TR201820052A1 - A LASER DIFFUSE OPTICAL TOMOGRAPHY DEVICE WORKING IN REFLECTION GEOMETRY - Google Patents

A LASER DIFFUSE OPTICAL TOMOGRAPHY DEVICE WORKING IN REFLECTION GEOMETRY Download PDF

Info

Publication number
TR201820052A1
TR201820052A1 TR2018/20052A TR201820052A TR201820052A1 TR 201820052 A1 TR201820052 A1 TR 201820052A1 TR 2018/20052 A TR2018/20052 A TR 2018/20052A TR 201820052 A TR201820052 A TR 201820052A TR 201820052 A1 TR201820052 A1 TR 201820052A1
Authority
TR
Turkey
Prior art keywords
laser
optical
source
feature
tissue
Prior art date
Application number
TR2018/20052A
Other languages
Turkish (tr)
Inventor
Canpolat Murat
Original Assignee
Akdeniz Ueniversitesi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akdeniz Ueniversitesi filed Critical Akdeniz Ueniversitesi
Priority to TR2018/20052A priority Critical patent/TR201820052A1/en
Priority to EP19899572.2A priority patent/EP3897361A4/en
Priority to PCT/TR2019/050485 priority patent/WO2020130969A1/en
Publication of TR201820052A1 publication Critical patent/TR201820052A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0073Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by tomography, i.e. reconstruction of 3D images from 2D projections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0091Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for mammography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4785Standardising light scatter apparatus; Standards therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • G01N2201/0826Fibre array at source, distributing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • G01N2201/0833Fibre array at detector, resolving

Abstract

Buluş; doku tümörlerini teşhis etmek, konumunu belirlemek için geliştirilen ve geri yansıma geometrisinde çalışan bir lazer difüz optik tomografi (LDOT) cihazı ile ilgilidir. Buluş konusu optik cihazda birden fazla kaynaktan ilgili dokuya lazer gönderilmekte; lazer, dokunun içinde difıizyon ile yayılmakta, aynı yüzeyden geri dönen lazer birden fazla dedektör fiber tarafından toplanmakta ve fotodiyotlar ile şiddetleri ölçülmektedir. Ölçülen ışık şiddetleri geri çatım algoritmasında kullanılarak dokunun ilgili bölgesinin tomografık görüntüsü kan dağılımına bağlı olarak oluşturulmaktadır. Buluş konusu cihaz; özellikle meme tümörlerinin teşhisi için kullanılmaktadır.Meet; It is about a laser diffuse optical tomography (LDOT) device developed to diagnose and locate tissue tumors and operates in a back reflection geometry. In the optical device of the present invention, laser is sent from more than one source to the relevant tissue; The laser spreads inside the tissue by diffusion, the laser returning from the same surface is collected by more than one detector fiber and its intensity is measured with photodiodes. The measured light intensities are used in the reconstruction algorithm, and the tomographic image of the relevant area of the tissue is created depending on the blood distribution. The device subject to the invention; It is used especially for the diagnosis of breast tumors.

Description

TARIFNAME GERI YANSIMA GEOMETRISINDE ÇALISAN BIR LAZER DIFÜZ OPTIK TOMOGRAFI CIHAZI TEKNIK ALAN Bulus; doku kitlelerini/tümörlerini teshis etmek, konumunu belirlemek için gelistirilen ve geri yansima geometrisinde çalisan bir lazer difüz optik tomografi (LDOT) cihazi ile ilgilidir. Bulus konusu optik cihazda bir lazer kaynagindan birden fazla fiber optik kablo ilgili dokuya lazer gönderilmekte; lazer, dokunun içinde difüzyon ile yayilmakta, ayni yüzeyden geri dönen lazer birden fazla dedektör fiber tarafindan toplanmakta ve fotodiyotlar ile siddetleri ölçülmektedir. Ölçülen isik siddetleri geriçatim algoritmasinda kullanilarak dokunun ilgili bölgesinin tomografik görüntüsü kari dagilimina bagli olarak olusturulmaktadir. Bulus konusu cihaz; özellikle meme tümörlerinin teshisi için kullanilmaktadir. ÖNCEKI TEKNIK Tomografik görüntü; üç boyutlu (3D) olup, nesnelerin iç yapisi hakkinda bilgi almak için kullanilmaktadir. Lazer meme difüz optik tomografi (LMDOT) cihazinda memenin üzerine dalga boyu araligi 700-900 nm yakin kizil ötesi isik gönderilmekteI iki farkli sekilde ölçüm alinarak meme LM DOT Cihazi ile tomografik görüntü olusturulmaktadir. Bunlardan birincisinde; birden fazla kaynak tarafindan türbid ortama gönderilen ve türbid ortamdan geçtikten sonra birden fazla dedektör tarafindan toplanip ölçümleri yapilan isik siddetleri kullanilmaktadir (US 6738658B2). DESCRIPTION A LASER DIFFUS OPTICS WORKING IN REFLECTION GEOMETRY TOMOGRAPHIC DEVICE TECHNICAL FIELD Meet; developed to diagnose and locate tissue masses/tumors and It relates to a laser diffuse optical tomography (LDOT) device operating in reflection geometry. Meet In the optical device in question, more than one fiber optic cable from a laser source is transferred to the relevant tissue. being sent; the laser spreads through the tissue by diffusion, the laser returning from the same surface multiple detectors are collected by the fiber and their intensity is measured with photodiodes. The measured light intensities are used in the reconstruction algorithm and the tomographic region of the tissue is related. image is created depending on the profit distribution. The device subject to the invention; especially the breast It is used for the diagnosis of tumors. PRIOR ART tomographic image; It is three-dimensional (3D) and is used to get information about the internal structure of objects. is used. Wave on the breast in laser breast diffuse optical tomography (LMDOT) device Infrared light with a length range of 700-900 nm is sent, measuring in two different ways. A tomographic image is created with the breast LM DOT Device. In the first of these; suddenly which are sent to the turbid environment by more than one source and after passing through the turbid environment, more than one light intensities collected and measured by the detector are used (US 6738658B2).

Türbid ortamdan geçen isik siddetleri fotodiyotlar veya sarj eslestirmeli cihaz (charge coupled device, CCD) ile ölçülmektedir. Ölçüm sonuçlari ile “back projection”, “algebraic recontruction technique”,” least square method” gibi algoritmalar kullanilarak 3D görüntü olusturulmaktadir. The light intensities passing through the turbid medium are photodiodes or a charge-matched device (charge-coupled device). device, CCD). “Back projection”, “algebraic reconstruction” with measurement results 3D images are created using algorithms such as “technique”, “least square method”.

Ikinci yöntemde ise türbid ortama birden fazla kaynaktan gönderilen lazer difüzyona ugradiktan sonra ayni yüzeyden geri çikmaktadir. Geri Çikan lazer birden fazla dedektör optik fiber tarafindan Difüz optik tomografi (DOT) cihazlarinda; birden fazla kaynaktan isik gönderilmekte, yine birden fazla dedektör ile isik siddetleri ölçülmektedir. Her bir kaynagin isik gönderme verimliligi ve her bir dedektörün isik toplama verimliligi ayni olmadigindan kaynak ve dedektör kalibrasyonlarinin yapilmasi gerekmektedir. Kaynak kalibrasyonunda bütün kaynaklardan çikan isik siddetleri esitlenmektedir. Dedektör kalibrasyonunda ise, bütün dedektörlerin isik toplama verimliligi esitlenir. Bu sekilde alinan ölçümler cihazdan bagimsiz ve sadece türbid ortamin özelliklerine bagli hale gelmis olur. Geri yansima geometrisinde çalisan DOT cihazlari için gelistirilen kalibrasyonlarda kaynak ve dedektör kalibrasyon degerleri geriçatim (recontruction) algoritmalarina birer parametre olarak girmekte ve hesaplanmaktadir (WO 01/192241A1i. In the second method, the laser sent from more than one source to the turbid environment undergoes diffusion. then it comes back from the same surface. Ejected laser by multiple detector optical fiber In diffuse optical tomography (DOT) devices; light is being sent from more than one source, again all at once Light intensities are measured with more detectors. The light transmitting efficiency of each source and the Since the light collection efficiency of a detector is not the same, source and detector calibrations needs to be done. Light intensities from all sources in source calibration is equated. In detector calibration, the light gathering efficiency of all detectors is is equated. Measurements taken in this way are independent of the device and depend only on the characteristics of the turbid environment. it becomes. Developed for DOT devices working in retroreflection geometry. source and detector calibration values in calibrations (recontruction) algorithms as parameters and calculated (WO 01/192241A1i.

Mevcut bulusta; meme tümörlerini teshis için bir lazer diiüz optik tomografi cihazi açiklanmaktadir. In the present invention; a laser die-optic tomography device for diagnosing breast tumors is explained.

BULUSUN KISA AÇIKLAMASI VE AMAÇLARI Söz konusu bulus; geri yansima geometrisinde çalisan lazer difüz optik tomografi cihazi olup; bulusun amaci, tümör teshisi yapilacak dokunun ilgilenilen bölgesinin 5x5 cm27|ik alaninda ve 2. 5- 3 cm derinliginde 3D görüntüsü olusturularak etkin bir sekilde tümör teshisini yapilmasi ve tümör konumunun belirlenmesidir. BRIEF DESCRIPTION AND OBJECTIVES OF THE INVENTION The invention in question; It is a laser diffuse optical tomography device working in retroreflection geometry; The aim of the invention is to determine the area of interest of the tissue to be diagnosed with tumor in a 5x5 cm27 area and 2.5- Effectively diagnosing the tumor by creating a 3D image with a depth of 3 cm. determination of its location.

Kaynak-dedektör çiftlenim sayilarinin (2500) yüksek olmasi nedeni ile geriçatim algoritmalari ile olusturulan dokunun 3D görüntüleri uzaysal çözünürlükte yüksek olmaktadir. Due to the high number of source-detector pairings (2500), the reconstruction algorithms were used. 3D images of the created tissue are high in spatial resolution.

Bulus konusu cihaz; kompakt ve kullanimi kolay bir cihaz olup, kullanimi esnasinda hastaya bir rahatsizlik vermemektedir. The device subject to the invention; It is a compact and easy-to-use device, and it is a painless device to the patient during its use. does not cause discomfort.

SEKILERIN KISA AÇIKLAMASI Sekil 1. LM DOT cihazinin kullanim halindeki görüntüsü. BRIEF DESCRIPTION OF THE SETS Figure 1. View of the LM DOT device in use.

Sekil 2. LMDOT cihazinin sematik görünüsü. Figure 2. The schematic view of the LMDOT device.

Sekil 3. LM DOT cihazinin açik tasarimi. Figure 3. Open design of the LM DOT device.

Sekil 4. LMDOT cihazin Optik seçicisinin detayli görünüsü. Figure 4. Detailed view of the Optical selector of the LMDOT device.

Sekil 5. Ana elektronik kart ve dedektör üzerindeki alüminyum blok görünüsü. Figure 5. The view of the aluminum block on the main electronic board and detector.

Sekil 6. Dedektör olarak kullanilan optik fiberlerin alüminyum blok üzerinde oyuklarda sonlandirilmasi ve ana elektronik kart görünüsü. Figure 6. Optical fibers used as detectors in cavities on the aluminum block. termination and appearance of the main electronic board.

Sekil 7. Optik probun ön yüzeyi ve fiber optik kablolarm dizilis görünümü. Figure 7. Front surface of the optical probe and arrangement of fiber optic cables.

Sekil 8. Optik probun ön yüzeyinde kaynak olarak kullanilan kaynak fiberlerin ve dedektör olarak kullanilan dedektör fiberlerin diZilis görünümü. Figure 8. Source fibers used as a source on the front surface of the optical probe and as a detector Sequence view of the detector fibers used.

Sekil 9. Kaynak optik fiberlerden dokuya gönderilen lazer ve geri yansiyan lazer görünüsü ile doku içerisindeki temsili foton yörüngelerinin görünümü. Figure 9. Tissue with laser sent from the source optical fibers to the tissue and the reflected laser image View of representative photon orbits inside.

SEKILLERDE VERILEN REFERANS NUMARALARI ) Lazer difüz optik tomografi (LDOT) cihazi ) Optik prob 21) Optik prob ön yüzeyi 22) Kaynak optik fiber ön yüzeyi 23) Dedektör Optik fiber ön yüzeyi ) Doku 40) Optik seçici step motoru 50) Fiber optik kablo 51) Lazeri cihaza ileten fiber optik kablo 52) Kaynak optik fiber 53) Dedektör optik fiber 60) Alüminyum blok 61) Optik seçici 70) Ana elektronik karti 71) Tümdevre 72) Mikroislemci 80) Dedektör üzerindeki alüminyum blok 81) OVuk 90) Fotodiyot 91) Ana kartin güç kaynagi 92) Ana kartin step motor ve optik seçiciyi kontrol eden çikisi 93) Baglanti kablosu 94) Bilgisayar 95) Bilgisayar monitörü 100) Doku içindeki temsili foton yörüngeleri 101) Dokuya gönderilen lazer 102) Dokudan geri yansiyan lazer 110) Lazer kaynagi BULUSUN DETAYLI AÇIKLAMASI Bu bulus, vücudunda kitle bulunan hastalarda, kitlenin tümör mü yoksa kist veya hamartoma mi oldugunun tespit edilmesini ve kitlenin/tümörün konumunun belirlenmesini saglayan Optik bir cihaz ile Ilgi l idi r. Bulus konusu optik cihaz; özellikle memedeki kitlenin tümör mü yoksa, kist veya hamartoma mi oldugunun tespit edilmesi ve tümörün konumunun belirlenmesi için gelistirilen bir lazer difüz optik tomografi (LDOT) cihazidir (10). REFERENCE NUMBERS IN THE FIGURES ) Laser diffuse optical tomography (LDOT) device ) optical probe 21) Optical probe front surface 22) Weld optical fiber front surface 23) Detector Optical fiber front surface ) texture 40) Optical selective stepper motor 50) Fiber optic cable 51) Fiber optic cable transmitting the laser to the device 52) Source optical fiber 53) Detector optical fiber 60) Aluminum block 61) Optical selector 70) Main electronic board 71) IC 72) Microprocessor 80) Aluminum block on detector 81) Owl 90) Photodiode 91) Main board power supply 92) Output of main board controlling stepper motor and optical selector 93) Connection cable 94) Computer 95) Computer monitor 100) Representative photon orbits in tissue 101) Laser sent to the tissue 102) Laser reflected back from tissue 110) Laser welding DETAILED DESCRIPTION OF THE INVENTION This finding is important in patients with a mass in their body, whether the mass is a tumor, a cyst, or a hamartoma. It is an Optical instrument that detects the presence of the tumor and determines the location of the mass/tumor. It was related to the device. The subject of the invention is the optical device; especially if the mass in the breast is a tumor or a cyst or A device developed to detect whether it is a hamartoma and to locate the tumor. laser diffuse optical tomography (LDOT) device (10).

Lazer difüz optik tomografi (LDOT) cihazi (10), kitle olma ihtimali bulunan dokuya (30) hafifçe temas ettirilerek kullanilmaktadir. Lazer difüz optik tomografi (LDOT) cihazinin doku (30) üzerindeki kullanimi Sekil l°de gösterilmektedir. LDOT cihazi (10), doku (30) ile temasini optik prob (20) araciligi ile gerçeklestirmektedir. Sekil 2”de gösterildigi üzere, bulusa konu LDOT cihazi (10); dokuya isik gönderilmesi için bir diyot lazer kaynagi(l 10), doku (30) ile LDOT cihazinin (10) temasini saglayan optik prob (20), prob ön yüzeyinde (21) konumlanan ve lazeri optik proba (20) tasiyan ve dokudan (30) geri yansiyan lazeri toplayan fiber Optik kablolar (50), ana elektronik karti (70), optik seçici (61),0ptik seçici step motoru (40), optik seçiciyi (61) konumlandiran kablosu, bilgisayar monitörü içerrnektedir. Ana kartin step motor ve optik seçiciyi kontrol eden çikisi (92), lazeri kaynak optik fiberlere (52) belirli süre için yönlendiren bilgiyi ana karttan (70) Teshis için yapilan ölçüm esnasinda, lazer difüz optik tomografi (LDOT) cihazinin (10) sahip oldugu optik prob ön yüzeyinin (21) doku (30) ile tam olarak temasi saglanmaktadir. Optik prob ön yüzeyinde (21) baglantili bulunan fiber optik kablolar (50) konumlanmaktadir. Fiber Optik kablolar (50) bir uçtan optik prob (20) ile baglantiliyken diger uçlari da dedektör üzerindeki alüminyum blok (80) ve optik seçici (61) ile baglantilidir. Söz konusu fiber optik kablolarin (50) bir kismi dedektör Optik fiberler (53) olup, alüminyum bloktaki (80) oyuklar (81) içerisinde konumlanmaktadir. Fotodiyotlar (90), alüminyum bloktaki (80) oyuklarin (81) içerisine yerlestirilmektedirler. Bu sekilde her bir dedektör Optik fiberin (53) tasidigi isik, tek bir fotodiyota (90) iletilmektedir. Söz konusu oyuklarin (81) bir ucundan en az bir adet fiber optik kablo (50) giris yaparken, oyuklarin (81) diger ucu ana elektronik kart (70) üzerinde konumlanan, sekil 5”te gösterilen fotodiyotlar (90) ile anahtar-kilit iliskisinde baglantilidir. Oyuklar (81) ile fotodiyotlarin (90) birbirleri ile baglantisinin yapilmasi sayesinde, optik prob (20) ile ana elektronik kart (70) birbirleri ile aralarindaki iletisimi dedektör fiber optiklerle (53) saglayacak sekilde iliskilendirilir. The laser diffuse optical tomography (LDOT) device (10) gently touches the tissue (30) that may be a mass. used by contact. Tissue (30) of laser diffuse optical tomography (LDOT) device Its use on the . is shown in Figure 1 . The LDOT device (10) makes contact with the tissue (30) optically. by means of the probe (20). As shown in Figure 2, the LDOT device of the invention (10); a diode laser source (10) for transmitting light to the tissue, the tissue (30) and the LDOT device (10) The optical probe (20) that provides the contact with the probe (20) is positioned on the probe front surface (21) and transfers the laser to the optical probe (20). Fiber Optic cables (50) that carry and collect the laser reflected back from the tissue (30) board (70), optical selector (61), optical selector stepper motor (40), optical selector (61) positioning cable includes computer monitor. The main board controls the stepper motor and optical selector. Its output (92) sends the information from the motherboard (70) to the source optical fibers (52) for a specified period of time. During the measurement made for diagnosis, the laser diffuse optical tomography (LDOT) device (10) has Full contact of the front surface (21) of the optical probe with the tissue (30) is ensured. optical probe Fiber optic cables (50) connected on the front surface (21) are positioned. Fiber optic While the cables (50) are connected to the optical probe (20) at one end, the other ends are connected to the detector on the detector. it is connected to the aluminum block (80) and the optical selector (61). The fiber optic cables (50) in question some of the detectors are Optical fibers (53) in cavities (81) in the aluminum block (80). is located. Photodiodes (90) are inserted into the cavities (81) in the aluminum block (80). are placed. In this way, the light carried by each detector Optical fiber (53) is transmitted to a single photodiode. (90) is transmitted. At least one fiber optic cable (50) entry from one end of said cavities (81) while the other end of the cavities (81) is located on the main electronic board (70), in figure 5 It is connected in key-lock relationship with the photodiodes (90) shown. Photodiodes with cavities (81) By connecting the (90) with each other, the optical probe (20) and the main electronic board (70) They are associated with each other in such a way as to provide the communication between them with detector fiber optics (53).

Ana elektronik kart (70) Sekil 47te gösterildigi üzere, üzerinde elektronik unsurlarin konumlandirildigi alüminyum blogun (80) alt kisminda bulunmaktadir. The main electronic board (70) has electronic components on it, as shown in Figure 47. It is located at the bottom of the aluminum block (80) where it is positioned.

Optik probun (20) sahip oldugu optik prob ön yüzeyi (21) Sekil 7*de gösterilmektedir. Optik probun ön yüzeyinde (21) fiber optik kablolar (50) konumlanmaktadir. Optik probun ön yüzeyinde (21) konumlanan fiber optik kablolarin (50) bir kismi dokuya (30) lazeri tasimakta, diger kismi da dokudan (30) difüzyona ugradiktan sonra geri dönen lazeri toplayarak sensör olarak kullanilan ve ana elektronik kart (70) üzerinde konumlanan fotodiyotlara (90) iletmektedir. Söz konusu, fiber optik kablolarin (50), lazeri optik proba (20) tasiyanlari kaynak optik fiberler (52) olup, dokudan (30) geri yansiyan lazeri toplayan ve fotodiyotlara (90) iletenler de dedektör optik fiberlerdir (53). The optical probe front surface (21) of the optical probe (20) is shown in Figure 7*. Optical Fiber optic cables (50) are positioned on the front surface (21) of the probe. On the front surface of the optical probe Some of the fiber optic cables (50) positioned (21) carry the laser to the tissue (30), while the other part used as a sensor by collecting the returning laser after diffusion from the tissue (30) and It transmits it to the photodiodes (90) located on the main electronic board (70). In question, fiber the source optical fibers (52) of the optical cables (50) that carry the laser to the optical probe (20) are (30) detector optic fibers (53) are the ones that collect the back-reflected laser and transmit it to the photodiodes (90).

Sekil ltde LDOT cihazinin (10) gemi görünüsünde de görüldügü üzere; lazer, lazer kaynagindan LDOT cihazina ileten fiber Optik kablo (51) ile optik seçici ile optik prob (20) üzerinde kaynak optik fibere (52) iletilmektedir. Kaynak optik fiberler (52) ile dokuya (30) gönderilen lazer (101) dokuda (3) saçilima ugramaktadir. As seen in the ship view of the LDOT device (10) in Fig. laser from laser source Source on optical probe (20) with optical selector via fiber optic cable (51) transmitting to LDOT device transmitted to the optical fiber 52 . Laser (101) delivered to tissue (30) by source optical fibers (52) It is scattered in the tissue (3).

Sekil 5'te gösterildigi gibi dokudan (30) geri yansiyan isigi toplayan ve fotodiyotlara (90) ileten dedektör optik tiberlerin (53) bir uçlari dedektör üzerindeki alüminyum blok (80) üzerindeki oyuklara (81) tutturulmaktadir. Bulusa konu cihazda; ana elektronik kart (70) üzerinde sensör olarak kullanilan fotodiyotlar (90) oyuklara (81) yerlestirmektedir (Sekil 6). Fotodiyot (90) çikislari ana elektronik kart (70) üzerindeki en az bir adet DDC232 tümdevreye (71) iletilmektedir. Burada veri dijitale dönüstürülmekte ve fotodiyot (90) akimlari farkli integrasyon zamanlarinda gerilime çevrilerek çikti olarak bir bilgisayara (94) aktarilmaktadir. It collects the light reflected back from the tissue (30) and transmits it to the photodiodes (90) as shown in Figure 5 . One end of the detector optic tiber (53) is on the aluminum block (80) on the detector. it is attached to the recesses (81). In the device subject to the invention; sensor on main electronic board (70) The photodiodes (90) used as the cavities are placed in the cavities (81) (Figure 6). Photodiode (90) outputs it is transmitted to at least one DDC232 integrated circuit (71) on the main electronic board (70). Here The data is converted to digital and the photodiode (90) currents are converted to voltage at different integration times. converted to a computer (94) as output.

Optik proba (20) lazeri tasiyan kaynak optik fiberler (52) ve dokudan (30) geri yansiyan isigi toplayan ve fotodiyotlara (90) ileten dedektör optik fiberler (53), optik prob ön yüzeyinde (21) bir matris üzerinde bulunmaktadirlar. Optik probda (20) kullanilan fiber optik kablolarin (50) çaplari 1- 3 mm olup en yakin kaynak-dedektör çifti arasindaki merkezden-merkeze olan uzaklik 1-10 mm arasindadir. Optik prob ön yüzeyinde (21) kaynak fiber (22) ve dedektör fiber (23) konumlari görülmektedir. Optik probun (20) optik prob ön yüzeyinde (21) baglantili bulunan kaynak optik fiber (52) kaynak Optik fiber ön yüzeyinde (22) son bulmaktadir. Benzer sekilde, dedektör optik fiberler (53) de dedektör optik fiber ön yüzeyinde (23) son bulmaktadir. Bu sayede optik probun ön yüzeyinde (21) kaynak optik fiberler (52) optik proba (20) isigi tasirken, dokudan (30) geri yansiyan isigi toplayan ve fotodiyotlara (90) ileten dedektör optik fiberler (53) ile dokunun (30) temasi saglanmis olur. The light reflected back from the source optical fibers (52) and tissue (30) carrying the laser to the optical probe (20) detector optical fibers (53) that collect and transmit to the photodiodes (90) are on the matrix. Diameters of fiber optic cables (50) used in the optical probe (20) 1- 3 mm, the center-to-center distance between the nearest source-detector pair is 1-10 mm are in between. Source fiber (22) and detector fiber (23) locations on the optical probe front surface (21) is seen. The source optics attached to the optical probe front surface (21) of the optical probe (20) The fiber 52 ends at the weld Optical fiber front surface 22 . Similarly, the detector optical fibers (53) also terminate on the detector optical fiber front surface (23). In this way, the optical probe On its front surface (21) the source optical fibers (52) carry the light to the optical probe (20), while they return from the tissue (30). touch (30) with detector optical fibers (53) that collect the reflected light and transmit it to the photodiodes (90) contact is established.

Sekil 9”de kaynak optik fiberden (52) dokuya (30) gönderilen lazer (101) ve dokuda difüzyona ugradiktan sonra dokudan geri yansiyan Iazerin (102) doku içindeki temsili foton yörüngeleri (100) ve örnek olarak gösterilen 5 ayri dedektör optik fiber (53) tarafindan toplanmalari sematik olarak gösterilmektedir. Bu gösterim sadece temsili olup, kullanilan kaynak optik fiberlerin (52) ve dedektör optik fibelerin (53) sayisi degiskenlik gösterebilmekte, doku içerisindeki temsili foton yörüngeleri de bu sayi ile orantili olacak sekilde artip, azalabilmektedir. In Figure 9, the laser (101) sent from the source optical fiber (52) to the tissue (30) and the diffusion in the tissue. Representative photon trajectories in tissue (100) of Iazer (102) reflected back from tissue after exposure and their aggregation by 5 separate detector optical fibers (53) illustrated schematically. is shown. This illustration is representative only, and the source optical fibers (52) and The number of detector optic fibers (53) can vary, the representative photon in the tissue. their orbits can also increase or decrease in proportion to this number.

Sekil 9”de gösterilen temsili yapida, kaynak olarak, dokuya gönderilen lazer (101) seçilmesi halinde; kaynaga yakin olan dedektörler tarafindan toplanan dokudan geri yansiyan Iazerin (102) doku içinde girdigi derinlik küçükken, kaynak-dedektör mesafesi arttikça, lazerin yörüngelerinin doku (30) içindeki penetrasyon derinligi artmaktadir. Kaynaga yakin olan dedektörler tarafindan toplanan dokudan geri yansiyan lazerin (102) doku içinde girdigi derinlik, kaynaga uzak olan dedektörler tarafindan toplanan dokudan geri yansiyan Iazerin (102) doku içinde girdigi derinlikten her zaman daha küçüktür. Selecting the laser (101) delivered to the tissue as the source in the representative structure shown in Figure 9 in case of; Iazerin (102) reflected back from tissue collected by detectors close to the source While the depth of penetration in the tissue is small, as the source-detector distance increases, the trajectory of the laser increases. the depth of penetration within the tissue (30) increases. By detectors close to the source The depth at which the laser (102), which is reflected back from the collected tissue, enters the tissue, is the distance from the source. Iazer (102) reflected back from the tissue collected by the detectors is from the depth it enters into the tissue. is always smaller.

Bulus konusu LDOT cihazinda (10); birden fazla kaynaktan dokuya (30) lazer gönderilmekte ve lazer, dokunun (30) içinde difüzyon ile yayilip ayni yüzeyde geri dönen lazer birden fazla dedektör optik fiber (53) tarafindan toplanmakta ve fotodiyotlar (90) ile siddetleri ölçülmektedir. Ölçülen isik siddetleri geriçatim algoritmasinda kullanilarak 3D tomografik görüntü olusturulmakta ve tümörün, kitlenin konumu tespit edilmektedir. In the LDOT device (10), which is the subject of the invention; laser is sent to the tissue (30) from multiple sources and the laser, which diffuses in the tissue (30) by diffusion and returns on the same surface, has multiple detectors. are collected by the optical fiber (53) and their intensity is measured by photodiodes (90). measured By using the light intensities in the reconstruction algorithm, a 3D tomographic image is created and the location of the tumor and mass is determined.

Bulus konusu gelistirilen LDOT cihazinin (10) çalisma prensibi; - Bir diyot lazer kaynaginin (110) lazeri cihaza ileten fiber optik kablo (51) ile optik - Lazer kaynaginin (110) çikisina bagli olan ve lazeri cihaza ileten fiber optik kablo (51) ile optik seçici (61) ile kaynak optik fiberlere (52) sirasi ile yönlendirilerek optik prob ön yüzeyinde (21) kaynak optik fiber ön yüzeyi (22) ile obje üzerinde lazeri farkli konumlara iletilmesi, - Optik prob ön yüzeyinde (21)I kaynak fiberde (22) sonlanan kaynak optik fiberler (52) ile lazerin kitle/tümör teshisi yapilacak subjeye gönderilmesi, - Kitle/tümör teshisi yapilacak subj ede diiüzyona ugradiktan sonra geri yansiyan lazerin, Optik prob ön yüzeyinde (21) bulunan dedektör tiberlerde (23) konumlanan dedektör Optik fiberler (53) ile toplanmasi, - Dedektör optik fiberlerin (53), üzerinde fotodiyotlarin (90) bulundugu ana elektronik karta (70) yönlendirilmesi, - F otodiyot (90) akim çikislarinin en az bir tümdevre ile farkli integrasyon zamanlarinda gerilime çevrilmesi, dijital veriye dönüstürülmesi ve bir bilgisayara (94) aktarilmasi, - S ubje üzerinde alinan ölçümlerin kaynak-dedektör kalibrasyonunun homojen türbid bir ortamda alinan ölçüm sonucuna bölünerek yapilmasi, - “Simultaneous iterative reconstruction technique (SIRT)”, “truncated conjugate gradient (CG)” veya “truncated singular value decomposition (TSVD)” yöntemleri kullanilip, subjenin optik probun (20) altinda kalan kisminin üç boyutlu görüntüsünün (3D) olusturulmasi ve kitle/tümör varliginin ve varsa konumunun belirlenmesi, Bulusa konu yöntemde bahsedilen subje bir doku, özellikle memedir. The working principle of the LDOT device (10), which is the subject of the invention, is developed; - Optical fiber optic cable (51) that transmits the laser to the device of a diode laser source (110) - Fiber optic cable (51) connected to the output of the laser source (110) and transmitting the laser to the device with the optical selector (61) and the source optical fibers (52) by guiding the optical probe in sequence. On its front surface (21) the source optical fiber front surface (22) and the laser on the object are different. forwarding to locations - Source optical fibers (52) terminating in the source fiber (22) on the optical probe front surface (21) sending the laser to the subject to be diagnosed with a mass/tumor, - The laser reflected back after diffusion on the subject to be diagnosed with a mass/tumor, The detector located on the detector tiber (23) located on the front surface of the optical probe (21) Gathering with optical fibers (53), - Main electronics on which detector optical fibers (53) are located on photodiodes (90) routing to the card (70), - Photodiode (90) current outputs at different integration times with at least one IC converting it to voltage, converting it to digital data and transferring it to a computer (94), - The source-detector calibration of the measurements taken on the subject is a homogeneous turbid It is made by dividing the measurement result taken in the environment, - “Simultaneous iterative reconstruction technique (SIRT)”, “truncated conjugate gradient (CG)” or “truncated singular value decomposition (TSVD)” methods It is used to create a three-dimensional image of the part of the subject under the optical probe (20). (3D) creation and determination of the presence and location of the mass/tumor, if any, The subject of the method of the invention is a tissue, especially the breast.

Bulus konusu LDOT cihazinin (10) çalisma yönteminde, uygulanan kalibrasyon yöntemi ile kaynaklarin ve dedektörlerin isik gönderme ve isik toplama verimlilikleri birbirlerine normalize edilmekte ve kalibraSVOn yöntemi ile ölçüm degerleri kaynak-dedektör mesafeleri arasindaki degisimlerden bagimsiz hale getirilmektedir. Kalibrasyon yapilan verilerin veya logaritmalar, pertürbasyon verisi olarak geriçatim algoritmalarinda kullanilarak 3D görüntüler olusturulmaktadir. Optik olarak homojen bir ortam referans alinarak doku üzerinde alinan ölçümlerde pertürbasyon degerlerinin hesaplanmasi ile doku kan dagilimina bagli olarak 3D görüntü olusturulmaktadir. In the working method of the LDOT device (10), which is the subject of the invention, with the applied calibration method. The light transmitting and light gathering efficiencies of sources and detectors are normalized to each other. and the measurement values between the source-detector distances with the kalibraSVOn method. is made independent of changes. The calibrated data or logarithms, 3D images as perturbation data used in reconstruction algorithms is created. Taken on tissue with reference to an optically homogeneous medium Calculation of perturbation values in measurements and 3D results depending on tissue blood distribution. image is created.

LDOT cihazi (10) çalistiginda sirasi ile her bir kaynak optik fiberden (52) dokuya (30) lazer gönderilirken, bütün dedektör optik fiberler (53) doku (30) içinde difüzyona ugradiktan sonra dokudan geri yansiyan Iazeri (102) toplamakta ve fotodiyotlara (90) iletmektedir. LDOT cihazinin (10) sahip oldugu ana elektronik karti (70) üzerinde bulunan fotodiyot (90) Çikisi, en az iki adet anal0g dijital çevirici DDC232 tümdcvrelere (71) yonlendirilmektedir. Anahtarlar, integral alici devreler, analog dijital çeviriciler (tercihen 20 bitlik) ve tekilleyiciler DDC232 tümdevrelerin (71) üzerinde bulunmaktadirlar. DDC232 tümdevre (71) içerisinde her bir fotodiyot için 2 adet integral alici devre bulunmaktadir. Bu integral alici devreler sürekli zamanli çalisabilen akim gerilim çeviricileridir. Integrasyon zamani 1-900 ms arasinda degismektedir. Her bir dedektör için farkli integrasyon zamanlari kullanilmaktadir. Veri kaydi ve DDC232 tümlesik devrelerin (71) kontrolü bir mikroislemci (72) üzerinde yapilmaktadir. Yakin kaynak-dedektör komsuluklari için ölçüm degerlerinin doyuma (saturasyona) gitmedigi küçük integrasyon zamani, uzak kaynak-dedektör çiftleri için ise yeterince yüksek degerde bir sinyal alabilmek için yüksek integrasyon zamanlari kullanilmaktadir. Bu sekilde sistemin veri toplama dinamik araligi arttirilmaktadir. Tablo 27de devre karti akim/ güç ölçüm degerleri verilmektedir. When the LDOT device (10) is operating, laser from each source optical fiber (52) to the tissue (30) in turn while all detector optic fibers (53) have diffused through the tissue (30). collects the laser (102) reflected back from the tissue and transmits it to the photodiodes (90). of the LDOT device (10) The photodiode (90) Output on the main electronic board (70) has at least two The ana0g digital converter DDC232 is directed to the ICs (71). Switches, integrator circuits, analog to digital converters (preferably 20 bits) and deduplicators DDC232 ICs (71) are on it. 2 integrals for each photodiode in the DDC232 integrated circuit (71) There is a receiving circuit. These integrator circuits can operate in continuous time current voltage are translators. Integration time varies between 1-900 ms. different for each detector. integration times are used. Data logging and control of DDC232 integrated circuits (71) It is done on a microprocessor 72. Measurement for close source-detector neighborhoods small integration time when the values do not go to saturation, remote source-detector pairs, high integration times are required to receive a sufficiently high-value signal. is used. In this way, the data collection dynamic range of the system is increased. Table 27 circuit board current/power measurement values are given.

Tablo 2. Devre karti akim/ güç ölçümleri Ölçüm ani Ölçülen Akim (mA) Hesaplanan Güç (mW) Bilgisayara bagli haberlesme var 90 mA 1081 .8mW Bilgisayara bagli ve ölçüm yapiyor 90.5mA 1087.81mW Cihazin Kalibrasyonu Kalibrasyon amaçli, homojen türbid bir ortamda ölçüm alinmaktadir, Mkai. Meme üzerinde alinan ölçüm, Mmeme, homojen türbid ortam üzerinde alinan ölçüme bölünerek her bir kaynak-dedektör çifti için kalibrasyon yapilmaktadir (R: Meme/ Mkai). Table 2. Circuit board current/power measurements Instantaneous Measured Current (mA) Calculated Power (mW) There is communication connected to the computer 90 mA 1081 .8mW Connected to computer and measuring 90.5mA 1087.81mW Calibration of the Device Measurement is taken in a homogeneous turbid environment for calibration purposes, Mkai. Taken on the breast each source-detector by dividing the measurement, Mme, by the measurement taken on a homogeneous turbid medium. calibration is performed for the pair (R: Nozzle/ Mkai).

Kalibre edilen meme ölçümlerinden tomografik görüntü olusturmak için lineer geriçatim (recunstruction) teknikleri kullanilmaktadir. Bu tekniklerde her bir kaynak dedektör çifti için pertürbasyon verilerinin hesaplanmasi gerekmektedir. Pertürbasyon verisi, memeden tümör yok iken alinan ölçüm ile tümör var iken alinan ölçüm arasindaki farktir. Memeden bu sekilde ardisik iki ölçüm alinamayacagi için pertürbasyonun farkli bir sekilde yaklasik olarak hesaplanmasi gerekmektedir. Söz konuSu bulusta, kalibrasyon verileri dogrudan pertürbasyon degerleri olarak kullanilmaktadir. Bu degerler; tümör olan memede alinan ölçümlerin optiksel olarak homojen olan bir ortama göre degisimini verir. Elde edilen pertürbasyon verileri diû'izyon denkleminden Rytov yaklasimi ile elde edilen esitliginde kullanilmaktadir. Burada y Mx] formatinda pertürbasyon verisi, M toplam ölçüm sayisidir. A agirlik matrisi olup boyutu MXN dir. Burada N, görüntüsü olusturulan hacim içindeki voksel sayisidir. Esitlikteki x ise her bir vokselin isigi zayiflatma (attenuation coefficient) katsayisinin arka plana göre farki olup boyutu le ”dir. Linear reconstruction to generate tomographic images from calibrated breast measurements (recunstruction) techniques are used. In these techniques, for each source detector pair, perturbation data need to be calculated. Perturbation data, no tumor from breast It is the difference between the measurement taken when the tumor is present and the measurement taken when the tumor is present. From the breast in this way consecutively approximate calculation of perturbation in a different way since two measurements cannot be taken required. In the present invention, the calibration data is directly referred to as perturbation values. is used. These values are; optically homogeneous measurements of the breast with tumor gives its variation according to an environment. The obtained perturbation data are derived from the diû'ision equation by Rytov. obtained by the approach used in equality. where y is the perturbation data in the format Mx], M is the total measurement is the number. A is the weight matrix and its size is MXN. where N is in the rendered volume. is the number of voxels. The x in the equation is the attenuation coefficient of each voxel. coefficient is the difference with the background and its size is le”.

Esitlik 1, açik formunda asagidaki gibi ifade edilmektedir: ây(rsl,rd1)l WLM Wi,i;2 - - - -Wi.i,n l &ua (il il öv(r51, id; l Wi`2;1 Wi,2;2 - - - 'Wl.1,n 51%(er Öl/(rsi › rdjlJ Wi,l;l Wi,l;2 - - - -Wi,i.nJ 5Ha(rn ll B urada öy(r51, rdz) birinci kaynaktan gönderilen ve ikinci dedektör tarafindan toplanan lazerin doku (30] içindeki absorpsiyonundan dolayi olusan pertürbasyon Ölçümüdür. Ortadaki matrisin ikinci sirasinda W1,2;1 , birinci kaynaktan gönderilen, ikinci dedektör tarafindan toplanan isigin agirlik matrisinin birinci vokselindeki degeri, ve öua(r2l, I'2 konumundaki vokselin arka plana göre absorpsiyon katsayisindaki farkidir. Burada arka plan kalibrasyon amaçli kullanilan optiksel olarak homojen opak ortam olup Mal ve MS' degerleri ile tanimlanmaktadir. Esitlik 2°deki agirlik matrisi difüzyon denkleminin Rynov yaklasimi ile lineerlestirilmesi ile elde edilmektedir. Kullanilan lazer kaynaginin (110) emisyon dalga boyu 810 nm olup bu dalga boyundaki isigin yag ve su tarafindan absorpsiyonu düsük, ancak kan tarafindan absorpsiyonu yüksektir. Tümör olan bölgede kanlanmanin artmasindan dolayi, isigin absorpsiyonu artmakta ve fotodiyotlar (90] tarafindan ölçülen siddetleri azalmaktadir. Esitlik 2 denkleminin çözülmesi, her bir vokseldeki absorpsiyon katsayisindaki degisim olan öua(r) degerlerinin hesaplanmasi ile yani öuaû') absorpsiyon degerlerinin hesaplanmasi ile olmaktadir. Bunun için “simultaneous iterative reconstruction technique (SIRT)”, “truncated conjugate gradient (CG)” ve “truncated singular value decomposition (TSVD)” yöntemleri kullanilarak memenin probun altinda kalan kisminin üç bOyutlu görüntüsü (3D) olusturulmakta ve tümörün konumu belirlenmektedir. Equation 1 is expressed in its explicit form as follows: ây(rsl,rd1)l WLM Wi,i;2 - - - -Wi.i,n l &ua (il il öv(r51, id; l Wi`2;1 Wi,2;2 - - - 'Wl.1,n 51%(er Die/(rsi › rdjlJ Wi,l;l Wi,l;2 - - - -Wi,i.nJ 5Ha(rn ll Here y(r51, rdz) is the texture of the laser sent from the first source and collected by the second detector. (30] perturbation measurement due to absorption in. The second matrix in the middle during W1,2;1 is the weight of the light sent from the first source and collected by the second detector. matrix at the first voxel, and the voxel at position öua(r2l, I'2 relative to the background is the difference in the absorption coefficient. Here, the background is optically used for calibration purposes. It is a homogeneous opaque medium and is defined by the values of Mal and MS'. Equation 2° weight matrix It is obtained by linearizing the diffusion equation with the Rynov approximation. The laser used The emission wavelength of the source (110) is 810 nm, and the light at this wavelength is deflected by oil and water. Its absorption is low, but its absorption by blood is high. in the tumor area Due to the increased blood supply, the absorption of light is increased and it is absorbed by the photodiodes (90]. measured intensity decreases. Solving the equation 2, the absorption in each voxel by calculating the values of eu(r) which is the change in the coefficient of absorption by calculating their values. For this, “simultaneous iterative reconstruction” technique (SIRT)”, “truncated conjugate gradient (CG)” and “truncated singular value” 3 of the breast under the probe using decomposition (TSVD)” methods. A dimensional image (3D) is created and the location of the tumor is determined.

Bulusa konu LM DOT cihazin (10] Optik prob (20) üzerindeki kaynak-dedektör mesafelerinin 0.5- 7 cm arasinda olmasi nedeni ile meme yüzeyinden itibaren 2.5- 3 cm derinlige kadar dokudaki kanin uzaysal dagilimina bakilabilmektedir.The distance between the source and the detector on the optical probe (20) of the LM DOT device (10], which is the subject of the invention, is 0.5- Since it is between 7 cm and 2.5-3 cm deep from the breast surface, spatial distribution of blood can be observed.

Claims (15)

ISTEMLER Doku (30) tümörlerinin teshisinde ve konumunu belirlemede kullanilmak üzere geri yansima geometrisinde çalisan bir lazer difîiz optik tomografi (LDOT) cihazi (10) olup özelligi; dokuya isik gönderilmesi için bir diyot lazer kaynagi(l 10); doku (30) ile LD OT cihazinin (10) temasini saglayan optik prob (20), prob ön yüzeyinde (21) konumlanan ve laZEri optik proba (20) tasiyan ve dokudan (30) geri yansiyan lazeri toplayan fiber Optik kablolar (50), optik seçiciyi (61) kontrol eden, üzerinde tümdevre (71) ve mikroislemci (73) bulunan ana elektronik karti (70), diyot lazer kaynagia (110) bagli olan optik fiber kabloyu (51) kaynak olarak kullanilan optik fiber kablolara (52) sirasi ile yönlendiren optik seçici (61),optik seçici step motoru (40)I optik seçiciyi (61) konumlandiran alüminyum blok (60)i fotodiyot (90) akimini farkli integrasyon zamanlari için gerileme çeviren ve içinde analog dijital dönüstürücüsü olan en az bir tümdevre (71), tümdevreyi (71) kontrol eden ve elektronik ana kart (70) ile bilgisayar (94) arasinda iletisimi saglayan mikroislemci (73), isigin siddetini ölçerek sensör olarak kullanilan fotodiyotlar (90), bilgisayar (94), baglanti kablosu, bilgisayar monitörü içermesidir. . REQUESTS A laser diffuse optical tomography (LDOT) device (10) working in retroreflection geometry to be used in the diagnosis and location determination of tissue (30) tumors, and its feature is; a diode laser source (10) for delivering light to the tissue; Optical probe (20) that provides the contact of the tissue (30) with the LD OT device (10), optical fiber cables (50) positioned on the probe front surface (21) and carrying the laser to the optical probe (20) and collecting the laser reflected back from the tissue (30), The main electronic board (70) that controls the optical selector (61) and has the integrated circuit (71) and microprocessor (73) on it, the optical fiber cable (51) connected to the diode laser source (110) and the optical fiber cables (52) used as the source. with the optical selector (61), optical selector stepper motor (40), aluminum block (60) positioning the optical selector (61) and at least one integrated circuit (with analog to digital converter) 71), microprocessor (73) that controls the integrated circuit (71) and provides communication between electronic motherboard (70) and computer (94), photodiodes (90) used as sensors by measuring the intensity of light, computer (94), connection cable, computer monitor it contains. . Istem lie göre bir lazer difîiz optik tomografi cihazi (10) olup özelligi; dedektör fiber optik kablolarin (53) alüminyum blogun (80) sahip oldugu oyuklara (81) konumlanmis olmasidir. It is a laser diffuse optical tomography device (10) according to the claim, and its feature is; detector fiber optic cables (53) are positioned in the cavities (81) of the aluminum block (80). Istem lie göre bir lazer difüz optik tomografi cihazi (10) olup özelligi; fiber optik kablolarin (50) bir kisminin, lazeri optik proba (20) tasiyan kaynak optik fiberler (52) olmasidir. . It is a laser diffuse optical tomography device (10) according to the request, and its feature is; Some of the fiber optic cables (50) are source optical fibers (52) that carry the laser to the optical probe (20). . Istem l'e göre bir lazer diiî'iz optik tomografi cihazi (10) olup özelligi; fiber optik kablolarin (50) bir kisminin, dokuda (30) difüzyona ugradiktan sonra geri dönen lazeri toplayarak sensör olarak kullanilan ve ana elektronik kart (70) üzerinde konumlanan fotodiyotlara (90) ileten dedektör optik fiber (53) olmasidir. . It is a laser dental optical tomography device (10) according to claim 1, and its feature is; Some of the fiber optic cables (50) are detector optical fiber (53) that collects the laser that returns after diffusion in the tissue (30) and transmits it to the photodiodes (90) located on the main electronic board (70) and used as a sensor. . Istem 4”e göre bir lazer difüz optik tomografi cihazi (10) olup özelligi; dedektör optik fiberlerin fotodiyotlar üzerindeki alüminyum bloktaki (80) oyuklara (81) tutturulan uçlar içermesidir. . It is a laser diffuse optical tomography device (10) according to claim 4, and its feature is; the detector optic fibers contain ends that are attached to the cavities (81) in the aluminum block (80) on the photodiodes. . Istem l”e göre bir lazer difüz optik tomografi cihazi (10) olup özelligi; ana elektronik kart (70) üzerinde sensör olarak kullanilan fotodiyotlar (90) içermesidir. . It is a laser diffuse optical tomography device (10) according to claim 1, and its feature is; It contains photodiodes (90) used as sensors on the main electronic board (70). . Istem 6°ya göre bir lazer difuz optik tomografi cihazi (10) olup özelligi; fotodiyotlarin (90) oyuklara (81) konumlandirilmis olmasidir. It is a laser diffuse optical tomography device (10) according to claim 6, and its feature is; the photodiodes (90) are positioned in the cavities (81). Istem 1”e göre bir lazer difüz optik tomografi Cihazi (10) olup özelligi; ana elektronik kartin (70) üzerinde en az bir adet DDC232 tümdevreye (71) içermesidir. It is a laser diffuse optical tomography device (10) according to claim 1 and its feature is; it contains at least one DDC232 integrated circuit (71) on the main electronic board (70). Istem l”e göre bir lazer diiî'iz optik tomografi cihazinin (10) çalisma yöntemi olup özelligi; Bir diyot lazer kaynaginin (110) Iazeri cihaza ileten fiber optik kablo (51) ile optik Lazer kaynaginin (l 10) çikisina bagli olan ve lazeri cihaza ileten fiber optik kablo (51) ile optik seçici (61) ile kaynak optik fiberlere (52) sirasi ile yönlendirilerek optik prob ön yüzeyinde (21) kaynak optik fiber ön yüzeyi (22) ile obje üzerinde Optik prob ön yüzeyinde (21)' kaynak fiberde (22) sonlanan kaynak optik fiberler (52) ile lazerin kitle/tümör teshisi yapilacak subjeye gönderilmesi, Kitle/tümör teshisi yapilacak subjede diûizyona ugradiktan sonra geri yansiyan dedektör optik iiberler (5 3) ile toplanmasi, Dedektör optik fiberlerin (53), üzerinde fotodiyotlarin (90) bulundugu ana elektronik karta (70) yönlendirilmesi, Fotodiyot (90) akim çikislarinin en az bir tümdevre ile farkli integrasyon zamanlarinda gerilime çevrilmesi, dijital veriye dönüstürülmesi ve bir bilgisayara (94) aktarilmasi, Subje üzerinde alinan ölçümlerin kaynak-dedektör kalibrasyonunun homojen türbid bir ortamda alinan ölçüm sonucuna bölünerek yapilmasi, gradient (CG)” veya “truncated singular value decomposition (TSVD)” yöntemleri kullanilip, subjenin optik probun (20) altinda kalan kisminin üç boyutlu görüntüsünün (3D) olusturulmasi ve kitle/tümör varliginin ve varsa konumunun belirlenmesi, islem adimlarini içermesidir. It is the working method of a laser dental optical tomography device (10) according to claim 1, and its feature is; A fiber optic cable (51) that transmits the laser of a diode laser source (110) to the device and a fiber optic cable (51) that is connected to the output of the optical laser source (l 10) and transmits the laser to the device, and the optical selector (61) and the source to the optical fibers (52) Sending the laser to the subject to be diagnosed mass/tumor with the source optical fibers (52) ending in the source fiber (22) on the optical probe front surface (21) on the object with the source optical fiber front surface (21) on the optical probe front surface (21) respectively , Collecting the detector optical fibers (5 3) after the mass/tumor is dilution in the subject to be diagnosed, Directing the detector optical fibers (53) to the main electronic board (70) on which the photodiodes (90) are located, Photodiode (90) is the most important of the current outputs. Converting to voltage at different integration times with a small integrated circuit, converting to digital data and transferring to a computer (94), Source-detector calibration of the measurements taken on the subject is carried out in a homogeneous turbid environment. It is made by dividing the measurement result, using gradient (CG)” or “truncated singular value decomposition (TSVD)” methods, creating a three-dimensional image (3D) of the part of the subject under the optical probe (20), and determining the presence of mass/tumor and its location, if any, It contains the process steps. Istem 9”a göre bir yöntem olup özelligi; subjenin bir doku olmasidir. It is a method according to claim 9 and its feature is; the subject is a texture. Istem 10`a göre bir yöntem olup özelligi; dokunun meme olmasidir. It is a method according to claim 10 and its feature is; tissue is breast. Istem 9'a göre yöntem olup özelligi; uygulanan kalibrasyon yöntemi ile kaynaklarin ve dedektörlerin isik gündeme ve isik toplama verimliliklerinin birbirlerine normalize edilmesidir.It is a method according to claim 9 and its feature is; It is the normalization of the light agenda and light collection efficiencies of sources and detectors to each other with the applied calibration method. 13. Istem 95a göre yöntem olup özelligi; uygulanan kalibrasyon yöntemi ile ölçüm degerlerinin kaynak-dedektör mesafeleri arasindaki degisimlerden bagimsiz hale getirilmesidir.13. It is a method according to claim 95, and its feature is; is to make the measurement values independent of the changes between the source-detector distances with the applied calibration method. 14. Istem 9`a göre yöntem olup özelligi; kalibrasyon yapilan verilerin veya logaritmalarinin, 5 pertürbasyon verisi olarak geriçatim algoritmalarinda kullanilarak 3D görüntünün olusturulmasidir.14. It is a method according to claim 9 and its feature is; It is the creation of a 3D image by using the calibrated data or logarithms as 5 perturbation data in reconstruction algorithms. 15. Istem 9”a göre yöntem olup özelligi; optik olarak homojen bir ortamin referans alinarak meme üzerinde alinan ölçümlerde pertürbasyon degerlerinin hesaplanmasi ile 10 memedeki kan dagilimina bagli olarak 3D görüntünün olusturulmasidir.15. It is a method according to claim 9 and its feature is; It is the creation of a 3D image based on the blood distribution in 10 breasts by calculating the perturbation values in the measurements taken on the breast with reference to an optically homogeneous environment.
TR2018/20052A 2018-12-21 2018-12-21 A LASER DIFFUSE OPTICAL TOMOGRAPHY DEVICE WORKING IN REFLECTION GEOMETRY TR201820052A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TR2018/20052A TR201820052A1 (en) 2018-12-21 2018-12-21 A LASER DIFFUSE OPTICAL TOMOGRAPHY DEVICE WORKING IN REFLECTION GEOMETRY
EP19899572.2A EP3897361A4 (en) 2018-12-21 2019-06-21 A laser diffuse optical tomography device used in back projection geometry
PCT/TR2019/050485 WO2020130969A1 (en) 2018-12-21 2019-06-21 A laser diffuse optical tomography device used in back projection geometry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2018/20052A TR201820052A1 (en) 2018-12-21 2018-12-21 A LASER DIFFUSE OPTICAL TOMOGRAPHY DEVICE WORKING IN REFLECTION GEOMETRY

Publications (1)

Publication Number Publication Date
TR201820052A1 true TR201820052A1 (en) 2020-07-21

Family

ID=71101518

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2018/20052A TR201820052A1 (en) 2018-12-21 2018-12-21 A LASER DIFFUSE OPTICAL TOMOGRAPHY DEVICE WORKING IN REFLECTION GEOMETRY

Country Status (3)

Country Link
EP (1) EP3897361A4 (en)
TR (1) TR201820052A1 (en)
WO (1) WO2020130969A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112986188B (en) * 2021-01-20 2021-12-17 中国农业大学 Female rabbit early pregnancy sign detection device and method based on diffusion spectrum

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5694938A (en) * 1995-06-07 1997-12-09 The Regents Of The University Of California Methodology and apparatus for diffuse photon mimaging
AU7829500A (en) 1999-09-17 2001-04-17 General Hospital Corporation, The Calibration methods and systems for diffuse optical tomography and spectroscopy
AU2001262937A1 (en) 2000-05-09 2001-11-20 Imaging Diagnostic Systems, Inc. Medical optical imaging scanner using multiple wavelength simultaneous data acquisition for breast imaging
US7616984B2 (en) * 2002-04-06 2009-11-10 National Institutes Of Health (Nih) Modification of the normalized difference method for real-time optical tomography
WO2008039988A2 (en) * 2006-09-28 2008-04-03 The Florida International University Board Of Trustees Hand-held optical probe based imaging system with 3d tracking facilities
IT1396102B1 (en) 2009-10-21 2012-11-16 Ask Ind Societa Per Azioni BELT TRANSDUCER.

Also Published As

Publication number Publication date
EP3897361A4 (en) 2022-01-19
WO2020130969A1 (en) 2020-06-25
EP3897361A1 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
US20240057883A1 (en) Deep tissue flowmetry using diffuse speckle contrast analysis
US8326406B2 (en) Method and system for free space optical tomography of diffuse media
US5625458A (en) Method and system for imaging objects in turbid media using diffusive fermat photons
US6205353B1 (en) Time-resolved optical backscattering tomographic image reconstruction in scattering turbid media
CA2620949C (en) Method and apparatus for optical image reconstruction using contour determination
US9709733B2 (en) Hand-held optical probe based imaging system with 3D tracking facilities
JP7082383B2 (en) Inspection equipment and inspection method that combines tactile sensor and optical tomography
CN101612034B (en) Time-resolved measurement system and method for reconstructing optical parameters of turbid media
Ripoll et al. Imaging scattering media from a distance: theory and applications of noncontact optical tomography
JPH05261109A (en) Optical ct imaging system
KR20130088777A (en) Object information acquiring apparatus
Hoogenraad et al. First results from the Philips optical mammoscope
TR201820052A1 (en) A LASER DIFFUSE OPTICAL TOMOGRAPHY DEVICE WORKING IN REFLECTION GEOMETRY
Turner et al. Inversion with early photons
JP5420163B2 (en) Biological measuring device
CN105979874A (en) Apparatus for measuring condition of object
Zhang et al. Experimental comparison of using continuous-wave and frequency-domain diffuse optical imaging systems to detect heterogeneities
JP2005328916A (en) Image reconstruction method
Sahu et al. Assessment of a fluorescence-enhanced optical imaging system using the Hotelling observer
Kini et al. Reconstruction of embedded absorbers in random media with applications in noninvasive 3D imaging of skin lesions
Pichette et al. Imaging diffuse photon density wavefront speeds with early photons arrival times