TR201705836A2 - INSIDE COMBUSTION ROTATING PISTON ONE-WAY BEARING MOTOR - Google Patents

INSIDE COMBUSTION ROTATING PISTON ONE-WAY BEARING MOTOR Download PDF

Info

Publication number
TR201705836A2
TR201705836A2 TR2017/05836A TR201705836A TR201705836A2 TR 201705836 A2 TR201705836 A2 TR 201705836A2 TR 2017/05836 A TR2017/05836 A TR 2017/05836A TR 201705836 A TR201705836 A TR 201705836A TR 201705836 A2 TR201705836 A2 TR 201705836A2
Authority
TR
Turkey
Prior art keywords
rotor
bearing
way bearing
output shaft
engine
Prior art date
Application number
TR2017/05836A
Other languages
Turkish (tr)
Inventor
Ali̇ Canli Güray
Çayören Mehmet
Kurtoğlu İsmai̇l
Akduman İbrahi̇m
Ercan Hasan
Ali̇ Yumlu Haluk
Original Assignee
İstanbul Tekni̇k Üni̇versi̇tesi̇
Mitos Mikrodalga Goeruentueleme Sistemleri Muehendislik Sanayi Ve Ticaret Ltd Sirketi
Mi̇tos Mi̇krodalga Görüntüleme Si̇stemleri̇ Mühendi̇sli̇k Sanayi̇ Ve Ti̇caret Li̇mi̇ted Şi̇rketi̇
Univ Istanbul Teknik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by İstanbul Tekni̇k Üni̇versi̇tesi̇, Mitos Mikrodalga Goeruentueleme Sistemleri Muehendislik Sanayi Ve Ticaret Ltd Sirketi, Mi̇tos Mi̇krodalga Görüntüleme Si̇stemleri̇ Mühendi̇sli̇k Sanayi̇ Ve Ti̇caret Li̇mi̇ted Şi̇rketi̇, Univ Istanbul Teknik filed Critical İstanbul Tekni̇k Üni̇versi̇tesi̇
Priority to TR2017/05836A priority Critical patent/TR201705836A2/en
Publication of TR201705836A2 publication Critical patent/TR201705836A2/en
Priority to US16/469,154 priority patent/US10890110B2/en
Priority to EP18840517.9A priority patent/EP3510248A4/en
Priority to PCT/TR2018/050177 priority patent/WO2019027400A2/en

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Buluş; temel ve birincil kullanım alanı insansız hava araçları olmakla birlikte, her tür vasıtada, jeneratörlerde, kompresörlerde ve pompalarda kullanılan içten yanmalı patlamalı motor ile ilgilidir. Buluş içten yanmalı patlamalı motor olup; değişken açısal hız ile motor gövde bloğunun (1) dairesel hacminde dönen, ikişer adet kanada sahip, arka kapağa (6) dış bileziğinden yataklanmış olan 1.tek yönlü rulmanın (10) iç bileziğinden yataklanan, çıkış mili (17) üzerindeki yüke göre bağımsız hareket ederek otonom güç ayarlaması yapan 1. rotor (3), değişken açısal hız ile motor gövde bloğunun (1) dairesel hacminde dönen, ikişer adet kanada sahip, ön kapağa (5) dış bileziğinden yataklanmış 2.tek yönlü rulmanın (11) iç bileziğinden yataklanan, çıkış mili (17) üzerindeki yüke göre bağımsız hareket ederek otonom güç ayarlaması yapan 2. rotor (4), 1.rotor (3) ile 2.rotor (4) arasında bulunan, 1.rotor (3) ve 2.rotorun (4) birbiri üzerinde dönmesine ve yataklanmasına olanak sağlayan rulman (9), 1.rotor (3) ile arka kapak (6) arasında bulunan, 1.rotor (3) ve 2.rotorun (4) farklı zamanlarda farklı miktarlarda dönmesine olanak sağlayan 1. tek yönlü rulman (10), 2.rotorun (4) dönme hareketlerini çıkış miline (17) aktaran ve 2.rotorun (4) iç bileziğine yataklandığı 3. tek yönlü rulman (18), 1.rotorun (3) dönme hareketlerini çıkış miline (17) aktaran ve 1.rotorun (3) iç bileziğine yataklandığı 4. tek yönlü rulman (19) içermesi ile karakterize edilmektedir.Meet; Although its primary and primary use is unmanned aerial vehicles, it is related to the internal combustion combustion engine used in all types of vehicles, generators, compressors and pumps. The invention is an internal combustion explosion engine; Independent movement according to the load on the output shaft (17), which is housed from the inner ring of the 1st one-way roller bearing (10), which rotates in the circular volume of the motor body block (1) with variable angular speed, has two blades, and is housed on the outer ring of the rear cover (6). The 1st rotor (3), which performs autonomous power adjustment, has two blades, rotating in the circular volume of the motor body block (1) with variable angular speed, and is housed from the inner ring of the second one-way bearing (11), which is supported by the outer ring of the front cover (5). The 2nd rotor (4), which acts independently according to the load on the output shaft (17) and makes autonomous power adjustment, is located between the 1st rotor (3) and the 2nd rotor (4), the 1st rotor (3) and the 2nd rotor ( 4) The bearing (9), which enables the rotation and bearing on each other, is located between the 1.rotor (3) and the rear cover (6), allowing the 1.rotor (3) and the 2.rotor (4) to rotate in different amounts at different times. . one-way bearing (10) transfers the rotational movements of the 2nd rotor (4) to the output shaft (17) and the 2nd rotor (4) The 3rd one-way bearing (18), which is mounted on the three ring, is characterized by the fact that it contains the 4th one-way bearing (19) that transfers the rotation movements of the 1st rotor (3) to the output shaft (17) and where it is housed in the inner ring of the 1st rotor (3).

Description

TARIFNAME IÇTEN YANMALI DÖNER PISTONLU TEK YÖNLÜ RULMANLI Teknik Alan Bulus; temel ve birincil kullanim alani insansiz hava araçlari olmakla birlikte, her tür vasitada, jeneratörlerde, kompresörlerde ve pompalarda kullanilan içten yanmali patlamali motor ile ilgilidir. Bulus daha özel olarak, çift rotorlu döner pistonlu motor sisteminde, iki rotorun tek yönlü rulman ile yataklanmasi ile eksantrikligi saglayan disli çifti sistemini ortadan kaldiran ve millerin es merkezli olarak çalismasina olanak saglayan bir içten yanmali patlamali motor ile ilgilidir. Önceki Teknik Klasik içten patlamali motorlar agir ve verimsiz çalisirlar ve insansiz hava araçlarinda istenen düsük agirlik/yüksek güç, kompakt yapi, düsük yakit tüketimi kriterlerini tam olarak karsilayamazlar. Ancak daha uzun ömürlüdürler. Karsilikli piston hareketi ile çalisan motorlarla (klasik motor) hava araçlarinin isterlerini karsilamaya çalisilmistir. Buna örnek olarak Rotax motoru verilebilir. Daha küçük ve verimli motorlara örnek olarak ise döner motorlar verilebilir. Bu döner motorlar ailesinin ilk örnegi Wankel motorlardir ve bu motorlar üçgen- armudi yapiya sahiptir. Bu motorlarin en büyük sorunu ise vibrasyon olup, yüksek yakit tüketimi ve kisa ömür sakincalari vardir. Buna ragmen halen endüstride basariyla kullanilmaktadir. Bu eksantrik milleri, ayrica pistonlara önceden belirlenmis peryodik bir mekanik hareket biçimi saglar sadece yakit-hava karisimi ve atesleme degisimiyle pistonlarin dönme hizi degisir. Çikis mili üzerindeki yükten etkilenerek gücünü kendiliginden ayarlayan herhangi bir motor yoktur. Teknikte döner motorlarla ilgili çesitli gelistirmeler yapilmistir. patent dokümaninda, sürtünmesiz döner pistonlu makas hareketli motordan bahsedilmektedir. Bulusta, gövde silindirini iki çift hava odasi içine simetrik olarak ayiran iki döner makas-hareketli piston elemani kullanmaktadir. Iki hava girisi ve hava egzozu iki hava bölmesine stratejik olarak konumlandirilmistir. hareketi kontrol etmek için rotorlara baglanmistir. Bulusta, iki pistonlu rotor yüzeyinin yariklari arasina yerlestirilen bir yatak halkasi vardir. Döner pistonun agirligini desteklemek için rotorun her aksinda bir rulman bulunmaktadir. Gövde ile piston elemanlari arasinda fiziksel temas olmamasi, sürtünmesiz bir tasarima ortaya çikarmaktadir. Bu durum döner piston elemanlarinin türbin kanatlari gibi yüksek hizda dönmesini saglar ve yüksek verimlilik elde edilir. patent dokümaninda döner makas hareketli makinelerden bahsedilmistir. Birinci disli ile tutturulmus olan bir reaksiyon dislisi, birinci disliyi dönen mile göre döndürür. Birinci ve ikinci baglanti çubuklari eksensel birinci disli ile baglanir. Birinci ve ikinci krank kollari eksensel birinci karsilik gelen ve ikinci baglanti çubuklari ile baglanir. Birinci ve ikinci es eksenli saftlar, birinci ve ikinci birinci krank kollari ile baglanir. Birinci mil, en az bir ön çalisma elemaniyla baglantilidir. ikinci mil, en azindan bir geriye dogru çalisma elemaniyla baglantilidir. Kanat ise saftin hareketi ile dönmektedir. Teknigin bilinen durumunda yer alan U86886527 numarali Birlesik Devletler patent dokümaninda, içten yanmali döner motordan bahsedilmektedir. Bulusa göre döner kanat tipi motor, bir çift ön kanatçiklara sahip olan birinci dönen eleman ve ikinci döner eleman içermektedir. Kanatlar silindirik bir odacik içinde döner ve silindirik odacik bir emme girisi ve egzoz deligi içerir. Kanatlar bir tahrik mili tarafindan tahrik edilmektedir Iki tahrik mili bir tahrik treniyle baglidir. Tahrik milleri, kanatlar merkezi dönme ekseni etrafinda döndügünde ve yanma döngüsünün asamalarini tanimlarken, arka kanadin iliskili ön kanala dogru ve ondan uzaktaki göreli hareketini belirler. Teknigin bilinen durumunda yer alan USZOO3138337 numarali Birlesik Devletler patent dokümaninda içten yanmali motordan bahsedilmektedir. Motor, giris ve egzoz portlarina sahip silindirik bir çalisma odasini tanimlayan bir mahfaza, çalisma odasinda pistonlardan olusan ve çapraz olarak yerlestirilmis birinci ve ikinci birbirine disli pistonlu düzenekler mevcuttur. Ancak örnek gösterilen dokümanlarda, motorlarin yanma bölümü üzerinde bulunan piston kanatlarinin hareketi, pistonlarin baglandigi eksantrik milinin hareketine baglidir. Çift rotorlu motorlarda, rotorlarin birbiri ile göreceli hareket etmesi sebebiyle kanatlarda olusan zit yönlü kuvvetler dogruca eksantrik kaçikligi olusturan iç ve dis disli çiftine etki eder. Döner pistonlu motorlarda bulunan eksantrik miller, yapisi geregi hareket esnasinda olusacak titresimi dengeleyecek karsi agirlik yerlesimine izin vermez. Bu sebeple titresim saft boyunca aktarilir ve zamanla eksantrikligi saglayan dislinin dis dislisinde yorulma görülür. Bu durum hem yüksek vibrasyon olusturur hem de parça ömrü kisalir. Bu eksantrik milleri ayrica pistonlara belirlenmis hareket biçimi saglar sadece yakit-hava karisimi ve atesleme degisimiylc pistonlarin dönme hizi degisir.Ana mil üzerindeki yüktcn etkilenerek gücünü kendiliginden ayarlayan herhangi bir motor yoktur. Eksantrikligi saglayan disli çifti sistemini ortadan kaldiran ve millerin es merkezli olarak çalismasina olanak saglayan bir motorun olmamasi, bulus konusu içten yanmali döner pistonlu tek yönlü rulmanli motorun gelistirilmesi ihtiyacini dogurmustur. Bulusun Amaçlari ve Kisa Açiklamasi Bu bulusun amaci, iki rotorun tek yönlü rulmanlar ile yataklanmasi ile eksantrikligi saglayan disli çifti sistemini ortadan kaldiran ve millerin es merkezli olarak çalismasina olanak saglayan bir içten yanmali patlamali motorun gerçeklestirilmesidir. Bu bulusun amaci, Vibrasyon, saft ve disli yorulmasi gibi sorunlari, tek yönlü rulmanin sagladigi es merkezli güç iletimi baglantisi ile çözen bir içten yanmali patlamali motorun gerçeklestirilmesidir. Bu bulusun bir baska amaci, motorun mili üzerindeki yüke oranla gücü otonom olarak ayarlayan ve güç artisi saglayan bir içten yanmali patlamali motorun gerçeklestirilmesi, bu sekilde mekanik güç aktarma organlarinin basitlestirilmesi ve hafifletilmesidir. Bu Bulusun bir baska amaci Çikis mili üzerindeki yüke göre hava-yakit karisimini sikistirmasi degisen pistonlarin, çikis mili üzerinde herhangi bir nedenle (veya ariza sonucu) yükün çok fazla artmasi nedeniyle pistonlarin birbirine yapismasini engelleyecek sekilde asimetrik yapida (bir tarafi düz, diger tarafi konveks veya konkav) yapilarak motorda olusabilecek kalici hasarlari önlemesidir. Bu bulusun bir baska amaci, basit yapida, hafif aiicak yüksek güç saglayan bir içten yanmali patlamali motorun gerçeklestirilmesidir. Bulusta, Vane motoru türü motorlarda bulunan eksantrik inilin hareketini ileten ve döner piston zamanlamasini saglayan mafsallar yerine tek yönlü rulmanlar kullanilmistir. Tek yönlü rulmanlar ile rotorlar motor gövdesine yataklanmistir. Kanatlarin olusturdugu degisken hacme sahip odalarda yanma gerçeklestigi anda kanatlardan sadece biri çikis milinin dönme yönünde digeri ise tersi yönde dönmek isteyecektir. Tek yönlü rulmanlar sadece çikis milinin dönme yönündeki harekete izin vermektedir. Bu sebeple bir rotor sabit dururken diger rotor çikis milini döndürecek yönde hareket eder. Iki rotor farkli motor zamanlarinda durur, çikis miline zit dönme yönünde döner veya iki rotorda birlikte döner. Rotorlarin bu sekilde dönmesi, dört zamanli motorlardaki emme, sikistirma, yaiima ve egzoz zamanlarina denk gelen krank mili zamanlamalarinin benzerini gerçeklestiren, periyodik olarak döner pistonlari (rotorlari) döndüren bir yapi olusturur. Çikis milinde bulunan iki veya daha fazla tek yönlü rulman rotorlar ile yataklanmistir. Bu rulmanlar iki rotoru birbirine yataklayan tek yönlü rulmanlar ile zit yönde dönmeye izin verecek sekilde yataklanmistir. Bu sayede rotorlar dönünce çikis mili ve hareketli rotor kilitlenir ve güç aktarilir. Bulusun Ayrintili Açiklamasi Bu bulusun amacina ulasmak için gerçeklestirilen içten yanmali patlamali motor ekli sekillerde gösterilmistir. Bu sekiller; Sekil 1: Bulus konusu içten yanmali patlamali motorun kesit görünümüdür. Sekil 2: Bulus konusu içten yanmali patlamali motorda, rotor kanatlarinin sikistirilmis olan yakit-hava karisiminin yanma evresindeki konumunun görünümüdür. Sekil 3: Bulus konusu içten yanmali patlamali motorda, rotorlarin birlikte saat yönünde döndügü fazin görünümüdür. Sekil 4: Rotorlarin bir tarafi düz diger tarafi konkav olan rotorlarin temas yüzeyini minimuma indiren yapisinin rotorlarin ayrik konumlarinin görünümüdür. Sekil 5: Rotorlarin bir tarafi düz diger tarafi konkav olan rotorlarin temas yüzeyini minimuma indiren yapisinin rotorlarin patlama öncesi konumlarinin görünümüdür. Sekil 6: Bulus konusu içten yanmali patlamali motorda yer alan, her rotor üzerinde dört adet bulunan yag ve basinç segmanlarinin görünümüdür. Sekil 7: Bulus konusu içten yanmali patlamali motorda yer alan basinç segmaninin perspektif görünümüdür. Sekil 8: Bulus konusu içten yanmali patlamali motorda yer alan rotor ve rotor yapisinin görünümüdür. Sekil 9: Bulus konusu içten yanmali patlamali motorda yer alan yaglama sübap bilyasinin rotor içindeki konumunun görünümüdür. Sekil 10: Yaglama subap bilyasinin rotorlar ve motor blogu arasinda yaglama islemi devam ederken bulundugu konumun görünümüdür. Sekillerde yer alan parçalar tek tek numaralandirilmis olup, bu numaralarin karsiliklari asagida verilmistir. Motor gövde blogu 2. Rotor Rulman ön kapagi Rulman arka kapagi Rulman . 1. Tek yönlü rulman . 2. Tek yönlü rulman . Tahliye borusu . l. Sizdirmazlik elemani . 2. Sizdirmazlik elemani 16. 3. Sizdirmazlik elemani 17. Çikis mili 18. 3. Tek yönü rulman 4. Tek yönlü rulman Basinç segmani Yag segmani Yaglama sübap bilyasi Yag tahliye deligi Rotor yapisi Bulus, içten yanmali patlamali motor olup; motorun yanma, sikistirma, emme ve egzoz zamanlarinin olustugu degisken hacimlerin bulundugu dairesel bir bos hacme sahip, disinda ön kapak (5) ve arka kapak (6) parçalarinin civatalar ile baglandigi ara yüze sahip bir motor gövde blogu (1), yakit-hava karisiminin yanmasini saglayan, motor gövde blogu (1) üzerine baglanan bir buji (2), degisken açisal hiz ile motor gövde blogunun (l) dairesel hacminde dönen, ikiser adet kanada sahip, arka kapaga (6) dis bileziginden yataklanmis olan 1. tek yönlü rulmanin (10) iç bileziginden yataklanan 1. rotor (3), degisken açisal hiz ile motor gövde blogunun (1) dairesel hacminde dönen, ikiser adet kanada sahip, ön kapaga (5) dis bileziginden yataklanmis, 1.rotor (3) ve 2.rotorun (4) farkli zamanlarda farkli miktarlarda dönmesine olanak saglayan 2. tek yönlü rulmanin (11) iç bileziginden yataklanan 2. l.rotor (3) ile 2.rotor (4) arasinda bulunan, l.rotor (3) ve 2.rotorun (4) yataklanmasini saglayan ve dönmesine olanak saglayan rulman (9), 1.rotor (3) ile arka kapak (6) arasinda bulunan, 1.rotor (3) ve 2.rotorun (4) farkli zamanlarda farkli miktarlarda dönmesine olanak saglayan 1. tek yönlü rulman (10), 2.rotor (4) ile ön kapak (5) arasinda bulunan, 1.rotor (3) ve 2.rotorun (4) farkli zamanlarda farkli miktarlarda dönmesine olanak saglayan 2. tek yönlü rulman (11), egzoz gazlarini tahliye eden ve motor gövde blogu (1) üzerine baglanan bir egzoz tahliye borusu (12), yakit-hava karisimini yanma odalarina besleyen bir yakit hava karisimi farkli açisal hizlarda ve farkli periyotlarda dönen l.rotor (3) ve 2.rotor (4) hareketlerinin tek mil üzerinde toplayan çikis mili (17), 2.rotorun (4) dönme hareketlerini çikis miline (17) aktaran ve 2.rotorun (4) iç bilezigine yataklandigi 3. tek yönlü rulman (18), l.rotorun (3) dönme hareketlerini çikis miline (17) aktaran ve l.rotorun (3) iç bilezigine yataklandigi 4. tek yönlü rulman (19), l.rotor (3) ve 2.rotorun (4) üzerinde bulunan, isi ile genlesen, yaglamayi saglayan en az bir adet U seklindeki basinç segmanlari (20) ve yag segmanlari (21), motorun çalisma esnasinda yaglamayi saglayan yaglama sübap bilyasi (22), motor gövde blogunu (l) sogutmasi ve yaglamasi için kullandigi müsterek yagi motor gövde blogunun (l) gömleginin yani sira l.rotor (3) ve 2.rotor (4) içinde de dolastirmasi ve l.rotor (3) ve 2.rotorlarin (4) dönüs hiziyla orantili yeterli miktardaki yag ile motor yaglamasi yapan yag tahliye deligi (23), çikis mili (17) üzerindeki yükün çok fazla olmasi durumunda l.rotor (3) ve 2.rotorun (4) birbiriyle yapismasini engelleyen asimetrik olan, bir tarafi düz, diger tarafi konkav veya konveks rotor yapisi (24), içermektedir. Bulus bir içten yanmali patlamali motor olup; ön kapak (5) ve arka kapak (6) arasinda disaridan ve içeriden sizdirmazligi saglamak kullanilan 1.sizdirmazlik elemani (13) içermektedir. Bulus bir içten yanmali patlamali motor olup; l.rotor (3) ile 2.rotor (4) arasinda sürtünmeyi azaltmak ve disaridan ya da içeriden yabanci madde, yakit girisini veya çikisini engellemek amaci ile kullanilan 2. sizdirmazlik elemani (14) içermektedir. Bulus bir içten yanmali patlamali motor olup; l.rotor (3) ve 2.rotorun (4) kanatlari üzerinde bulunan, düsük sürtünme katsayisi ile sizdirmazligi saglayan 3. sizdirmazlik elemani (16) içermektedir. Motor gövde blogu (1) motorun yanma, sikistirma, emme ve egzoz zamanlarinin olustugu degisken hacimlerin bulundugu dairesel bir bos hacme sahip, disinda ön kapak (5) ve arka kapak (6) parçalarinin civatalar ile baglandigi ara yüze sahip parçadir. Buji (2), yakit hava borusu (15) ve tahliye borusu (12) motor gövde blogu (l) üzerine baglanmistir. l. rotor (3) ve 2. rotor (4) motor gövde blogunun (l) dairesel hacminde bulunmaktadir. 1. rotor (3) ve 2. rotorun (4) kanatlari ile ön kapak (5) arka kapak (6) arasinda sizdirmazlik döner pistonlu motorlarda yaygin olarak kullanilan 1. sizdirmazlik elemani (13) ve 2. sizdirrnazlik elemani (14) ile saglanmistir. l. rotor (3) arka kapaga (6) dis bileziginden yataklanmis olan 1. tek yönlü rulmanin (10) iç bileziginden yataklanmistir. 2. rotor (4) ise ön kapaga (5) dis bileziginden yataklanmis 2. tek yönlü rulinanin (11) iç bileziginden yataklanmistir. 1.tek yönlü rulman (10) ve 2.tek yönlü rulman (1 l), 1. rotor (3) ve 2. rotorun (4) es merkezli olmasini saglamaktadirlar. Rulman ön kapagi (7) 1.tek yönlü rulmanin (10), rulman arka kapagi (8) ise 2.tek yönlü rulmanin (1 l) dis bileziklerine basarak 1.tek yönlü rulmanin (10) ve 2.tek yönlü rulmanin (ll) eksenel olarak hareket etmesini engellerler. Rulman ön kapagi (7) ve rulman arka kapagi (8) , ön kapak (5) ve arka kapaga (6) hassas toleransa sahip çapta bir çikinti ile merkezlenmistir. l. rotor (3) ve 2. rotor (4) yataklanmasini saglayan 1. tek yönlü rulman (10) ve 2. tek yönlü rulman (11) , 1. rotor (3) ve 2. rotorun (4) dönüs yönünü ve sirasini belirler. 1. tek yönlü rulmanin (10) ve 2. tek yönlü rulmanin (11) belirlenmis mil dönüs hizinin üstünde dönmemesi, mekanik olarak bozulmamasi için oldukça önemlidir. 2. rotorun (4) dönme hareketlerini çikis miline (17) aktaran ve 2. rotorun (4) iç bilezigine yataklandigi 3. tek yönlü rulman (18) ve 1.r0t0run (3) dönme hareketlerini çikis miline (17) aktaran ve 1.r0t0run (3) iç bilezigine yataklandigi 4. tek yönlü rulman (19) bulunmaktadir. 2. rotor (4) saat yönünde döndügünde, 2. rotora (4) yataklanmis olan 3. tek yönlü rulman (18) kitlenir ve çikis milini (17) saat yönünde döndürür. 1. rotor (3) ise 4. tek yönlü rulmanin (19) iç bilezigi ile sabit haldeyken 4. tek yönlü rulmanin (19) dis bilezigi çikis mili (17) ile birlikte saat yönünde döner. Bu sayede periyodik hareketlerle dönen l. rotor (3) ve 2. rotorun (4) hareketi, çikis milinde (17) sürekli bir harekete dönüsmüs olmaktadir. Yani çikis milinde bulunan 3. tek yönlü rulman (18) ve 4. tek yönlü rulman (19), l. rotor (3) ve 2. rotor (4) ile yataklanmistir. 3. tek yönlü rulman (18) ve 4. tek yönlü rulman (19) 1. rotor (3) ve 2. rotoru (4) yataklayan 1. tek yönlü rulman (10) ve 2. tek yönlü rulman (11) ile zit yönde dönmeye izin verecek sekilde yataklanmistir. Yani, 1. rotor (3) ve 2. rotoru (4) yataklayan 1. tek yönlü rulman (10) ve 2. tek yönlü rulman (11) 1. rotor (3) ve 2. rotor (4) ile ayni yönlü dönmeye izin verirken, çikis mili (17) ile l.rotor (3) ve 2. rotoru (4) yataklayan 3. tek yönlü rulman (18) ve 4. tek yönlü rulman (19) ise 1.rotor (3) ve 2. rotorun (4) dönme yönüne zit yönlü dönmeye izin verir. Bu sayede 1. rotor (3) ve 2. rotor (4) dönünce çikis mili (17) ve hareketli olan rotor kilitlenir ve güç aktarilir. 1. rotor (3) ve 2. rotor (4) kanatlarinin sikistirilmis olan yakit-hava karisiminin yanma evresindeki konumunda (Sekil 2); motor gövde blogunda (1) ikiser adet simetrik hacim olusmustur. Bujinin (2) bulundugu hacimdeki sikismis olan yakit- hava karisimi yaninca ortaya çikan patlama kuvveti ile sag tarafta bulunan kanatin bulundugu 2. rotor (4) saat yönünde döner. Diger 1. rotor (3) ise sabit kalir. Hareketli olan 2. rotor (4) degisken açisal hizli hareketini tamamlarken diger hacimde bulunan egzoz gazlarinin tahliye borusunda (12) atilmasini saglayacak sekilde bu hacmi sikistirir. Bu hacmin simetrik tarafinda ise yakit-hava karisimi TR DESCRIPTION INTERNAL COMBUSTION ROTARY PISTON WITH ONE-WAY BEARING Technical Field Bulus; Although its main and primary area of use is unmanned aerial vehicles, it is related to the internal combustion explosion engine used in all types of vehicles, generators, compressors and pumps. More specifically, the invention relates to an internal combustion explosion engine that eliminates the gear pair system that provides eccentricity by bearing the two rotors with one-way bearings in the double rotor rotary piston engine system and allows the shafts to work concentrically. Prior Art Classical internal combustion engines operate slowly and inefficiently and cannot fully meet the low weight/high power, compact structure and low fuel consumption criteria required for unmanned aerial vehicles. However, they are longer lasting. Attempts have been made to meet the requirements of aircraft with engines working with reciprocating piston movement (classical engine). An example of this is the Rotax engine. Rotary engines are examples of smaller and more efficient engines. The first example of this family of rotary engines is the Wankel engines, and these engines have a triangular-pear-shaped structure. The biggest problem of these engines is vibration, and they have the disadvantages of high fuel consumption and short life. Despite this, it is still used successfully in industry. These camshafts also provide a predetermined periodic mechanical movement to the pistons; only the rotation speed of the pistons changes with the fuel-air mixture and ignition change. There is no engine that automatically adjusts its power by being affected by the load on the output shaft. Various improvements have been made regarding rotary engines in technology. In the patent document, a frictionless rotary piston scissor motion engine is mentioned. The invention uses two rotating scissor-moving piston elements that symmetrically separate the body cylinder into two pairs of air chambers. Two air intakes and air exhausts are strategically positioned in two air chambers. It is connected to the rotors to control the movement. In the invention, there is a bearing ring placed between the slots of the rotor surface with two pistons. There is a bearing on each axis of the rotor to support the weight of the rotating piston. The absence of physical contact between the body and piston elements results in a frictionless design. This allows the rotary piston elements to rotate at high speed, like turbine blades, and high efficiency is achieved. Rotary scissor moving machines are mentioned in the patent document. A reaction gear engaged with the first gear rotates the first gear relative to the rotating shaft. The first and second connecting rods are connected by the axial first gear. The first and second crank arms are pivotally connected by corresponding first and second connecting rods. The first and second coaxial shafts are connected by the first and second first crank arms. The first shaft is connected to at least one front working element. The second shaft is associated with at least one reverse operating element. The wing rotates with the shaft movement. In the United States patent document numbered U86886527, which is in the state of the art, the internal combustion rotary engine is mentioned. The rotary wing type engine according to the invention includes a first rotating element and a second rotating element having a pair of front blades. The vanes rotate within a cylindrical chamber, and the cylindrical chamber contains a suction inlet and exhaust port. The blades are driven by a drive shaft. The two drive shafts are connected by a drive train. The drive shafts determine the relative movement of the rear wing towards and away from the associated front duct as the wings rotate about the central rotation axis and define the phases of the combustion cycle. The internal combustion engine is mentioned in the United States patent document numbered USZOO3138337, which is in the state of the art. The engine is an enclosure defining a cylindrical working chamber with inlet and exhaust ports. In the working chamber, there are first and second interconnected piston assemblies consisting of pistons and placed diagonally. However, in the sample documents shown, the movement of the piston blades on the combustion section of the engines depends on the movement of the camshaft to which the pistons are connected. In double rotor engines, the opposing forces occurring on the blades due to the relative movement of the rotors with each other directly affect the internal and external gear pair, which creates the eccentric misalignment. Camshafts in rotary piston engines, due to their structure, do not allow counterweight placement to balance the vibration that will occur during movement. For this reason, the vibration is transferred along the shaft and over time, fatigue occurs in the outer gear of the gear that provides eccentricity. This situation creates high vibration and shortens the part life. These camshafts also provide a determined movement pattern to the pistons; only the rotation speed of the pistons changes with the change of fuel-air mixture and ignition. There is no engine that automatically adjusts its power by being affected by the load on the main shaft. The lack of an engine that eliminates the gear pair system that provides eccentricity and allows the shafts to work concentrically has led to the need to develop the internal combustion rotary piston one-way bearing engine that is the subject of the invention. Purposes and Brief Description of the Invention The purpose of this invention is to realize an internal combustion explosion engine that eliminates the gear pair system that provides eccentricity by bearing two rotors with one-way bearings and allows the shafts to work concentrically. The purpose of this invention is to realize an internal combustion explosion engine that solves problems such as vibration, shaft and gear fatigue with the concentric power transmission connection provided by the one-way bearing. Another purpose of this invention is to realize an internal combustion explosion engine that autonomously adjusts the power and provides power increase in proportion to the load on the engine shaft, thus simplifying and lightening the mechanical power transmission organs. Another purpose of this invention is to ensure that the pistons, whose compression of the air-fuel mixture varies depending on the load on the output shaft, have an asymmetrical structure (one side is flat, the other side is convex or convex) in a way that prevents the pistons from sticking to each other due to too much increase in the load on the output shaft for any reason (or as a result of a malfunction). concave) to prevent permanent damage that may occur in the engine. Another aim of this invention is to realize an internal combustion explosion engine that has a simple structure, is lightweight, and provides high power. In the invention, one-way bearings were used instead of the joints that transmit the movement of the eccentric stroke and provide the rotary piston timing in Vane engine type engines. The rotors are mounted on the motor body with one-way bearings. When combustion occurs in rooms with variable volumes formed by the blades, only one of the blades will want to rotate in the direction of rotation of the output shaft and the other will want to rotate in the opposite direction. One-way bearings only allow movement in the direction of rotation of the output shaft. For this reason, while one rotor remains stationary, the other rotor moves in the direction of rotating the output shaft. The two rotors stop at different engine times, rotate in opposite directions to the output shaft, or both rotors rotate together. Rotating the rotors in this way creates a structure that rotates the rotating pistons (rotors) periodically, performing a similar crankshaft timing that corresponds to the intake, compression, oiling and exhaust times in four-stroke engines. Two or more one-way bearings on the output shaft are supported by rotors. These bearings are mounted in a way that allows rotation in the opposite direction, with one-way bearings bearing the two rotors together. In this way, when the rotors rotate, the output shaft and the moving rotor are locked and power is transferred. Detailed Description of the Invention The internal combustion explosion engine developed to achieve the purpose of this invention is shown in the attached figures. These shapes; Figure 1: A cross-sectional view of the internal combustion explosion engine that is the subject of the invention. Figure 2: The position of the rotor blades in the combustion phase of the compressed fuel-air mixture in the internal combustion explosion engine that is the subject of the invention. Figure 3: The view of the phase in which the rotors rotate clockwise together in the internal combustion explosion engine that is the subject of the invention. Figure 4: The structure of the rotors, which is flat on one side and concave on the other side, minimizing the contact surface, and the view of the separate positions of the rotors. Figure 5: The structure of the rotors, which is flat on one side and concave on the other side, minimizing the contact surface, is the view of the positions of the rotors before explosion. Figure 6: The view of the oil and pressure rings, four on each rotor, in the internal combustion explosion engine that is the subject of the invention. Figure 7: Perspective view of the pressure ring in the internal combustion engine that is the subject of the invention. Figure 8: The view of the rotor and rotor structure in the internal combustion explosion engine that is the subject of the invention. Figure 9: The position of the lubrication valve ball in the rotor of the internal combustion explosion engine that is the subject of the invention. Figure 10: The position of the lubrication valve ball between the rotors and the engine block while the lubrication process continues. The parts in the figures are numbered one by one, and the equivalents of these numbers are given below. Engine housing block 2. Rotor Bearing front cover Bearing rear cover Bearing . 1. One-way bearing. 2. One-way bearing. Drain pipe . l. Sealing element. 2. Sealing element 16. 3. Sealing element 17. Output shaft 18. 3. One-way bearing 4. One-way bearing Pressure ring Oil ring Lubrication valve ball Oil discharge hole Rotor structure The invention is an internal combustion explosion engine; An engine body block (1), which has a circular empty volume with variable volumes where the combustion, compression, intake and exhaust times of the engine occur, and which has an interface outside where the front cover (5) and rear cover (6) parts are connected with bolts, where the fuel-air mixture is controlled. A spark plug (2) connected to the engine body block (1), which ensures combustion, and the 1st one-way bearing, which rotates in the circular volume of the engine body block (l) with variable angular speed, has two wings, and is mounted on the rear cover (6) from its outer ring. The 1st rotor (3), bearing from the inner ring (10), rotates in the circular volume of the engine body block (1) with variable angular speed, has two wings each, is supported by the outer ring of the front cover (5), 1st rotor (3) and 2nd rotor. The 1st rotor (3) and the 2nd rotor are located between the 2nd rotor (3) and the 2nd rotor (4), which are supported by the inner ring of the 2nd one-way bearing (11), which allows the rotor (4) to rotate in different amounts at different times. The bearing (9), which provides the bearing of the (4) and allows it to rotate, is the bearing (9) located between the 1st rotor (3) and the rear cover (6), allowing the 1st rotor (3) and the 2nd rotor (4) to rotate in different amounts at different times. . one-way bearing (10), located between the 2nd rotor (4) and the front cover (5), allowing the 1st rotor (3) and the 2nd rotor (4) to rotate at different amounts at different times. ), an exhaust discharge pipe (12) that evacuates the exhaust gases and is connected to the engine body block (1), a fuel-air mixture that feeds the fuel-air mixture to the combustion chambers, a first rotor (3) that rotates at different angular speeds and in different periods, and a second rotor (3). The output shaft (17), which collects the movements of the rotor (4) on a single shaft, the 3rd one-way bearing (18), which transfers the rotation movements of the 2nd rotor (4) to the output shaft (17) and is bearing on the inner ring of the 2nd rotor (4), l. The 4th one-way bearing (19), which transfers the rotation movements of the rotor (3) to the output shaft (17) and is placed on the inner ring of the first rotor (3), is located on the first rotor (3) and the second rotor (4), expands with heat. , at least one U-shaped pressure ring (20) and oil rings (21) that provide lubrication, the lubrication valve ball (22) that provides lubrication during engine operation, the common oil used by the engine body block (l) to cool and lubricate the engine body block (l). l) oil drain hole (23) which circulates the 1st rotor (3) and 2nd rotor (4) as well as the liner and lubricates the engine with a sufficient amount of oil proportional to the rotation speed of the 1st rotor (3) and 2nd rotors (4). ) contains an asymmetric rotor structure (24), flat on one side and concave or convex on the other side, which prevents the first rotor (3) and the second rotor (4) from sticking to each other if the load on the output shaft (17) is too high. The invention is an internal combustion engine; It contains the first sealing element (13) used to ensure sealing between the front cover (5) and the rear cover (6) from outside and inside. The invention is an internal combustion engine; It contains a 2nd sealing element (14) used to reduce friction between the 1st rotor (3) and the 2nd rotor (4) and to prevent the entry or exit of foreign matter and fuel from outside or inside. The invention is an internal combustion engine; It contains a 3rd sealing element (16) located on the wings of the 1st rotor (3) and the 2nd rotor (4), providing sealing with a low coefficient of friction. The engine body block (1) is the part that has a circular empty volume with variable volumes where the engine's combustion, compression, intake and exhaust times occur, and has an interface outside where the front cover (5) and rear cover (6) parts are connected with bolts. The spark plug (2), fuel air pipe (15) and discharge pipe (12) are connected to the engine body block (l). l. The rotor (3) and the 2nd rotor (4) are located in the circular volume of the engine body block (l). Sealing between the wings of the 1st rotor (3) and the 2nd rotor (4) and the front cover (5) and the rear cover (6) is provided by the 1st sealing element (13) and the 2nd sealing element (14), which are commonly used in rotary piston engines. . l. The rotor (3) is supported on the inner ring of the 1st one-way bearing (10), which is supported on the outer ring of the rear cover (6). The second rotor (4) is supported on the outer ring of the front cover (5) and the inner ring of the second one-way roller (11). The 1st one-way bearing (10) and the 2nd one-way bearing (1 l) ensure that the 1st rotor (3) and the 2nd rotor (4) are concentric. The bearing front cover (7) presses on the outer rings of the 1st one-way bearing (10), and the bearing rear cover (8) presses on the outer rings of the 2nd one-way bearing (1l), thus pressing the 1st one-way bearing (10) and the 2nd one-way bearing (1l). ) They prevent it from moving axially. The bearing front cover (7) and the bearing rear cover (8) are centered on the front cover (5) and the rear cover (6) with a diameter protrusion with precise tolerance. l. The 1st one-way bearing (10) and the 2nd one-way bearing (11), which provide the bearing of the rotor (3) and the 2nd rotor (4), determine the rotation direction and sequence of the 1st rotor (3) and the 2nd rotor (4). It is very important that the 1st one-way bearing (10) and the 2nd one-way bearing (11) do not rotate above the specified shaft rotation speed and do not deteriorate mechanically. The 3rd one-way bearing (18), which transfers the rotational movements of the 2nd rotor (4) to the output shaft (17), and the 3rd one-way bearing (18), on which the 2nd rotor (4) is bedded in its inner ring, and the 1st bearing, which transfers the rotational movements of the 1st rotor (3) to the output shaft (17). There is a 4th one-way bearing (19) on which the inner ring of the r0t0run (3) is placed. When the 2nd rotor (4) rotates clockwise, the 3rd one-way bearing (18) mounted on the 2nd rotor (4) is locked and rotates the output shaft (17) clockwise. While the first rotor (3) is fixed with the inner ring of the 4th one-way bearing (19), the outer ring of the 4th one-way bearing (19) rotates clockwise with the output shaft (17). In this way, l rotating with periodic movements. The movement of the rotor (3) and the second rotor (4) turns into a continuous movement on the output shaft (17). In other words, the 3rd one-way bearing (18) and the 4th one-way bearing (19) on the output shaft, l. It is supported by the rotor (3) and the second rotor (4). The 3rd one-way bearing (18) and the 4th one-way bearing (19) are opposed to the 1st one-way bearing (10) and the 2nd one-way bearing (11), which support the 1st rotor (3) and the 2nd rotor (4). It is bearing in a way that allows directional rotation. In other words, the 1st one-way bearing (10) and the 2nd one-way bearing (11), which support the 1st rotor (3) and the 2nd rotor (4), rotate in the same direction as the 1st rotor (3) and the 2nd rotor (4). While allowing, the 3rd one-way bearing (18) and the 4th one-way bearing (19), which support the output shaft (17) and the 1st rotor (3) and the 2nd rotor (4), are the 1st rotor (3) and the 2nd rotor (4). It allows rotation in the opposite direction to the rotation direction of the rotor (4). In this way, when the 1st rotor (3) and the 2nd rotor (4) rotate, the output shaft (17) and the moving rotor are locked and power is transferred. In the position of the 1st rotor (3) and 2nd rotor (4) blades during the combustion phase of the compressed fuel-air mixture (Figure 2); Two symmetrical volumes are formed in the engine body block (1). The second rotor (4) with the wing on the right side rotates clockwise with the explosion force that occurs when the fuel-air mixture trapped in the volume where the spark plug (2) is located burns. The other 1st rotor (3) remains fixed. While the moving second rotor (4) completes its variable angular speed movement, it compresses this volume in a way that ensures that the exhaust gases in the other volume are discharged in the discharge pipe (12). On the symmetrical side of this volume, the fuel-air mixture is TR.

TR2017/05836A 2017-04-20 2017-04-20 INSIDE COMBUSTION ROTATING PISTON ONE-WAY BEARING MOTOR TR201705836A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TR2017/05836A TR201705836A2 (en) 2017-04-20 2017-04-20 INSIDE COMBUSTION ROTATING PISTON ONE-WAY BEARING MOTOR
US16/469,154 US10890110B2 (en) 2017-04-20 2018-04-19 Internal combustion engine with a rotating piston and uni-directional rolling bear
EP18840517.9A EP3510248A4 (en) 2017-04-20 2018-04-19 Internal combustion engine with a rotating piston and uni-directional rolling bear
PCT/TR2018/050177 WO2019027400A2 (en) 2017-04-20 2018-04-19 Internal combustion engine with a rotating piston and uni-directional rolling bear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2017/05836A TR201705836A2 (en) 2017-04-20 2017-04-20 INSIDE COMBUSTION ROTATING PISTON ONE-WAY BEARING MOTOR

Publications (1)

Publication Number Publication Date
TR201705836A2 true TR201705836A2 (en) 2017-09-21

Family

ID=67902050

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2017/05836A TR201705836A2 (en) 2017-04-20 2017-04-20 INSIDE COMBUSTION ROTATING PISTON ONE-WAY BEARING MOTOR

Country Status (1)

Country Link
TR (1) TR201705836A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11535375B2 (en) 2017-07-06 2022-12-27 Istanbul Teknik Universitesi Autonomous unmanned aerial vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11535375B2 (en) 2017-07-06 2022-12-27 Istanbul Teknik Universitesi Autonomous unmanned aerial vehicle

Similar Documents

Publication Publication Date Title
RU2439333C1 (en) Rotary piston machine of volumetric expansion
RU2651000C2 (en) Device for machine of displacement type, controlling gear arrangement for device and use of controlling gear arrangement
US4011842A (en) Piston machine
US11891930B2 (en) Exhaust valve assembly for a two-stroke internal combustion engine
US20070062469A1 (en) Rotary radial internal combustion piston engine
EP0094230B1 (en) Improvements in internal combustion engines
US3937187A (en) Toroidal cylinder orbiting piston engine
US9103333B2 (en) Axial piston machines
US3922118A (en) Rotary vane piston devices with stationary spur gears and crankshaft hub bearings
TR201705836A2 (en) INSIDE COMBUSTION ROTATING PISTON ONE-WAY BEARING MOTOR
US10890110B2 (en) Internal combustion engine with a rotating piston and uni-directional rolling bear
KR20010013687A (en) Rotary positive-displacement fluid machines
JP4521785B1 (en) Rotating piston machine
RU2496998C2 (en) Rotary-vane ice
WO2015159083A1 (en) Opposed piston machine with rectilinear drive mechanisms
EP4127421B1 (en) Two-stroke internal combustion engine
RU2374454C2 (en) Design of piston machine and method of designing its working chamber for thermodynamic cycle
KR101285095B1 (en) Rotary Engine
US8684714B2 (en) Internal orbital engine
RU2397326C1 (en) Rotary machine
IT201600085519A1 (en) Internal combustion engine, supercharged, with rotary valve distribution
CZ292392A3 (en) Two-stroke internal combustion engine with rotating pistons
JPH10339158A (en) Rotary type internal combustion engine
PL214162B1 (en) Internal combustion, two-stroke, revolving-block engine systems