Farad at very small strain values. Obtaining a biodegradable gel capable of capacitive response at levels method is to be implemented.

Bulusun Ayrintili Açiklamasi Bu bulusun amacina ulasmak için gerçeklestirilen “Biyobozunur Bir Jel E ide Etme Yöntemi” ekli sekilde gösterilmis olup, söz konusu sekil; Sekil 1. Bulus konusu biyobozunur jel elde etme yönteminin akis diyagraminm görünüsüdür. Detailed Description of the Invention To achieve the aim of this invention, “Ideation of a Biodegradable Gel” Method” is shown in the attached figure, the figure in question; Figure 1. The flow diagram of the method of obtaining the biodegradable gel of the invention. is the view.

Sekilde yer alan parçalar tek tek numaralandirilmis olup bu numaralarin karsiliklari asagida verilmistir: 100. Yöntem Bulus konusu oda sicakliginda herhangi bir dis etkiye gerek duyulmadan kendi kendini (Otonom olarak) iyilestirebilen, yüksek mukavemet ve gerinim özelliklerine ayni anda sahip ve küçük gerinim degerlerinde lineer kapasitans cevabini nano- mikro Farad seviyelerinde sunabilen biyobozunurjel elde etme yöntemi (100), -Iki fonksiyonlu bir polietilenglikol molekülünün bir diaSit ile katalizör varliginda bir reaktörde prepolimer reaksiyonunun gerçeklestirilmesi (101) ve -prepolimer reaksiyonunda elde edilen prepolimerin çapraz baglanmasi ile -OH kondenzasyonu gerçeklestirilmesi (102] adimlarini içermektedir. The parts in the figure are numbered one by one and the corresponding numbers are given below: 100. Method The subject of the invention is at room temperature without the need for any external effect. Self-healing, high strength and strain properties at the same time and at small strain values, the linear capacitance response is nano- method of obtaining a biodegradable gel that can deliver at micro Farad levels (100), -In the presence of a bifunctional polyethyleneglycol molecule with a diaSite as a catalyst performing the prepolymer reaction in a reactor (101) and -OH by cross-linking the prepolymer obtained in the -prepolymer reaction performing the condensation (102] steps.

Bulus konusu yöntemde (100) prepolimer reaksiyonu gerçeklestirilmesi (101] adiminda iki fonksiyonlu polietilenglikol molekülü bir polIetilenglikoldiglisidil eterdir. Kullanilan diasit bir sebasik asittir (C10H1804). Polietilenglikoldiglisidil eter ve sebasik asit arasindaki reaksiyonun gerçeklestirilebilmesi için katalizör olarak kafein kullanilmaktadir. Söz konusu prepolimer reaksiyonu tercihen bir mikrodalga reaktörde gerçeklestirilmektedir. Gerçeklestirilen prepolimer reaksiyonu 3-10 dakika arasinda bir sürede tamamlanmaktadir. Performing the prepolymer reaction in the method (100) of the invention (101] In step one, the bifunctional polyethyleneglycol molecule is a polyethyleneglycoldiglycidyl is ether. The diacid used is a sebacic acid (C10H1804). Polyethyleneglycoldiglycidyl ether as a catalyst for the reaction between sebacic acid and caffeine is used. Said prepolymer reaction is preferably a microwave carried out in the reactor. Performed prepolymer reaction 3-10 It is completed in minutes.

Bulus konusu yöntemde (100) gerçeklestirilen prepolimer reaksiyonu (101 l; seklindedir. Reaksiyonun sonunda polietilenglikolsebakat prepolimeri elde edilmektedir. The prepolymer reaction (101 l; is in the form. At the end of the reaction, polyethyleneglycolsebacate prepolymer is obtained. is being done.

Bulus konusu yöntemde (100) çapraz baglanma ile -OH kondenzasyonu gerçeklestirilmesi (102) adiminda, prepolimer reaksiyonu gerçeklestirilme (101) adiminda elde edilen prepolimerde ortaya çikan -OH (hidroksil) gruplari 110- 160°C sicaklik araliginda çapraz baglanmaktadir. Tercih edilen bir uygulamada optimum sicaklik olarak 120°C seçilmektedir. Çapraz baglanma 100 mBar`dan düsük vakum degerlerinde gerçeklestirilmektedir. Çapraz baglanma için gereken süre 24-48 saat arasindadir. Tercih edilen bir uygulamada istenilen özelliklere 24 saatte gerçeklestirilen çapraz baglanma ile ulasilmaktadir. 32-48 saat dilimi arasinda ise uygun malzeme elde edilmekte ancak süre uzadikça elde edile esneklik özelliginde düsüs meydana gelmektedir. Çapraz baglanma sonucunda -OH gruplari tüketilmekte ve polietilenglikolsebakat yani biyobozunur jel (elastomer) elde edilmektedir. In the method of the invention (100), -OH condensation with cross-linking In step (102), performing the prepolymer reaction (101) -OH (hydroxyl) groups formed in the prepolymer obtained in step 110- It is cross-linked in the temperature range of 160°C. In a preferred embodiment 120°C is selected as the optimum temperature. Cross-linking from 100 mBar performed at low vacuum values. Required for cross-linking time is between 24-48 hours. 24 to the desired properties in a preferred application. It can be reached by cross-linking carried out per hour. 32-48 time zones In between, suitable material is obtained, but the flexibility obtained as the time increases decrease occurs in the feature. -OH groups as a result of cross-linking are consumed and polyethyleneglycolsebacate, that is, biodegradable gel (elastomer), is obtained. is being done.

Bulus konusu yöntem (100) ile elde edilen biyobozunur jel fiber halinde ameliyat iplikleri veya örgülü-örgüsüz medikal tekstil ürünleri, yara yanik örtü malzemeleri, membranlar, tibbi yamalar, yumusak ve sert doku onarim/rejenerasyonu için doku iskelesi, yönlendirilmis doku onarim malzemesi, ortopedik uygulamalar için çivi, plaka ve vidalar, partikül formlari da dahil olmak üzere ilaç salim sistemi platformu, kas-tendon onarim malzemesi olarak kullanim alanina sahiptir. Bu alanlarin yaninda biyobozunur olma, esneme ve kapasitif özellikleri bakimindan giyilebilir sensör platformlarinin gelistirilmesinde, biyomedikal alanda farkli yumusak robot (soft robotics) uygulamalarinda algilayici birimlerde, gida, çevre ve diger medikal disi konularda da kullanim potansiyeline sahiptir. Biodegradable gel fiber obtained by the method (100) of the invention yarns or knitted-non-woven medical textile products, wound and burn dressing materials, membranes, medical patches, tissue for soft and hard tissue repair/regeneration scaffolding, guided tissue repair material, nails for orthopedic applications, plate and screws, drug delivery system platform, including particle forms, It is used as a muscle-tendon repair material. of these areas besides, it is wearable in terms of biodegradability, stretching and capacitive properties. In the development of sensor platforms, different soft robots in the biomedical field (soft robotics) applications in sensor units, food, environmental and other medical It has the potential to be used in other matters as well.

Bulus konusu yöntem (100) ile elde edilen biyobozunur jelin sahip oldugu çapraz baglar ile mukavemeti artarken esneme özelligi de kullanilan hammaddeler ve elde etme kosullari sebebiyle es zamanli olarak artmaktadir. Bununla beraber esnetildiginde yüksek transparan özellik göstermektedir. Yüksek mukavemet ve yüksek esneme özelligine ayni anda sahip olabilen söz konusujel; yapay deri, kas, tendon gibi pek çok esneyebilir yumusak dokunun rejenerasyonuna yardimci olabilecek doku iskelelerinin hazirlanmasinda kullanilmaktadir. Bu sekilde kullanilan rejenerasyon malzemeleri ikinci bir cerrahi islem ihtiyacini ortadan kaldirmakta, zamanla bozunarak yerini yeni olusan dokuya birakmaktadir. Jelin kendisi gibi bozunma sonucu olusan ürünlerde toksik olmayan ürünlerdir. The cross of the biodegradable gel obtained by the method (100) of the invention While its strength increases with bonds, its stretching feature also increases with the raw materials used and the hand. increases simultaneously due to the conditions of delivery. With this It shows high transparency when stretched. High strength and the aforementioned gel, which can have high stretching properties at the same time; artificial skin, muscle, Helps regeneration of many flexible soft tissues such as tendons It is used in the preparation of possible tissue scaffolds. In this way The regeneration materials used eliminate the need for a second surgical procedure. removes it, decomposes over time and leaves its place to the newly formed tissue. your gel products formed as a result of decomposition, such as itself, are non-toxic products.

Bulus konusu yöntem (100) ile elde edilen biyobozunur jel, kendi kendini sicaklik, UV ve diger etmenler olmaksizin otonom bir sekilde tedavi etme özelligine sahiptir. The biodegradable gel obtained by the method (100) of the invention, self-temperature, It has the feature of treating autonomously without UV and other factors.

Biyobozunur jel, kopan iki parçanin birbirine temas ettirilmesi ile kendi kendini kisa bir süre içerisinde iyilestirmekte ve tamamen ilk halindeki mukavemet ve eSneme özelligini yeniden kazanmaktadir. Bu özelligi sebebiyle menisküs onarim malzemesi olarak endüstride uygulama bulabilir ve yükler altinda parçalanmasinin ardindan yine temas sonrasinda birleserek eski haline gelebilir. Kas, tendon ve benzeri diger uygulamalarda bu özelligi ile rejenerasyon süresinde gereken dayanimi ilgili dokuya aktararak var olan bir problemi çözebilir. The biodegradable gel becomes self-sufficient by contacting the two broken pieces. heals in a short time and is completely in its original strength and It regains its stretching feature. Due to this feature, meniscus repair It can find application in industry as a material and it can be disintegrated under loads. then it can reunite after contact again and become old. Muscle, tendon and In other similar applications, with this feature, it is necessary for the regeneration period. can solve an existing problem by transferring strength to the relevant tissue.

Bulus konusu yöntem (100) ile elde edilen biyobozunur jel, çok küçük gerinim degerlerinde nano-mikro Farad seviyelerinde kapasitif cevap verme özelligine sahiptir. Bu özellikteki jel esnek ve giyilebilir optoelektronik uygulamalarda platformlarin hazirlanabilmesine yönelik halihazirda var olan ihtiyaci giderme potansiyeli sunar. Söz konusu jel ile hazirlanan kapasitif sensör doku rejenerasyonunun (örnegin kalp kasi) veya fizyolojik bir verinin (arteryel basinç) in VIVO olarak biyobozunur bir sensör ile izlenebilmesine yardimci olur. Benzer sekilde giyilebilir esnek ve biyobozunur pek çok elektronik veya biyomedikal uyg ula mada jel in bu özelliginden dolayi farkli platformlarda yararlanilabilmektedir. Bir sensör olarak yapilandirilmasi durumunda, sensör üzerine düsecek çok küçük gerinime (örnegin bir kas hareketi) veya baskiya duyarli olarak sensör eleinanindan dogrusal bir tepki alinir. The biodegradable gel obtained by the method (100) of the invention is very small strain. It has a capacitive response feature at nano-micro Farad levels. has. The gel with this feature is used in flexible and wearable optoelectronic applications. Addressing the existing need for platforms to be prepared offers potential. Capacitive sensor tissue prepared with the gel in question regeneration (for example, heart muscle) or a physiological data (arterial pressure) It helps to be monitored with a biodegradable sensor as VIVO. Similar wearable, flexible and biodegradable in many electronic or biomedical Due to this feature of the gel in application, it can be used on different platforms. can be used. If configured as a sensor, the sensor sensitive to very small strain (for example, a muscle movement) or pressure to fall on As a result, a linear response is received from the sensor element.

Bu temel kavramlar etrafinda, bulus konusu biyobOZunur jel elde etme yönteini (100) için çok çesitli uygulamalarin gelistirilmesi mümkün olup, bulus burada açiklanan örneklerle sinirlandirilamaz, esas olarak istemlerde belirtildigi gibidir.Around these basic concepts, the method of obtaining a biodegradable gel is the subject of the invention. It is possible to develop a wide variety of applications for (100), and the invention is presented here. not limited to the examples described, essentially as claimed in the claims.

Claims (1)

ISTEMLER . Oda sicakliginda herhangi bir dis etkiye gerek duyulmadan kendi kendini (otonom olarak] iyilestirebilen, yüksek mukavemet ve esneme özelliklerine ayni anda sahip ve küçük geriniin degerlerinde lineer kapasitans cevabini nano-mikro Farad seviyelerinde sunabilen; -iki fonksiyonlu bir polietilenglikol molekülünün bir diasit ile katalizör varliginda bir reaktörde prepolimer reaksiyonunun gerçeklestirilmesi (101) -prepolimer reaksiyonunda elde edilen prepolimerin çapraz baglanmasi ile - OH kondenzasyonu gerçeklestirilmesi (102) adimlari ile karakterize edilen biyobozunur bir jel elde etme yöntemi (100). . Kullanilan iki fonksiyonlu polietilenglikol molekülünün poiietiiengiikoidigiisidi| eter Olmasi ile karakterize edilen Istem 1” deki gibi biyobozunur bir jel elde etme yöntemi (100). . Kullanilan diasitin bir sebasik asit (C10H1304l Olmasi ile karakterize edilen Istem 1 veya 2” deki gibi biyobozunur bir jel elde etme yöntemi (100). . Polietilenglikoldiglisidil eter ve sebasik asit arasindaki reaksiyonun gerçeklestirilebilmesi için katalizör olarak kafeinin kullanilmasi ile karakterize edilen yukaridaki istemlerden herhangi birindeki gibi biyobozunur bir jel elde etme yöntemi (100). Bir mikrodalga reaktörde prepolimer reaksiyonunun gerçeklestirilmesi ile karakterize edilen yukaridaki istemlerden herhangi birindeki gibi biyobozunur bir jel elde etme yöntemi (100). . Gerçeklestirilen prepolimer reaksiyonu 3-10 dakika arasinda bir sürede tamamlanmasi ile karakterize edilen yukaridaki istemlerden herhangi birindeki gibi biyobozunur bir jel elde etme yöntemi (100). Prepolimer reaksiyonunun; seklinde olmasi ile karakterize edilen yukaridaki istemlerden herhangi birindeki gibi biyobozunur bir jel elde etme yöntemi (100). Prepolimer reaksiyonunun sonunda pol ieti lenglikolsebakat prepolimeri elde edilmesi ile karakterize edilen yukaridaki istemlerden herhangi birindeki gibi biyobozunur bir jel elde etme yöntemi (100). . Çapraz baglanma ile -OH kondenzasyonu gerçeklestirilme (102) adiminda, prepolimer reaksiyonu gerçeklestirilme (101) adiminda elde edilen prepolimerde ortaya çikari -OH (hidroksil) gruplarinin 110-160°C sicaklik araliginda çapraz baglanmasi ile karakterize edilen yukaridaki istemlerden herhangi birindeki gibi biyobozunur bir jel elde etme yöntemi (100). 10. Çapraz baglanma için optimum sicaklik degerinin `l20°C olmasi ile karakterize edilen yukaridaki istemlerden herhangi birindeki gibi biyobozunur bir jel elde etme yöntemi (100). Çapraz baglanmanin 100 mBaridan düsük vakum degerlerinde gerçeklestirilmesi ile karakterize edilen yukaridaki istemlerden herhangi birindeki gibi biyobozunur bir jel elde etme yöntemi (100). Çapraz baglanma için gereken sürenin 24-48 saat arasinda olmasi ile karakterize edilen yukaridaki istemlerden herhangi birindeki gibi biyobozunur bir jel elde etme yöntemi (100). Istenilen jel özelliklerine 24 saatte gerçeklestirilen çapraz baglanma sonucu ulasilabilmesi ile karakterize edilen Istem 1 ila 11” den herhangi birindeki gibi biyobozunur bir jel elde etme yöntemi (100), 32-48 saat dilimi arasinda uygun jel elde edilmesi ancak süre uzadikça elde edi len esneklik özelliginde düsüs olmasi ile karakterize edilen Istem 1 ila 11” den herhangi birindeki gibi biyobozunur birjel elde etme yöntemi (100). Çapraz baglanma sonucunda -OH gruplarinin tüketilmesi ve polietilenglikolsebakat yani biyobozunur jel (elastomer) elde edilmesi ile karakterize edilen yukaridaki istemlerden herhangi birindeki gibi biyobozunur bir jel elde etme yöntemi (100). Yukaridaki istemlerden herhangi birindeki gibi biyobozunur bir jel elde etme yöntemi (100) takip edilerek elde edilen biyobozunur jelin; fiber halde ameliyat ipligi veya örgülü-örgüsüz medikal tekstil ürünü, yara yanik örtü malzemesi, membran, tibbi yama, yumusak ve sert doku onarim/rejenerasyonu için doku iskelesi, yönlendirilmis doku onarim malzemesi, ortopedik uygulamalar için çivi, plaka ve vida, partikül formlari da dahil olmak üzere ilaç salim sistemi platformu, kas-tendon onarim malzemesi, giyilebilir sensör ve biyomedikal alanda farkli yumusak robot (soft robotics) uygulamalarinda algilayici birimden en az biri olarak kullanilmasi.REQUESTS . -A bifunctional polyethyleneglycol molecule that can heal itself (autonomously) without any external influence at room temperature, has high strength and flexibility properties at the same time, and can offer linear capacitance response at small strain values at nano-micro Farad levels; - a bifunctional polyethyleneglycol molecule in the presence of a diacid and a catalyst. A method of obtaining a biodegradable gel characterized by the steps of carrying out the prepolymer reaction in the reactor (101) -crosslinking the prepolymer obtained in the prepolymer reaction -acting OH condensation (102) . Characterized by the bifunctional polyethyleneglycol molecule used is polyethyleneglycol acid | ether Method of obtaining a biodegradable gel as in claim 1 (100). . Method of obtaining a biodegradable gel as in claim 1 or 2, characterized by the fact that the diacid used is a sebacic acid (C10H1304l). . Polyethyleneglycoldiglycidyl ether and sebacic acid. between A method of obtaining a biodegradable gel as in any one of the above claims, characterized by using caffeine as a catalyst in order to carry out the reaction (100). A method (100) of obtaining a biodegradable gel as in any one of the above claims, characterized by carrying out the prepolymer reaction in a microwave reactor. . The method (100) of obtaining a biodegradable gel as in any one of the above claims, characterized in that the prepolymer reaction carried out is completed in a period of 3-10 minutes. Prepolymer reaction; The method (100) of obtaining a biodegradable gel as in any one of the above claims, characterized in that it is in the form of a biodegradable gel. A method of obtaining a biodegradable gel as in any one of the above claims, characterized in that polyethylene lenglycolsebacate prepolymer is obtained at the end of the prepolymer reaction (100). . A biodegradable gel as in any one of the above claims, characterized by the cross-linking of -OH (hydroxyl) groups in the temperature range of 110-160°C that occurs in the prepolymer obtained in the step of performing the prepolymer reaction (101) in the step of performing -OH condensation with cross-linking (102). method of obtaining (100). 10. The method of obtaining a biodegradable gel (100) as in any one of the above claims, characterized in that the optimum temperature value for cross-linking is `120°C. Method (100) of obtaining a biodegradable gel as in any one of the above claims, characterized in that the cross-linking is carried out at vacuum values lower than 100 mBar. The method of obtaining a biodegradable gel as in any one of the above claims, characterized in that the time required for cross-linking is between 24-48 hours (100). The method of obtaining a biodegradable gel as in any one of Claims 1 to 11, characterized by the ability to reach the desired gel properties as a result of cross-linking carried out in 24 hours (100), obtaining a suitable gel between 32 and 48 hours, but with the flexibility that is obtained as the time extends. Method of obtaining a biodegradable gel as in any one of Claims 1 to 11, characterized in that it decreases (100). Method of obtaining a biodegradable gel (100) as in any one of the above claims, characterized by the consumption of -OH groups as a result of cross-linking and obtaining polyethyleneglycolsebacate, that is, a biodegradable gel (elastomer). The biodegradable gel obtained by following the method (100) of obtaining a biodegradable gel as in any of the above claims; fiber-formed surgical thread or braided-non-woven medical textile product, wound and burn dressing material, membrane, medical patch, tissue scaffold for soft and hard tissue repair/regeneration, oriented tissue repair material, nails, plates and screws for orthopedic applications, particle forms including drug delivery system platform, muscle-tendon repair material, wearable sensor and at least one of the sensor unit in different soft robotics applications in the biomedical field.
TR2019/04095A 2019-03-19 2019-03-19 THE METHOD OF OBTAINING A BIO-DEGRADABLE GEL TR201904095A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TR2019/04095A TR201904095A2 (en) 2019-03-19 2019-03-19 THE METHOD OF OBTAINING A BIO-DEGRADABLE GEL
PCT/TR2020/050212 WO2020190240A2 (en) 2019-03-19 2020-03-17 A method for obtaining a biodegradable gel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2019/04095A TR201904095A2 (en) 2019-03-19 2019-03-19 THE METHOD OF OBTAINING A BIO-DEGRADABLE GEL

Publications (1)

Publication Number Publication Date
TR201904095A2 true TR201904095A2 (en) 2020-10-21

Family

ID=72520454

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2019/04095A TR201904095A2 (en) 2019-03-19 2019-03-19 THE METHOD OF OBTAINING A BIO-DEGRADABLE GEL

Country Status (2)

Country Link
TR (1) TR201904095A2 (en)
WO (1) WO2020190240A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114853952B (en) * 2022-06-10 2024-03-08 闽江学院 Super-stretching self-repairing nanocellulose gel and preparation method thereof
CN115490841B (en) * 2022-11-22 2023-03-21 颢箔医疗科技(上海)有限公司 Polyether diol polyazelaic acid fatty triol ester and preparation method and application thereof

Also Published As

Publication number Publication date
WO2020190240A3 (en) 2020-10-22
WO2020190240A2 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
Liu et al. Hydrogen bonds autonomously powered gelatin methacrylate hydrogels with super-elasticity, self-heal and underwater self-adhesion for sutureless skin and stomach surgery and E-skin
Zhang et al. Zn2+-loaded TOBC nanofiber-reinforced biomimetic calcium alginate hydrogel for antibacterial wound dressing
Liu et al. A highly-stretchable and adhesive hydrogel for noninvasive joint wound closure driven by hydrogen bonds
Yu et al. Ultrathin κ-carrageenan/chitosan hydrogel films with high toughness and antiadhesion property
Gharibi et al. Stimulation of wound healing by electroactive, antibacterial, and antioxidant polyurethane/siloxane dressing membranes: in vitro and in vivo evaluations
Lu et al. Insoluble and flexible silk films containing glycerol
Lin et al. Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications
Yang et al. H-bonding supramolecular hydrogels with promising mechanical strength and shape memory properties for postoperative antiadhesion application
Liu et al. Biomimetic strain-stiffening in chitosan self-healing hydrogels
Xiao et al. Adhesion mechanism and application progress of hydrogels
Li et al. Hydrogel/nanofibrous membrane composites with enhanced water retention, stretchability and self-healing capability for wound healing
FR2616318A1 (en) ARTIFICIAL SKIN AND PROCESS FOR PREPARING THE SAME
Hodge et al. Evaluating polymeric biomaterials to improve next generation wound dressing design
CN102921050A (en) Preparation method of anti-adhesion fibrous membrane with hemostatic function
Laidmäe et al. Salmon fibrinogen and chitosan scaffold for tissue engineering: in vitro and in vivo evaluation
Mostafavi et al. Highly tough and ultrafast self-healable dual physically crosslinked sulfated alginate-based polyurethane elastomers for vascular tissue engineering
EP3021881B1 (en) Cross-linked hyaluronic acid, process for the preparation thereof and use thereof in the aesthetic field
Kumar et al. Polysaccharides, proteins, and synthetic polymers based multimodal hydrogels for various biomedical applications: A review
TR201904095A2 (en) THE METHOD OF OBTAINING A BIO-DEGRADABLE GEL
Correia et al. Adhesive and biodegradable membranes made of sustainable catechol-functionalized marine collagen and chitosan
Tang et al. Multifunctional hydrogels for wound dressings using xanthan gum and polyacrylamide
CN111481735A (en) Medical antibacterial wound-protecting hydrogel dressing and preparation method thereof
Mao et al. The relationship between crosslinking structure and silk fibroin scaffold performance for soft tissue engineering
Lu et al. Silk fibroin-based tough hydrogels with strong underwater adhesion for fast hemostasis and wound sealing
Luo et al. Fabrication and characterization of Chinese giant salamander skin composite collagen sponge as a high-strength rapid hemostatic material