SU99901A1 - Method for measuring true flame temperature - Google Patents

Method for measuring true flame temperature

Info

Publication number
SU99901A1
SU99901A1 SU449214A SU449214A SU99901A1 SU 99901 A1 SU99901 A1 SU 99901A1 SU 449214 A SU449214 A SU 449214A SU 449214 A SU449214 A SU 449214A SU 99901 A1 SU99901 A1 SU 99901A1
Authority
SU
USSR - Soviet Union
Prior art keywords
temperature
flame temperature
flame
measuring true
true flame
Prior art date
Application number
SU449214A
Other languages
Russian (ru)
Inventor
В.В. Кандыба
Original Assignee
В.В. Кандыба
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by В.В. Кандыба filed Critical В.В. Кандыба
Priority to SU449214A priority Critical patent/SU99901A1/en
Application granted granted Critical
Publication of SU99901A1 publication Critical patent/SU99901A1/en

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

Существзющне способы измерени  температуры пламени но спектральным лини м виедекных в плам  паров металла (например, метод обращени  спектральных линий) имеют следуюп.,ие основные недостатки: 1) верхний температурный предел измерени  ограничиваетс  темпе 5аTypoif источника Сравиеиш (в случае температурной .1ампы -- температурой пор дка 2500С) и 2) они непригодны дл  песгапиопарных, быстромен 1ОИ1Ихс  температур .н сного характера.Existing methods for measuring flame temperature and spectral lines of a cell in a flame of metal vapor (for example, the method of inverting spectral lines) have the following, and the main disadvantages are: 1) the upper temperature limit of measurement is limited by the Crayeish source (in the case of temperature. 1amp - temperature on the order of 2500 ° C) and 2) they are unsuitable for pesgapioparny, the speed is 1 OI1Xs of temperature.

Предлагаемый способ свободен от этих недостатков и обеспечивает возможность измеренн  неограниченно высоких, достижимых в экспе|)иментальных услови х, температур пламени прн стаииопарных и нестаиионарных пропессах. Способ пргподен как дл  ес от и1,егос , так и дл  свет н1, ш мени безотносительно к их коэффициенту черноты, т. е. к их сиектральной характеристике.The proposed method is free from these drawbacks and makes it possible to measure unlimited infinitely high experimental conditions attainable in the experiment, temperatures of the flame, as well as unsteady and unsteady-ionic processes. The method is suitable for both ECI, EGOS and H1 light, regardless of their blackness coefficient, i.e., their siecral characteristics.

В предлагаемом способе за меру температуры пламени принимаетс  абсолютна  интенсивность средней части резонансной спектральной линии щелочного или п,елочноземельного металла, пары которого введены в плам .In the proposed method, the absolute intensity of the middle part of the resonance spectral line of an alkaline or n alkaline earth metal, whose vapors are introduced into the flame, is taken as a measure of flame temperature.

Осуи-1,ествлеиие способа требует с.тедуЮП1ИX уеловии.The Osui-1, the most advanced method, requires s.

1.Количество введенных в плам  паров метал.:1а должно быть достаточным дл  получени  максималь )гой при дайной темиературе интенС1П5НОСТН излучеин  (т. е. дл  получе П1  черного излучени ) в центре спектральной линии, чтобы обеспечива .чось равенство измеренной черной температуры истинной температуре н,1амен11.1. The amount of metal vapors introduced into the flame: 1a should be sufficient to obtain maximum intensity (i.e., to get P1 black radiation) in the center of the spectral line to ensure that the black temperature measured is the true temperature n, 1man11.

2.Разрешаюн1а  сила и дпсперси  сиектральной аппаратуры должны быть достаточными дл  выделени  из спектральной лпнпи ее центра.пьной черной части.2. The resolution and strength of the spectral equipment should be sufficient to isolate its central black part from the spectral line.

3.Чу 5ствителы)ость измерител  светового иотока должна быть достаточной дл  нолучени  заданной точности измерени  интенсивности излучени ,   следовательно, и температуры .3. Chu 5) The hight of the light and current meter must be sufficient to obtain a given accuracy of measuring the intensity of the radiation, and hence the temperature.

Дл  измерени  температуры ио предлагаемому способу в плам  вводитс  один пз металлов щелочной группы (натрий, калий, литий) или щелочноземельной группы (магний, кальций, берилий).To measure the temperature of the proposed method, one pi of alkali metal group (sodium, potassium, lithium) or alkaline earth group (magnesium, calcium, beryllium) is introduced into the flame.

Введение металлов в плам  производитс , например, путем растворепи  пх солей в топливе илп путемThe introduction of metals into the flame is carried out, for example, by dissolving the salts in the fuel or by

SU449214A 1954-06-24 1954-06-24 Method for measuring true flame temperature SU99901A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU449214A SU99901A1 (en) 1954-06-24 1954-06-24 Method for measuring true flame temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU449214A SU99901A1 (en) 1954-06-24 1954-06-24 Method for measuring true flame temperature

Publications (1)

Publication Number Publication Date
SU99901A1 true SU99901A1 (en) 1954-11-30

Family

ID=48374059

Family Applications (1)

Application Number Title Priority Date Filing Date
SU449214A SU99901A1 (en) 1954-06-24 1954-06-24 Method for measuring true flame temperature

Country Status (1)

Country Link
SU (1) SU99901A1 (en)

Similar Documents

Publication Publication Date Title
SU99901A1 (en) Method for measuring true flame temperature
Cornell Pressure effect in bands of several dipole molecules
JPS5227395A (en) Distance measuring device
ONDRACEK Newsletter in stereology: Quantitative image analysis with electronic image analyzers(Electro-optical equipment for quantitative image analysis)
SU125926A1 (en) Thermocouple to measure the temperature of an ionized gas
BAIUNOV et al. Apparatus for measuring high brightness temperatures(Optical/electrical apparatus for measuring high brightness temperatures in 6, 000-100, 000 K range)
BZHOZOVSKI et al. Dynamic thermocouple for measuring plasma temperatures to 4000 deg C(Plasma temperature measurement from 3000 to 4000 C using platinum thermocouple with heating-curve time analyzer)
SU570838A1 (en) Method of investigating contraction
Atwater et al. Remanent Magnetization of Ancient Bricks
SU118615A1 (en) Method of condensing planned photogrammetric networks
SU134899A1 (en) A method of measuring the true temperatures of bodies with unknowns by a radiation pyrometer and a device for carrying out this method
SU92332A2 (en) Method for determination of dry matter in peat hydromass using a viscometer
SU122166A1 (en) Method for measuring telegraph reliability
Gardner et al. The need for improved sociometric instruments.
SU508690A1 (en) The way to configure a differential microcalorimeter
TEANEY et al. Evaluation of the use of a quantitative image analyzer to determine microhardness values(Image analyzer for quantitative determination of alloy microhardness)
FRIED Remote probing of the optical strength of atmospheric turbulence and of wind velocity(Remote probing of optical strength of atmospheric turbulence and of wind velocity at various altitudes by measuring spatial and temporal covariance of scintillation)
STEINER Optical radiation measurements: The present state of radiometry and photometry[Final Report]
EH et al. Thermal conductivities of fused and crystalline quartz
KATASEV et al. Measurement of the temperature of the upper atmosphere by the homodyne detection method(Upper atmosphere temperature measurement by homodyne detection of excited atoms and molecules radiation, using photodiode beat frequencies produced by spectral line emission)
PRITCHARD et al. Two-meter path difference interferometer for Fourier spectroscopy(Development of high resolving power interferometer for line shape measurement applications)
DAVIS The pH and potential measurements during stress corrosion of aluminum alloys(Microelectrodes for measuring pH gradients during stress corrosion of aluminum alloys and 1020 steel exposed to potassium chloride)
BITO Plasma diagnostic swift laser beams(Plasma diagnostic methods for measuring laser dispersion and interferometric phenomena)
WILD et al. Wear characteristics of material combinations in liquid sodium(Facility for wear testing sodium cooled reactor materials)
GB353281A (en) Improvements in and relating to temperature indicating devices for electrical apparatus