TR201722774A2 - BIOGRAPER COMPATIBLE WITH 3D PRINTERS TO BE USED IN TISSUE AND ORGAN PRODUCTION - Google Patents

BIOGRAPER COMPATIBLE WITH 3D PRINTERS TO BE USED IN TISSUE AND ORGAN PRODUCTION Download PDF

Info

Publication number
TR201722774A2
TR201722774A2 TR2017/22774A TR201722774A TR201722774A2 TR 201722774 A2 TR201722774 A2 TR 201722774A2 TR 2017/22774 A TR2017/22774 A TR 2017/22774A TR 201722774 A TR201722774 A TR 201722774A TR 201722774 A2 TR201722774 A2 TR 201722774A2
Authority
TR
Turkey
Prior art keywords
stepper motor
cell
injector
cells
tissue
Prior art date
Application number
TR2017/22774A
Other languages
Turkish (tr)
Inventor
Türker Şener Leyla
Original Assignee
Univ Istanbul Rektoerluegue
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Istanbul Rektoerluegue filed Critical Univ Istanbul Rektoerluegue
Priority to TR2017/22774A priority Critical patent/TR201722774A2/en
Publication of TR201722774A2 publication Critical patent/TR201722774A2/en

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Tıp alanında, vücuda yerleştirilen diş, çene, kalp, kemik gibi dokuların vücut dışında bir biyoyazıcı kullanılarak üretilmesine yönelik olan buluş, motorlar (M1, M2, M3, M4; M5, M6, M7, M8, M9), dönen tabla (A16), biyouyumlu materyalin bulunacağı hazne (A1), hücre ve biyouyumlu malzemenin çıkışını sağlayacak iğneler, haznede (A1) bulunan hücrelerin yapışmasını sağlayacak titreşim veya karıştırma aparatı (A4), hücrelerin sayısını tespit edecek sensör sistemi, hücre ve biyouyumlu malzemenin ekiminin yapılacağı açı ve bölgeye yönelik çok eksenli olarak hareket edebilen hücre yerleşimine olanak sağlayan nozzle a sahip tertibattan oluşmaktadır. Bu buluş, doku taslağını, doku yapısını kişiye özel kusurlar için veya tüm dokuyu oluşturmak bu taslağı yazdırmak için bir biyoyazıcıyla ilgilidir. Bu buluş, aynı zamanda, doku yapıları oluşturmak için ve bir hastaya ait olan kusurların doku yapılarını baskı bioyazıcı kullanma yöntemleri ile de ilgilidir.In the field of medicine, the invention relates to motors (M1, M2, M3, M4; M5, M6, M7, M8, M9), rotating table (A16) for the production of tissues such as teeth, jaws, hearts and bones placed on the body by using an external biomass. , biocompatible material containing the chamber (A1), the cell and the needles to provide biocompatible material output, the cells in the chamber (A1) to ensure the adhesion of the vibration or mixing apparatus (A4), the number of cells to detect the sensor system, cell and biocompatible material It consists of a device with nozzle that allows multi-axis movable cell placement. SUMMARY OF THE INVENTION The present invention relates to a biostrinter to print the outline of the tissue, the tissue structure for individual defects or to form the entire tissue. The present invention also relates to methods for using tissue printers to generate tissue structures and to suppress tissue structures of defects belonging to a patient.

Description

TEKNIK ALAN Bu bulus, yeni bir otomatik hücreden doku yapilari olusturmak üzere hazirlanmis bir kalip üzerine istenen hücrenin istenilen bölgesine ekilmesini saglayacak, hücre katmanlarini iletisim düzenegi birden fazla hücre tipleri ile es zamanli veya sirali olarak çalisabilen düzenegi olan, yapisan özellikteki hücrelerin bulundugu kaba yapismamasini saglayacak bir sisteme sahip, motorlar araciligi ile çalisan ekimi yapilacak hücreyi yasam ortami içerisinde hacim ve hücre tayini yaparak ekleyen; dokunun kendisini ya da bir parçasini yazdirmaya yönelik üç boyutlu bir doku yapilari hazirlayan biyoyazici ile ilgilidir. TECHNICAL FIELD This invention is prepared to create tissue structures from a new automated cell. it will ensure that the desired cell is planted on a mold in the desired area, the cell Layers of communication mechanism with multiple cell types simultaneously or sequentially A container containing cells with adherent properties, with a mechanism that can work as The sowing that works by means of motors, has a system that will prevent it from sticking. adding the cell to be made in the living environment by determining the volume and cell; a three-dimensional texture for printing the texture itself or part of it It is about the bioprinter that prepares the structures.

Bu bulus, doku taslagini, doku yapisini kisiye özel kusurlar için veya tüm dokuyu olusturmak bu taslagi yazdirmak için bir biyoyaziciyla ilgilidir. Bu bulus, ayni zamanda, doku yapilari olusturmak için ve bir hastaya ait olan kusurlarin doku yapilarini baski bioyazici kullanma yöntemleri ile de ilgilidir. 3 boyutlu bioyazici, katman-katman biyolojik malzeme, biyokimyasal ve fonksiyonel parçalarin yerlestirilmesini uzaysal konumlandirma ile canli hücreler, kesin uygulanacak noktasina ekimi yapilabilmekte ve dolayisiyla 3 boyutlu yapilar imal edilebilmektedir. Biyomimikligi, özerk öz-montaj ve mini doku yapi taslari dahil 3 boyutlu biyoyazici için çesitli yaklasimlar vardir. Bulus, biyolojik doku ve organ fonksiyonlarinin klinik restorasyonu için uygun mekanik özelliklere sahip 3 boyutlu fonksiyonel insan yapilari imal etmek üzere gelistirilmistir. Önemli bir zorluk biyolojik materyallerin yasayan hassas baski erimis plastik ve metal yazdirmak için tasarlanmis teknolojilere adapte etmektir. Bununla birlikte, biyolojik fonksiyonunu saglayacak doku ve organlar için yeterli çözünürlükte hücre disi matris (ECM) bilesenleri ve birden fazla hücre tiplerinin karmasik mikro-mimari yeniden etmektir. This invention can be used to remove tissue outline, tissue structure for individual defects or whole tissue. Creating it takes a bioprinter to print this draft. This invention is the same At the same time, to create tissue structures and tissue defects belonging to a patient It is also related to the methods of using print bioprinters of their structures. 3D bioprinter, layer-by-layer biological material, biochemical and functional living cells with spatial positioning, precise placement of parts It can be planted at the point where it will be applied and therefore 3D structures can be produced. can be achieved. 3 including biomimicry, autonomous self-assembly and mini tissue building blocks There are several approaches to a one-dimensional bioprinter. Invention, biological tissue and organ 3D with suitable mechanical properties for clinical restoration of functional It was developed to manufacture functional human structures. A major challenge is biological For precision printing molten plastic and metal printing on living materials to adapt to the designed technologies. However, its biological function Extracellular matrix (ECM) with sufficient resolution for tissues and organs to provide is to reconstruct the complex micro-architecture of components and multiple cell types.

TEKNIGIN BILINEN DURUMU 3D (3 Boyutlu) yazicilar icat edildigi zamandan günümüze kadar 3 boyutlu baski teknolojisinde çigir açtilar. Hemen hemen her alanda kullanilmak üzere ürünlerin baskisinin alindigi bu cihazlardan artik organ baskisi almakta mümkün hale geldi. KNOWN STATE OF THE TECHNIQUE 3D printing from the time 3D printers were invented to the present revolutionized technology. Products for use in almost every field It has now become possible to take organ pressure from these devices, where pressure is taken.

Tabi baski malzemesi de çok daha önem arz etmektedir. Gün geçtikçe daha da önem kazanan ve insanlarin daha çok ilgisini çeken 3 boyutlu yazici teknolojisi hizla gelismeye devam ediyor. Bu gelismelerin bir ucu da doku ve organ üretimidir. Of course, the printing material is also much more important. More and more day by day 3D printer that gains importance and attracts more attention of people technology continues to evolve rapidly. One end of these developments is tissue and organ. production.

Arastirmacilar 3 boyutlu bio-yazici kartusu içindeki hücre ve benzeri bio-materyallerle sagliyor. Örnegin 3 boyutlu yazici sayesinde bir çift insan kulagi çikarabilmek için osteosit kullaniyor. Üç boyutlu baski islemi, canli hücrelerin hassas konumlandirilmasiyla karmasik biyolojik yapilarin (doku ve organ) katman katman olusturulmasindan ileri gelmektedir. 3 boyutlu yazicilarda mürekkep yerine hücreler kullanilmaktadir. 3 boyutlu yaziciyla kemik ve kikirdak dokusu üretmekte en büyük gelisme ise kafatasi protezi baskisi almak; ilk olarak hastanin kafatasinin taranmasiyla basliyor. Dijital ortamdaki taranma tamamlandiktan sonra yazici kafatasi modelini en ufak ayrintisina uyacak sekilde kaliba döküyor. Bu sekilde üretilen kafatasi proteziyle hastanin kafatasinin yüzde 75'i onarilmis oluyor. Researchers are working with cells and similar biomaterials in a 3D bio-printer cartridge. it provides. For example, in order to make a pair of human ears thanks to a 3D printer, using osteocytes. The three-dimensional printing process allows living cells to be sensitive. layer by layer of complex biological structures (tissue and organ) due to its creation. Cells instead of ink in 3D printers is used. The biggest improvement in producing bone and cartilage tissue with a 3D printer is the skull. printing the prosthesis; It begins with scanning the patient's skull first. Digital After the scan on the media is complete, you can map the print skull model to the smallest detail. molds to fit. With the skull prosthesis produced in this way, the patient's 75 percent of the skull is repaired.

Bulusun Çözümünü Amaçladigi Teknik Problemler Kontrollü sekilde hücreleri ekmek ve doku veya doku parçasi elde etmek amaçli olan bulusta, bilgisayar kontrollü olarak 3 boyutlu x, y ve 2 eksenlerinde hareket kontrollü yazici basligi araciligi ile biyo uyumlu kalip yapi olusturulduktan sonra bu biyo uyumlu kalip üzerinde istenilen bölgeye Istenilen hücrenin enjekte edilmesi gerçeklestirilebilmektedir. Yüksek verimlilikle çalisan bir 3 boyutlu biyoyazici ile doku modellerinin gelistirilmesinin uygulamalarinin yani sira ilaç kesfi ve toksikoloji çalismalari da yapilabilir. Biyo-baski, 3b baski isleminin, canli hücrelerin hassas konumlandirilmasiyla, kompleks biyolojik yapilarin (doku, organ) katman katman olusturulmasidir. Biyoyazicilar ile yapilacak kök hücre çalismalari için scaffold (doku iskelesi) kullanilir. Yapiya destek saglamasi, hücrelere tutunacaklari yüzeyi saglamasi ve seklini belirlemek üzere bu doku iskelesi olusturulur. Bu scaffold yani yapi iskeleleri üretiminden sonra üzerine kök hücre ekimi yapilabilecek ana yapilar elde edilmis olur. Technical Problems That the Invention Aims to Solve For the purpose of planting cells in a controlled manner and obtaining tissue or a piece of tissue motion in 3D x, y and 2 axes with computer control. After the biocompatible mold structure has been created via the controlled printhead, this Injecting the desired cell into the desired area on the biocompatible mold can be realized. With a high-throughput 3D bioprinter drug discovery and toxicology as well as applications in the development of tissue models work can also be done. Bio-printing, 3d printing process, precision of living cells layer by layer of complex biological structures (tissue, organ) is to be created. scaffold for stem cell studies with bioprinters (tissue scaffold) is used. It provides support to the structure, the surface on which they will attach to the cells. This tissue scaffold is created in order to determine its supply and shape. So this is scaffold The main structures on which stem cell transplantation can be made after the production of scaffolds it is obtained.

Tablanin da dönebilir olmasi ve hücrelerin bulundugu enjeksiyon sisteminin de hareketli olmasi araciligi ile 5 eksenli bir sistemdir. Hücre ekimi kontrollü olarak biyo uyumlu kalip yapi üzerine istenilen bölgesine saglanacaktir. Kalip hazirlanip istenilen bölgesine istenilen açida istenilen sayida ve hacimde hücre eklenebilmesinin yani sira, biyouyumlu malzeme ile hücrelerin eszamanli olarak baska bir igneden püskürtülmesi sayesinde hücreler bilgisayarda tasarlanan doku veya organ modeline uygun bir sekilde üretilir. Hücre ekimini saglayacak olan kafanin dönebiliyor olmasi hücrenin istenilen bölgede ekimini gerçeklestirmemize olanak saglayacaktir. Tabanda bulunan döner tabla ile biyo uyumlu kaliba istedigimiz açida ve istedigimiz bölgesine hücre ekilebilecektir. Farkli hücre soylari farkli tüplerde bulunabilecek ve bunlar enjeksiyon saglayacak kisma adapte olacaktir. Böylece biyo uyumlu yapinin istenilen bölgelere istenilen hacimde veya sayida hücre enjekte edilebilmektedir. Hücre çesitliligi, sayi tespiti, hacim miktar tespiti, yapinin istenilen bölgesine erisim, bunun nümerik olarak yani tamamen dijital platformda yapimini gerçeklestirecek olmasi mevcut kullanilan biyo yazicilardan fark yaratmasini saglamaktadir. Titresim veya karistirma özellikli haznede adherent hücrelerin yapismadan homojen olarak medyumda bulunmasinin saglanmasi da diger bir avantaji olacaktir. The fact that the table is also rotatable and the injection system in which the cells are located It is a 5-axis system with its mobility. Cell cultivation controlled bio compatible mold will be provided to the desired area on the structure. The mold is prepared desired number and volume of cells at the desired angle to the desired area. In addition to being able to add biocompatible material, cells can be added simultaneously. Thanks to the injection from another needle, the cells are tissue designed in a computer. or produced in accordance with the organ model. which will provide cell sowing The fact that the head can be rotated allows us to transplant the cell in the desired area. will enable. Bio-compatible mold with turntable on the base Cells can be planted at the angle we want and in the region we want. Different cell lines can be found in different tubes and these are adapted to the part that will provide the injection. will be. Thus, the biocompatible structure can be applied to the desired areas in the desired volume or number of cells can be injected. Cell diversity, number determination, volume amount detection, access to the desired area of the structure, numerically, that is, completely current used bio makes it different from the printers. Vibrating or stirring homogeneously in the medium without adhesion of adherent cells in the chamber Availability would be another advantage.

BULUSUN TANIMI Mevcut bulus yukarida bahsedilen dezavantajlari ortadan kaldirmak ve ilgili teknik alana yeni avantajlar getirmek üzere gelistirilmis bir doku ve organ üretiminde kullanilacak 3d yazicilarla uyumlu biyoyazici ile ilgilidir. Çizimler Yukarida kisaca özetlenen ve asagida daha detayli ele alinan mevcut bulusun uygulamalari, bulusun ekteki çizimlerde betimlenen örnek uygulamalarina basvurarak anlasilabilir. Ancak ekteki çizimlerin yalnizca bu bulusun tipik uygulamalarini betimledigini ve bulus, bu nedenle, diger esit derecece etkili uygulamalara izin verebilecegi için, kapsamini sinirladiginin varsayilmayacagini belirtmek gerekir. DESCRIPTION OF THE INVENTION The present invention is designed to eliminate the above mentioned disadvantages and in the production of tissues and organs developed to bring new advantages to the field. It is about the bioprinter compatible with the 3d printers to be used. drawings The present invention, which is briefly summarized above and discussed in more detail below, embodiments of the invention correspond to exemplary embodiments of the invention depicted in the accompanying drawings. can be understood by pressing. However, the accompanying drawings are only typical of this invention. and the invention therefore describes other equally effective applications. not be deemed to limit its scope, as it may allow applications must be specified.

Anlasilmayi kolaylastirmak adina, sekillerde ortak olan özdes elemanlari belirtmek için, mümkün hallerde özdes referans numaralari kullanilmistir. Sekiller ölçekli çizilmemistir ve açiklik için basitlestirilebilir. Bir uygulamanin elemanlari ve özelliklerinin daha fazla açiklama lüzum olmaksizin diger uygulamalara faydali bir biçimde dâhil edilebilecegi düsünülmektedir. Çizimlerdeki Detaylarin Açiklanmasi Sekil 1, Bulusun genel görünüsüdür. To make the figures easier to understand, specify identical elements common to the figures. Identical reference numbers are used where possible. Figures to scale is not drawn and can be simplified for clarity. Elements of an application and a useful application to other applications without the need for further explanation. is considered to be included. Explanation of Details in Drawings Figure 1 is an overview of the Invention.

Sekil 2, Bulus biyoyazicinin önden görünüsüdür. Figure 2 is a front view of the Invention bioprinter.

Sekil 3, Bulus biyoyazicinin yandan görünüsüdür. Figure 3 is a side view of the Invention bioprinter.

Sekillerde gösterilen referans kodlarinin karsiliklari asagida verilmistir. The equivalents of the reference codes shown in the figures are given below.

A1- Depo enjektör, A2- Enjektör, A3- Ikili valf, A4- Karistirma aparati, A5- Hareket milleri, A6- Sonsuz disli mil, A7- Döner tabla baglanti plakasi, A8- Alüminyum yapi, A9- Kayan rulman, A10- Kayis, A11- Baski ucu, A12- Plastik flament rulosu, A13- Kayan kaide, A14- Disli mekanizma, A15- Flament yolu, A16- Döner tabla, M1- Step motor 1, M2- Step motor 2, M3- Step motor 3, M4- Step motor 4, M5- Step motor 5, M6- Step motor 6, M7- Step motor 7, M8- Step motor 8, M9- Step motor 9, M10- Fan BU LUSUN DETAYLI AÇIKLAN MASI Bu detayli açiklamada bulus konusu biyoyazici yapilanmasinin tercih edilen alternatifleri, sadece konunun daha iyi anlasilmasina yönelik olarak ve hiç bir sinirlayici etki olusturmayacak sekilde açiklanmaktadir. A1- Tank injector, A2- Injector, A3- Double valve, A4- Mixing apparatus, A5- Drive shafts, A6- Worm gear shaft, A7- Turntable connection plate, A8- Aluminum structure, A9- Sliding bearing, A10- Kayis, A11- Pressure end, A12- Plastic filament roll, A13- Sliding pedestal, A14- Gear mechanism, A15- Flament road, A16- Turntable, M1- Stepper motor 1, M2- Stepper motor 2, M3- Stepper motor 3, M4- Stepper motor 4, M5- Stepper motor 5, M6- Stepper motor 6, M7- Stepper motor 7, M8- Stepper motor 8, M9- Stepper motor 9, M10- Fan DETAILED EXPLANATION OF THIS INVENTION In this detailed explanation, the preferred bioprinter configuration is the subject of the invention. alternatives only for a better understanding of the subject and no It is explained in a way that does not have a restrictive effect.

Insanlar kazalar veya hastaliklar sonucunda organlarini veya uzuvlarini kaybetmektedir. Biyoyazici teknolojisi sayesinde kaybedilen uzuvlar veya organlari yazici araciligi ile basilip, hastalarin kullanimina sunulabilecektir. Doku ve organlar 3 boyutlu çalisan biyoyazicilarda üretilebilmekte ve ayrica üretilen bu doku ve organlarin canliligini korudugunu gösteren çalismalar yapilmaktadir. Üretilen bu dokularin ve minyatür organlarin kisa vadede ilaç denemelerinde, doku mühendisliginde ve tedaviye yönelik yenileyici tip çalismalarinda kullanilmasi planlanmaktadir. Laboratuvarda hücreler, kültür ortaminda yeterli hücre sayisina ulasincaya kadar çogaltildiktan sonra kartuslarin içine doldurulur. Kartustaki hücrelerin içine su içerigi fazla olan ve hücrelerarasi madde olarak bilinen, sivi jel kivaminda hücre matriksi molekülleri ilave edilir. Polisakkarit ve protein yapisindaki bu madde hücreler arasinda besin ve oksijen iletimini saglar. Hücre, yazici kafasindaki püskürtme memesinden disariya birakildiginda, içinde barindirdigi hücrelerin canliliginin korunmasi gerekmektedir. Bu nedenle biyoyazicida (hücrelerden farkli ikinci bir madde olarak) hücreleri besleyecek, onlarin kurumasini önleyecek ve birleserek dokulara dönüsmesine yardimci olacak, sudan, proteinden ve besin maddelerinden olusan hidrojel (besleyici ve sulandirici) isimli bir hücre destek sivisi da kullanilir. Biyoyazici kafasindaki püskürtme ünitesinde, hücre ve hidrojel baski malzemesini içeren iki ayri kartus yan yana durur. Her bir kartus siringa ignesi görünümünde incecik bir püskürtme memesine baglidir. Hücre, püskürtme memesinin ucundaki igneden disariya damlalar halinde birakilir. Yazici kafasi saga sola, asagiya yukariya ya da öne arkaya dogru hareket ederek hücreleri katman katman üst üste yigmaya baslar. Hücrelerin tek bir damlasinda 10.000- 50.000 hücre bulunur. Hücreler ile ayni anda baska bir igneden püskürtülen hidrojel sayesinde hücreler bilgisayarda tasarlanan doku veya organ modeline uygun bir sekilde üretilir. Üst üste yigilan hücrelerin arasina yayilan ve hücrelerin etrafini kaplayarak adeta koruyucu bir kalip gibi hücrelere destek olan gözenekli yapidaki hidrojel sayesinde hücreler canliliklarini korur, birbiriyle kaynasir ve zamanla doku parçalarina dönüsür. Hücrelerin olgunlasmasi ve dokulara dönüsmesi tamamlandiginda hidrojel ortamdan kolayca uzaklastirilir ya da kendi kendine zamanla parçalanarak yok olur. Böylece sadece tibbi arastirmalarda kullanilmak üzere 3 boyutlu baski teknolojisi ile üretilmis doku örnekleri elde edilir. People lose their organs or limbs as a result of accidents or illness. is losing. Lost limbs or organs thanks to bioprinter technology It will be able to be printed and made available to patients. Tissues and organs It can be produced in 3-dimensional bioprinters, and this tissue and There are studies showing that organs preserve their vitality. This is produced in short-term drug trials of tissues and miniature organs, tissue use in engineering and regenerative medicine studies is planned. In the laboratory, cells must have a sufficient number of cells in the culture medium. It is filled into the cartridges after it is multiplied until it is reached. in cartridge a liquid gel with a high water content inside the cells and known as the intercellular substance cell matrix molecules are added. polysaccharide and protein This substance provides nutrients and oxygen transmission between cells. cell, printer when released from the spray nozzle on its head, The vitality of the cells must be preserved. Therefore, in the bioprinter (as a second substance different from cells) will nourish the cells, prevent them from drying out. It will prevent and help transform into tissues by combining, it is made of water, protein. and a cell called hydrogel (nutritive and diluent) composed of nutrients support fluid is also used. In the spray unit in the bioprinter head, the cell and Two separate cartridges containing the hydrogel printing material stand side by side. each cartridge It is connected to a thin spray nozzle that looks like a syringe needle. Cell, droplets are released out of the needle at the tip of the spray nozzle. Printer cells by moving the head right to left, up and down, or back and forth. it starts to pile up layer by layer. 10,000- in a single drop of cells There are 50,000 cells. Hydrogel sprayed from another needle at the same time as the cells Thanks to this, the cells are produced in accordance with the tissue or organ model designed on the computer. is produced in sequence. It spreads between the cells that are stacked on top of each other and surrounds the cells. It is a porous structure that supports the cells like a protective mold by covering it. Thanks to the hydrogel, the cells maintain their vitality, fuse with each other and, over time, the tissue turns into parts. Maturation of cells and transformation into tissues Once completed, the hydrogel is easily removed from the environment or is self-sufficient. disintegrates over time. Thus, it can only be used in medical research. Tissue samples produced with 3D printing technology are obtained.

Step motor 7, 6, 5 ve 8 (M7 - M6 - M5 - M8) motorlari üç boyutlu yazici islevini gören sistemi hareket ettirir. Bu hareketler hareket milleri (A5) üzerinde kayis (MC) ve kayan rulmanlar (A9) sayesinde kayarak olusur. Plastik flament rulosundan (A12) gelen flament, step motoru 9'dan (M9) flament yolu (A15) vasitasi ile mil üzerinde kayan kaideye (A13) bagli olan baski ucuna (A11) gelir ve 3 boyutlu nesne örgüsü yapilir. Bu esnada fan (M10) ile sogutulan bölme flamentin uca gelmeden önce kati kalmasi saglanir. Step motor 1 (M1), enjektör (A2) grubunun asagi inmesini ve ignenin istenen noktaya ulasmasini saglar. Step motor 3 (M3), ignenin uygun açiya gelip dogru giris noktasindan girerek istenen noktaya ulasmasini saglar. Step motor 4 (M4), kültür ortamini döner tabla (A4) üzerinde döndürerek uygun pozisyon almasini saglar. Step motor 2 (M2), enjektördeki (A2) hücreleri uygun pozisyonu almis olan igneden disari çikmasi için sikistirma islemini step motoru 5'den (M5) güç alan sonsuz disli mil (A6) sayesinde gerçeklestirir. Valfin (A3) sikistirma esnasinda igne yolunu açip depo enjektör (A1) yolunu kapatir, Step motor 2 (M2) enjektördeki (A2) hücre sivisi bittikten sonra geri çekilerek enjektöre (A2) depo enjektöründen (A1) alinan hücre sivisi ile dolmasini saglar. Bu esnada valf (A3) igne yolunu kapatarak depo (A1) yolunu açar. Sivi karistirma aparati (A4) sayesinde depo enjektör (A1) içerisindeki hücrenin bulundugu kaba yapismamasini, hücrelerin bir araya gelip kümelenme yapmamasini saglamaktadir. Stepper motor 7, 6, 5 and 8 (M7 - M6 - M5 - M8) motors acting as a three-dimensional printer moves the system. These movements are on the drive shafts (A5) by the belt (MC) and It is formed by sliding thanks to the sliding bearings (A9). From a roll of plastic filament (A12) filament coming from stepper motor 9 (M9) via filament path (A15) on the shaft It comes to the pressure end (A11) connected to the sliding base (A13) and the 3-dimensional object mesh makes. In the meantime, the section cooled by the fan (M10) is solid before the filament reaches the tip. is ensured to remain. Stepper motor 1 (M1) makes the injector (A2) group go down and It allows the needle to reach the desired point. Stepper motor 3 (M3), the needle to the appropriate angle It ensures that it reaches the desired point by entering from the correct entry point. stepper motor 4 (M4) rotates the culture medium on the turntable (A4) to the appropriate position they get it. Stepper motor 2 (M2), proper position of cells in injector (A2) Press the stepper motor 5 (M5) to get it out of the needle that has taken it. powered by the worm gear shaft (A6). Compressing the valve (A3) It opens the needle path and closes the tank injector (A1) path, Step motor 2 (M2) After the cell fluid in the injector (A2) is depleted, it is withdrawn and filled into the injector (A2). It ensures that it is filled with cell fluid taken from the injector (A1). Meanwhile, the valve (A3) It closes the needle path and opens the depot (A1) path. Liquid mixing apparatus (A4) the container containing the cell in the tank injector (A1). It ensures that the cells do not come together and form clusters.

Claims (8)

ISTEMLERREQUESTS 1- Hücreyi yasam ortami içerisinde hacim ve hücre tayini yaparak ekleyen; dokunun kendisini ya da bir parçasini yazdirmaya yönelik üç boyutlu bir doku yapilari 5 hazirlayan bir biyoyazici ile ilgili olup, özelligi; Step motor 1 (M1), Step motor 2 (M2), Step motor 3 (M3), Step motor 4 (M4), Step motor 5 (M5), Step motor 6 (M6), Step motor 7 (M7), Step motor 8 (M8), Step motor 9 (M9), Depo enjektör (A ), Enjektör (A2), Ikili valf (A3), Karistirma aparati (A4), Hareket milleri (A5), Sonsuz disli mil (A6), Döner tabla baglanti plakasi (A7), Alüminyum yapi (A8), Kayan rulman (A9), Kayis (A10), Baski ucu (A11), Plastik flament rulosu (A12), Kayan kaide (A13), Disli mekanizma (A14), Flament yolu (A15), Döner tabla (A16), içermesidir.1- Adding the cell in the living environment by determining the volume and cell; It is related to a bioprinter that prepares three-dimensional tissue structures 5 for printing the tissue itself or a part of it, and its feature is; Stepper motor 1 (M1), Stepper motor 2 (M2), Stepper motor 3 (M3), Stepper motor 4 (M4), Stepper motor 5 (M5), Stepper motor 6 (M6), Stepper motor 7 (M7), Stepper motor 8 (M8), Stepper motor 9 (M9), Tank injector (A ), Injector (A2), Double valve (A3), Mixer (A4), Drive shafts (A5), Worm gear shaft (A6), Rotary Table mounting plate (A7), Aluminum structure (A8), Sliding bearing (A9), Belt (A10), Pressure end (A11), Plastic filament roll (A12), Sliding pedestal (A13), Gear mechanism (A14), Flament path (A15), Turntable (A16). 2- Istem 1'e göre biyoyazici olup, özelligi; plastik flament rulosundan (A12) gelen flamentin, step motoru 9'dan (M9) aldigi hareketle flament yolu (A15) vasitasi ile mil üzerinde kayan kaideye (A13) bagli olan baski ucuna (A11)gelmesi ve 3 boyutlu nesne örgüsünün yapilmasidir.2- It is a bioprinter according to claim 1, its feature is; The filament coming from the plastic filament roll (A12) comes to the pressure end (A11), which is connected to the base (A13) that slides on the shaft, via the filament path (A15) with the movement it takes from the stepper motor 9 (M9) and the 3-dimensional object knitting is done. 3- Istem 1'e göre biyoyazici olup, özelligi; flamentin uca gelmeden önce kati kalmasi saglayan fan (M10) içermesidir.3- It is a bioprinter according to claim 1, its feature is; It contains a fan (M10) that ensures that the filament remains solid before it reaches the tip. 4- Istem 1'e göre biyoyazici olup, özelligi; enjektördeki (A2) hücreleri uygun pozisyonu almis olan igneden disari çikmasi için sikistirma islemini step motoru 5'den (M5) güç alan sonsuz disli mil (A6) tarafindan yapilmasidir.4- It is a bioprinter according to claim 1, its feature is; The compression process is done by the worm gear shaft (A6) powered by the stepper motor 5 (M5) so that the cells in the injector (A2) come out of the needle, which has taken the appropriate position. 5- Istem 1'e göre biyoyazici olup, özelligi; valfin (A3) sikistirma esnasinda igne yolunu açip depo enjektör (A1) yolunu kapatmasi, step motor 2'nin (M2) enjektördeki (A2) hücre sivisi bittikten sonra geri çekilerek enjektöre (A2) depo enjektöründen (A1) alinan hücre sivisi ile dolmasini saglamasi ve bu esnada valfin (A3) igne yolunu kapatarak depo (A1) yolunu açmasidir.5- It is a bioprinter according to claim 1, its feature is; valve (A3) opens the needle path during compression and closes the path to the tank injector (A1), the stepper motor 2 (M2) is withdrawn after the cell liquid in the injector (A2) is exhausted and fills the injector (A2) with the cell liquid taken from the tank injector (A1) and meanwhile the valve (A3) closes the needle path and opens the tank (A1) path. 6- Istem 1'e göre biyoyazici olup, özelligi; depo enjektör (A1) içerisindeki hücrelerin yapismamasini ve hücrelerin bir araya gelip kümelenme yapmamasini saglayan sivi karistirma aparati (A4) içermesidir.6- It is a bioprinter according to claim 1, its feature is; It contains a liquid mixing apparatus (A4) that ensures that the cells in the depot injector (A1) do not stick and that the cells do not come together and form clusters. 7- Istem 1'e göre biyoyazici olup, özelligi; biyouyumlu kalibin olusurken ve olustuktan sonra dönmesini ve egilmesini saglayan döner tablaya (A16) sahip olmasidir.7- It is a bioprinter according to claim 1, its feature is; It has a rotating table (A16) that allows the biocompatible mold to rotate and tilt during and after it is formed. 8- Istem 1'e göre biyoyazici olup, özelligi; hücre ekimi yapilan bölümün hücre sayisi ve hacmini tespit eden lazer sensör içermesidir.8- It is a bioprinter according to claim 1, its feature is; The cell planting section contains a laser sensor that detects the cell number and volume.
TR2017/22774A 2017-12-29 2017-12-29 BIOGRAPER COMPATIBLE WITH 3D PRINTERS TO BE USED IN TISSUE AND ORGAN PRODUCTION TR201722774A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TR2017/22774A TR201722774A2 (en) 2017-12-29 2017-12-29 BIOGRAPER COMPATIBLE WITH 3D PRINTERS TO BE USED IN TISSUE AND ORGAN PRODUCTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2017/22774A TR201722774A2 (en) 2017-12-29 2017-12-29 BIOGRAPER COMPATIBLE WITH 3D PRINTERS TO BE USED IN TISSUE AND ORGAN PRODUCTION

Publications (1)

Publication Number Publication Date
TR201722774A2 true TR201722774A2 (en) 2018-03-21

Family

ID=63673539

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2017/22774A TR201722774A2 (en) 2017-12-29 2017-12-29 BIOGRAPER COMPATIBLE WITH 3D PRINTERS TO BE USED IN TISSUE AND ORGAN PRODUCTION

Country Status (1)

Country Link
TR (1) TR201722774A2 (en)

Similar Documents

Publication Publication Date Title
Choudhury et al. The arrival of commercial bioprinters–towards 3D bioprinting revolution!
Shafiee et al. Printing technologies for medical applications
Yan et al. 3D bioprinting of skin tissue: from pre-processing to final product evaluation
Vijayavenkataraman et al. 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes
US9965656B2 (en) Methods and apparatus for computer-aided tissue engineering for modeling, design and freeform fabrication of tissue scaffolds, constructs, and devices
KR102429653B1 (en) 3D bioprinter, 3D bioprinting tool head and method for 3D bioprinting of structures
US20180281280A1 (en) Multi-headed auto-calibrating bioprinter with heads that heat, cool, and crosslink
Macko et al. The method of artificial organs fabrication based on reverse engineering in medicine
Assad et al. Recent developments in 3D bio-printing and its biomedical applications
Foresti et al. Highly-defined bioprinting of long-term vascularized scaffolds with Bio-Trap: Complex geometry functionalization and process parameters with computer aided tissue engineering
Barua et al. Importance of 3D printing technology in medical fields
JP2005305177A (en) Artificial tissue including tissue ancillary organ-like structure and its manufacturing method
Wu et al. 3D bioprinting in tissue and organ regeneration
TR201722774A2 (en) BIOGRAPER COMPATIBLE WITH 3D PRINTERS TO BE USED IN TISSUE AND ORGAN PRODUCTION
Sun et al. Three-dimensional bioprinting in cardiovascular disease: current status and future directions
Valchanov 3D Printing in medicine-principles, applications and challenges
US20240002898A1 (en) Biocompatible composite membrane, method for fabricating the membrane, bioreactor and method for investigating cells attached to the biocompatible composite membrane
CN114657128A (en) Method for 3D suspension printing of tumor model and prepared tumor model suitable for in-vitro drug screening
Beskan et al. Usage of 3D printer technology in medical and pharmaceutical fields: a review
Aher et al. Introduction to 3d bioprinting
Quitéria 3D & 4D printing for health application: new insights into printed formulations and bioprinted organs is the topical route on this way?: topical printed formulations and skin bioprinting 3D and 4D printing
Eberman Design and fabrication of a crystal ribcage: an optically transparent ribcage to enable ex-vivo whole lung imaging
Paul A Bioprinting Workflow for Live Cell Imaging and Mechanical Testing
Tang et al. Bioprinting of Biomimetic Tissue Models for Disease Modeling and Drug Screening
DUFOUR et al. Confined biofabrication in inflatable bioreactor: toward the sterile production of implantable tissues and organs