SU931110A3 - Process for producing flexible foamed polyurethane - Google Patents

Process for producing flexible foamed polyurethane Download PDF

Info

Publication number
SU931110A3
SU931110A3 SU752177452A SU2177452A SU931110A3 SU 931110 A3 SU931110 A3 SU 931110A3 SU 752177452 A SU752177452 A SU 752177452A SU 2177452 A SU2177452 A SU 2177452A SU 931110 A3 SU931110 A3 SU 931110A3
Authority
SU
USSR - Soviet Union
Prior art keywords
mixture
polyol mixture
polyol
water
oxide
Prior art date
Application number
SU752177452A
Other languages
Russian (ru)
Inventor
Идстрем Бу
Стремблад Матс
Original Assignee
Берол Кеми Аб (Фирма)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Берол Кеми Аб (Фирма) filed Critical Берол Кеми Аб (Фирма)
Application granted granted Critical
Publication of SU931110A3 publication Critical patent/SU931110A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • C08G18/4841Polyethers containing oxyethylene units and other oxyalkylene units containing oxyethylene end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • C08G18/485Polyethers containing oxyethylene units and other oxyalkylene units containing mixed oxyethylene-oxypropylene or oxyethylene-higher oxyalkylene end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

1510383 Polyurethane foam BEROL KEMI AB 1 Oct 1975 [2 Oct 1974] 40155/75 Heading C3R A polyurethane foam having a low degree of hardness and high hydrophilicity is prepared by reacting a polyisocyanate in the presence of a catalyst, blowing agent at least partly consisting of water and foam stabilizer with a mixture of at least two mutually insoluble, at least tri-functional polyether polyols, the polyol mixture having a hydroxyl number of 35 to 45, the proportion of primary hydroxyl groups in the polyol mixture being more than 55% and not more than 80% of the total number of hydroxyl groups in the polyol mixture, the polyol mixture containing 50-70% wt. of CH2CH2O units, and the amount of polyisocyanate and polyol mixture being such that the NCO index is 0À85 : 1 to 1À05 : 1. Preferably one of the polyols is soluble in water and preferably has an HLB value of at least 15 and a turbidity point of at least 88‹ C. and an average molecular weight of 3000 to 5000. The other polyol should preferably have an HLB value not exceeding 5 and a turbidity point of below 70‹ C. and an average M.Wt. of 3000 to 7000. The polyether polyols can be obtained by adding at least 2 different alkylene oxides, one of which is ethylene oxide and the remainder being preferably propylene oxide and/or butylene oxide; to a nucleus having at least 3 reactive hydrogens, e.g. glycerol, trimethylolpropane or triethanolamine, either as mixtures of alkylene oxides or separately in one or more batches. Suitable polyisocyanates are toluene diisocyanate, hexamethylenediisocyanate, diphenylmethanediisocyanate and polyphenylpolymethylenepolyisocyanate. The catalyst may be a tertiary amine and/or an organo-metal compound. In the examples foams are prepared from formulations comprising an 80/20 mixture of 2,4- and 2,6- toluene diisocyanate, water and optionally trichlorofluoromethane, a silicone oil foam stabilizer, triethylenediamine and dimethylaminoethanol as catalysts, and a polyether polyol mixture which is a mixture of two different reaction products of glycerol with ethylene oxide and propylene oxide.

Description

3 принима  во внимание то, что остальными спиртоокислами  вл ютс  окись пропилена, окись бутилена или смесь этих окисей. Внесение спиртоокисей производитс  обычными методами. Окись этилена и спиртоокиси с более высоким молекул рным весом могут быть добавлены либо в смеси, либо кажда  в отдельности в один или несколько приемов. Дл  получени  высокой степени м гкости необходимо, чтобы два полиэфирных спирта были взаимно нерастворимы , т.е. чтобы они имели различную степень гидрофильности. Так,один из многоатомных спиртов должен быть растворимым в воде и предпочтительно должен иметь показатель liLB,равный , по крайней мере, 15, и точку помутнени , по крайней мере, равную 88 С. Его средний молекул рный вес 3000-5000. Другой полиэфирный многоатомный спирт должен быть значительно более гидрофобным и иметь показатель HLB, не превышающий 5 и точку помутнени  ниже . Средний молеку л рный вес может быть несколько выше и колебатьс  от 3000 до 7000. Многоатомные спирты готов т следующим образом. a)К 92 вес.ч. глицерина сначала добавл ют 000 вес.ч. окиси пропилена и после этого 1300 вес.ч. окиси этилена. Полученный полиэфирный многоатомный спирт имеет гидроксильное число 36 и 75% первичных гидроксильных групп. . . b)К 92 вес.ч. глицерина сначала добавл ют 470 вес.ч. окиси пропилена и затем вес.ч. смеси, содержащей 18 окиси пропилена и 82% окиси этилена. Полученный полиэфирный многоатомный спирт имеет гидроксильное число 42 и 58% первичных гидроксильных групп. c)К 134 вес.ч. триметилпропана сначала добавл ют 3000 вес.ч. смеси , содержащей 18% окиси пропилена и 82% окиси этилена, после этого 300 вес.ч. окиси пропилена и наконец , 350 вес.ч. окиси этилена. Полу ченный многоатомный спирт имеет гид роксильное число,, равное 42 и процент гидроксильных групп, равный 73 d)К 99 вес.ч. глицерина сначала добавл ют 5000 вес.ч. окиси пропиле на и затем 700 вес.ч. окиси этилена Полученный многоатомный спирт имеет 04 гидроксильное число около 34 и процент первичных гидроксильных групп, равный 75%. Используемый согласно предлагаемому способу полиизоцианат должен иметь, по крайней мере, две функциональных группы, например это может быть толуолдиизоцианат, гексаметилендиизоцианат , дйфенилметандиизоцианат полифенилпол иметиленполиизоцианат и смесь перечисленных соединений. Предпочтительным изоцианатом  вл етс  толуолдиизоцианат, который может быть представлен изомерами: 2,4-формой или 2,6-формой, или смесью названных изомерных форм. Пригодна  смесь изомеров содержит около 80% 2,4-изомера и 20% 2,6-изомера, но с успехом можно использовать и другие пропорции изомеров. Количество добавл емого изоцианата должно быть подобрано в соответствии с остальными содержащимис  в реакционной смеси компонентами таким образом, чтобы изоцианатный индекс, т.е. отношение между изоцианатами и гидроксильными группами в реакционной смеси было 0,85-1,05, предпочтительно 0,90-0,98. Реакци  между изоцианатом и полиэфирным многоатомным спиртом проводитс  в присутствии в качестве катализатора амина,  вл ющегос , как правило, третичным амином, таким, как, например, триэтилендиамин, диметиламиноэтанол .и етраметилэтилендиамин . Также могут быть использованы в качестве катализатора металлорганические соединени , например, 2-этилгексанат олова, дибутилдилаурат олова, нафтенат свинца или ко бальта.Последние предпочтительны в малых количествах и в комбинации с аминами-катализаторами. Формирование  чеек и, следовательно, плотности полиуретанового пенопласта контролируетс  регулированием (общеприн тыми способами) количества добавл емой воды и любого другого раздувающего агента, например трихлорфторметана или метиленхлорида. Добавление стабилизаторов пены, таких, как силиконовое масло, обеспечивает хорошую стабильность пенопласта и хорошие физические характеристики. В дополние к упом нутым дополнител м (аддитивам) могут быть добавлены, если это необходимо, другие аддитивS ные вещества с помощью любого известного метода. Примеры 1-3. При помощи п тикомпонентной лабораторной вспе нивающей машины полиэфирный многоатомный спирт типа а) смешивают с полиэфирным многоатомным спиртом типа Ь), водой, силиконовым маслом триэтилендиамином, диметиламиноэта нолом и трихлорфторметаном в весовом соотношении, указанном в табл. Кроме того, в смесь добавл ют толу олдиизоцианат (80% 2, -изомера и 20, 2,6-изомера) в таком количест при котором изоцианатный индекс ра вен 0,95- Смесь выливают в форму, имеющую размеры 50x50x30 см, в которой при комнатной температуре по лучают через день окончательный пе нопласт. После выдерживани  в тече ние 2 ч при комнатной температуре полученный продукт имел следующие физиМеские характеристики. Таблица 1 Полиэфирный многоатомный спирт типа , а)25 25 253 taking into account that the remaining alcohol oxides are propylene oxide, butylene oxide or a mixture of these oxides. Alcohol oxides are made by conventional methods. Ethylene oxide and alcohol oxide with a higher molecular weight can be added either in a mixture or individually in one or several steps. To obtain a high degree of softness, it is necessary that the two polyether alcohols be mutually insoluble, i.e. so that they have a different degree of hydrophilicity. Thus, one of the polyhydric alcohols should be soluble in water and preferably should have a liLB of at least 15 and a cloud point of at least 88 C. Its average molecular weight is 3000-5000. Another polyether polyhydric alcohol must be significantly more hydrophobic and have a HLB index not exceeding 5 and the cloud point lower. The average molecular weight may be slightly higher and range from 3000 to 7000. Polyhydric alcohols are prepared as follows. a) K 92 weight.h. glycerol is first added 000 weight.h. propylene oxide and then 1300 weight.h. ethylene oxide. The resulting polyether polyhydric alcohol has a hydroxyl number of 36 and 75% of the primary hydroxyl groups. . . b) To 92 weight.h. glycerol is first added 470 parts by weight. propylene oxide and then weight.h. mixtures containing 18 propylene oxide and 82% ethylene oxide. The resulting polyether polyhydric alcohol has a hydroxyl number of 42 and 58% of the primary hydroxyl groups. c) To 134 weight.h. trimethylpropane was first added 3000 parts by weight. mixtures containing 18% propylene oxide and 82% ethylene oxide, then 300 parts by weight propylene oxide and finally, 350 weight.h. ethylene oxide. The polyhydric alcohol obtained has a hydroxyl number equal to 42 and the percentage of hydroxyl groups equal to 73 d) K 99 parts by weight glycerol is first added 5000 parts by weight. oxide propyl on and then 700 weight.h. ethylene oxide. The resulting polyhydric alcohol has a 04 hydroxyl number of about 34 and a percentage of primary hydroxyl groups of 75%. Used in accordance with the proposed method, the polyisocyanate must have at least two functional groups, for example, it may be toluene diisocyanate, hexamethylene diisocyanate, diphenylmethane diisocyanate, polyphenylpolymethylene polyisocyanate, and a mixture of these compounds. The preferred isocyanate is toluene diisocyanate, which may be isomers: the 2,4-form or the 2,6-form, or a mixture of the mentioned isomeric forms. A suitable mixture of isomers contains about 80% of the 2,4-isomer and 20% of the 2,6-isomer, but other proportions of the isomers can be successfully used. The amount of isocyanate added must be selected in accordance with the remaining components contained in the reaction mixture so that the isocyanate index, i.e. the ratio between isocyanates and hydroxyl groups in the reaction mixture was 0.85-1.05, preferably 0.90-0.98. The reaction between the isocyanate and the polyether polyhydric alcohol is carried out in the presence of an amine as a catalyst, which is usually a tertiary amine, such as, for example, triethylenediamine, dimethylaminoethanol and etramethylethylenediamine. Organometallic compounds, for example, tin 2-ethylhexanate, tin dibutyldilaurate, lead naphthenate or cobalt can also be used as catalysts. The latter are preferred in small amounts and in combination with amines-catalysts. The formation of the cells and, therefore, the density of the polyurethane foam is controlled by controlling (by conventional means) the amount of added water and any other blowing agent, for example, trichlorofluoromethane or methylene chloride. Adding foam stabilizers, such as silicone oil, provides good foam stability and good physical performance. In addition to the additions (additives), other additives can be added, if necessary, using any known method. Examples 1-3. Using a five-component laboratory injection machine, polyether polyhydric alcohol of type a) is mixed with polyester polyhydric alcohol of type b), water, silicone oil, triethylenediamine, dimethylaminoethane and trichlorfluoromethane in the weight ratio indicated in Table. In addition, tolu old diisocyanate (80% 2, -isomer and 20, 2,6-isomer) is added to the mixture in such a quantity, where the isocyanate index is 0.95. The mixture is poured into a mold having dimensions 50x50x30 cm, in which at room temperature, the final foamed plastic is obtained every other day. After 2 hours at room temperature, the resulting product had the following physical characteristics. Table 1 Polyether type polyhydric alcohol, a) 25 25 25

Физические характери CASIT.ffi )Physical characteristics CASIT.ffi)

Плотность, кг/м 19,7 Предел прочностиDensity, kg / m 19.7 Strength

на разрыв, 1,2 Коэффициент удлинени  при разрыве , вес. 430 Сопротивление раздиранию, кг/см 0,5 at break, 1.2 The coefficient of elongation at break, weight. 430 Tear resistance, kg / cm 0,5

Компоненты, вес.ч.Components, parts by weight

Примеры Examples

I 4 I 5I 4 I 5

Полиэфирный многоатомный спирт d)Polyether polyhydric alcohol d)

Полиэфирный многоатомный спирт Ь) Polyether polyhydric alcohol b)

ВодаWater

Силиконовое масло Триэтилендиамин (33) Диме тилами ноэта нол 0 Остаточна  деформаци  на 90%-ное сжатие, 10 10 10 Упругость при ударе,% 50 50 50 Твердость при 25%-ном сжатии, Kp/dm 0,6 0,9 1,1 Твердость при 65%-ном сжатии, Kp/dm 1,2 1,7 2,1 Из результатов видно, что полученные пенопласты имеют очень низкую твердость. Их твердость относитс  к твердости пенопласта, полученного согласно известному способу, при той же плотности и при тех же примерных физических характеристиках, как 1/2. Примеры i и S При помощи п тикомпонентной лабораторной вспенивающей машины полиэфирный многоатомньй спирт типа d) был смешан с полиэфирным многоатомным спиртом типа Ь), (эти спирты взаимно нерастворимы ) водой, силиконовым маслом, триэтилендиамином и диметиламинэтанолом в весовом соотношении , указанном в табл.2.Кроме того, добавл ют толуолдиизоцианат (80% 2,4-изомера и 20% 2,6-изомера) в количестве, при котором изоцианатный индекс равен 0,95. Смесь выливают в форму, имеющую размеры 50x50x30 см, в которой она остаетс  в течение одного дн  о получени  пенопласта. Исследование через 2 ч при комнатных услови х физических свойств олученного пенопласта дало следуюие результаты. Таблица 2Silicone oil Triethylenediamine (33) Dimetyamo noetha nol 0 Residual deformation at 90% compression, 10 10 10 Resilience at impact,% 50 50 50 Hardness at 25% compression, Kp / dm 0,6 0,9 1, 1 Hardness at 65% compression, Kp / dm 1.2 1.7 2.1. From the results it can be seen that the resulting foams have very low hardness. Their hardness refers to the hardness of the foam obtained according to a known method, with the same density and approximate physical characteristics as 1/2. Examples i and S Using a five-component laboratory foaming machine, polyester polyatomic alcohol type d) was mixed with polyester polyhydric alcohol type b), (these alcohols are mutually insoluble) with water, silicone oil, triethylenediamine and dimethylamine ethanol in a weight ratio indicated in Table 2 In addition, toluene diisocyanate (80% of the 2,4-isomer and 20% of the 2,6-isomer) is added in an amount where the isocyanate index is 0.95. The mixture is poured into a mold having a size of 50x50x30 cm, in which it remains for one day to obtain a foam. A study after 2 hours at room conditions of the physical properties of the foamed foam produced the following results. table 2

Физические характеристики (ASTWD156 -629)Physical Specifications (ASTWD156 -629)

Плотность, кг/м 29 29Density, kg / m 29 29

Твердость приHardness at

сжатии, compression,

«p/dm 1,3 1,0"P / dm 1,3 1,0

Твердость приHardness at

65%-ном сжатии,65% compression

Kp/dm 2,5 2,0Kp / dm 2.5 2.0

Полученные полиуретановые пенопласты , кроме низкой твердости, обладают равномерной  чеистой структу| |ой ,. высоким коэффициентом удлинени  при разрыве и высоким пределом прочности на разрыв.The obtained polyurethane foams, in addition to low hardness, have a uniform cellular structure | | oh,. high elongation at break and high tensile strength.

Во врем  образовани  пенистой структуры не наЗг одалось никакого изменени  объема.During the formation of the foamy structure, no volume change was observed.

Claims (1)

1. Патент Франции, № 2172860, кл. с 08 g 22/00, опублик. 1971 (прототип).1. The patent of France, No. 2172860, cl. from 08 g 22/00, published 1971 (prototype).
SU752177452A 1974-10-02 1975-10-02 Process for producing flexible foamed polyurethane SU931110A3 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE7412427A SE405366B (en) 1974-10-02 1974-10-02 PROCEDURE FOR THE PREPARATION OF POLYURETHANE FOAM WITH EXTREMELY LAS HARDNESS AND HIGH HYDROFILITY

Publications (1)

Publication Number Publication Date
SU931110A3 true SU931110A3 (en) 1982-05-23

Family

ID=20322307

Family Applications (1)

Application Number Title Priority Date Filing Date
SU752177452A SU931110A3 (en) 1974-10-02 1975-10-02 Process for producing flexible foamed polyurethane

Country Status (14)

Country Link
AT (1) AT347694B (en)
BE (1) BE833932A (en)
CA (1) CA1051600A (en)
DE (1) DE2543541A1 (en)
DK (1) DK443475A (en)
ES (1) ES441658A1 (en)
FI (1) FI752733A (en)
FR (1) FR2286842A1 (en)
GB (1) GB1510383A (en)
IT (1) IT1047259B (en)
NL (1) NL7511617A (en)
NO (1) NO143160C (en)
SE (1) SE405366B (en)
SU (1) SU931110A3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4129666C2 (en) * 1991-09-06 1996-12-12 Stankiewicz Gmbh Process for the production of a viscoelastic damping foam with an adhesive surface

Also Published As

Publication number Publication date
SE7412427L (en) 1976-04-05
GB1510383A (en) 1978-05-10
CA1051600A (en) 1979-03-27
FR2286842A1 (en) 1976-04-30
FI752733A (en) 1976-04-03
IT1047259B (en) 1980-09-10
ATA750175A (en) 1978-05-15
NO143160C (en) 1980-12-29
AT347694B (en) 1979-01-10
DE2543541A1 (en) 1976-04-08
NL7511617A (en) 1976-04-06
SE405366B (en) 1978-12-04
BE833932A (en) 1976-01-16
NO143160B (en) 1980-09-15
NO753325L (en) 1976-04-05
ES441658A1 (en) 1977-04-01
FR2286842B1 (en) 1978-04-07
DK443475A (en) 1976-04-03

Similar Documents

Publication Publication Date Title
CA2398507C (en) Viscoelastic polyurethane foams
EP1797129B1 (en) Method for producing flexible polyurethane foams
EP0022617B2 (en) Polyisocyanate compositions and their use in the preparation of polyurethane foams
CN103814081B (en) For the production of the method for the upper air current property moved polyether foam and the foam produced by the method
EP1799735B1 (en) Method for producing flexible polyurethane foams
DE69030029T2 (en) Production of polyurethane foams without the use of inert blowing agents
US5521225A (en) Process for preparing flexible foams
DE3856207T2 (en) Process for the production of low density flexible polyurethane foams
US4833176A (en) Process for the preparation of cold setting flexible polyurethane molded foams
FI95141B (en) Liquid polyisocyanate blends, process for their preparation and their use for the production of soft polyurethane foams
EP1650240B1 (en) Flexible polyurethane foams of low density and low hardness
DE3806476A1 (en) METHOD FOR PRODUCING CALINARY POLYURETHANIC SOFT FORMULA MATERIALS WITH EXCELLENT DAWNING PROPERTIES
MXPA00012713A (en) Polyurethane elastomers exhibiting improved demold green.
US3730919A (en) Process for production of rigid self-skinning polyurethane foam
DE69209686T2 (en) Propellant reaction catalyst composition that causes cell opening in the resulting polyurethane foam
US4144386A (en) Process for the production of flexible polyurethane foams
AU621313B2 (en) Polyisocyanate compositions
US4143004A (en) Process for the preparation of polyurethane foam
KR20050026097A (en) Prepolymer, polyol composition and process for making a flexible foam
DE19725020A1 (en) Process for the production of flexible flexible polyurethane foams
DE69010982T2 (en) Flexible polyurethane foams and processes for their production.
EP0480090B1 (en) Polyisocyanate compositions and their use in the preparation of flexible polyurethane foams
GB2109803A (en) High molecular weight polyether polyols
SU931110A3 (en) Process for producing flexible foamed polyurethane
EP1247827B1 (en) Process for the preparation of flexible polyurethane foams