SU852941A1 - Method of metal deoxidizing - Google Patents

Method of metal deoxidizing Download PDF

Info

Publication number
SU852941A1
SU852941A1 SU792831581A SU2831581A SU852941A1 SU 852941 A1 SU852941 A1 SU 852941A1 SU 792831581 A SU792831581 A SU 792831581A SU 2831581 A SU2831581 A SU 2831581A SU 852941 A1 SU852941 A1 SU 852941A1
Authority
SU
USSR - Soviet Union
Prior art keywords
oxygen
melt
deoxidized
deoxidizing
metal deoxidizing
Prior art date
Application number
SU792831581A
Other languages
Russian (ru)
Inventor
Давид Яковлевич Поволоцкий
Василий Ефимович Рощин
Виктор Павлович Грибанов
Original Assignee
Челябинский Политехническийинститут Им. Ленинского Комсомола
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Челябинский Политехническийинститут Им. Ленинского Комсомола filed Critical Челябинский Политехническийинститут Им. Ленинского Комсомола
Priority to SU792831581A priority Critical patent/SU852941A1/en
Application granted granted Critical
Publication of SU852941A1 publication Critical patent/SU852941A1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

кислителей. При этом в раскисл емом расплаве концентраци  кислорода цонижаетс , а попадаемый в этот расплав кислород св зываетс  с элементом-раскислителем, образу  окисцую фазу. Равцовесные копцептрации раствореииого кислорода в раскисл юплем расплаве значительно ниже, чем в раскисл емом расплаве, поэтому процесс раскислени  прекратитс  лишь тогда, когда выравн ютс  концентрации кислорода в раскисл ющем и раскисл емом расплавах .acidifiers. In this case, the oxygen concentration in the deoxidized melt decreases and the oxygen that enters this melt is bound to the deoxidizing element, forming the oxidation phase. Equal-weight co-grating of the solution of oxygen in the melt melting process is significantly lower than in the deoxidized melt; therefore, the deoxidation process is stopped only when the oxygen concentrations in the deoxidizing and deoxidized melts are equalized.

Пример. В нечи Таммана в корундовом тигле расплавили 500 г восстановленного водородом железа и раскислили его алюминием. В пробирку из двуокиси циркони , стабилизированной окисью иттри , поместили 10 г нераскисленного восстановленного водородом железа, содержащего 0,17% кислорода. При температуре 1600°С пробирку с нераскисленным железом погрузили в расплав раскисленного железа и выдержали некоторое врем . Во врем  выдержки кислород из нераскислснного расилава через стенку пробирки из двуокиси циркони  (проницаема  дл  кислорода мембрана)-диффундировал в раскисленный расплав. После выдержки пробирки извлекали и в полученных образцах определ ли содержание кислорода методом вакуу мдлавлени  на эксхалографе «Бальцерс . В результате анализа оказалось, что содержание кислорода в образцах послеExample. In Tamman's nech, 500 g of hydrogen reduced iron were melted in a corundum crucible and deoxidized with aluminum. In a test tube of zirconium dioxide stabilized with yttria oxide, 10 g of non-acidified hydrogen reduced iron containing 0.17% oxygen was placed. At a temperature of 1600 ° C, the tube with unoxidized iron was immersed in the melted iron melt and held for some time. During the exposure, the oxygen from the unsalted rasilav through the wall of the zirconia tube (oxygen permeable membrane) diffused into the deoxidized melt. After holding the tubes, the tubes were removed and the oxygen content in the obtained samples was determined by the vacuum method using a Balzers exhalograph. As a result of the analysis, it turned out that the oxygen content in the samples after

выдержки 6 мин понизилось до 0,06%, при выдержке 30 мин - до 0,01%.extracts of 6 minutes decreased to 0.06%, while holding 30 minutes to 0.01%.

Таким образом, в результате диффузии кислорода через мембрану из двуокиси циркони  произошло раскисление расплава железа.Thus, as a result of the diffusion of oxygen through a zirconia membrane, iron melt is deoxidized.

Использование в промышленности предлагаемого способа раскислени  позвол ет иолучать металл чистый по неметаллическим включени м с минимальными количествами вредных примесей, что особенно важно дл  прецизионных сплавов.The use in industry of the proposed deacidification method allows the metal to be cleaned by non-metallic inclusions with minimal amounts of harmful impurities, which is especially important for precision alloys.

Claims (2)

1. Явойский В. И. и др. Металлурги  стали. М., «Металлурги , 1973, с. 377-385. 1. Yavoisky V.I. and others. Steel metallurgy. M., “Metallurgists, 1973, p. 377-385. 2. Авторское свидетельство СССР NS 529229, кл. С 21С 5/52, 1974.2. USSR author's certificate NS 529229, cl. C 21C 5/52, 1974.
SU792831581A 1979-10-15 1979-10-15 Method of metal deoxidizing SU852941A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU792831581A SU852941A1 (en) 1979-10-15 1979-10-15 Method of metal deoxidizing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU792831581A SU852941A1 (en) 1979-10-15 1979-10-15 Method of metal deoxidizing

Publications (1)

Publication Number Publication Date
SU852941A1 true SU852941A1 (en) 1981-08-07

Family

ID=20855716

Family Applications (1)

Application Number Title Priority Date Filing Date
SU792831581A SU852941A1 (en) 1979-10-15 1979-10-15 Method of metal deoxidizing

Country Status (1)

Country Link
SU (1) SU852941A1 (en)

Similar Documents

Publication Publication Date Title
Park et al. Inclusion control of ferritic stainless steel by aluminum deoxidation and calcium treatment
US3773641A (en) Means for determining the oxygen content of liquid metals
ES2020521B3 (en) GAS ANALYSIS IN CAST METALS.
Turkdogan et al. Review of oxygen sensors for use in steelmaking and of deoxidation equilibria
RU2478954C2 (en) Device to collect gases in metal melts and method to measure gas concentration therein
Goldberg et al. The diffusion of carbon in iron-carbon alloys at 1560 C
SU852941A1 (en) Method of metal deoxidizing
JP2694595B2 (en) Method for determining gas concentration in molten metal
Little et al. Factors affecting the reoxydation of molten steel during continuous casting
Aukrust et al. Thermodynamic properties of Pd Fe alloys in the temperature range 1200–1460° C
GB1350248A (en) Method and apparatus for the determination of the oxygen content of metal melts
RU2541333C1 (en) Method of steel deoxidation in electroslag remelting
JP2856006B2 (en) Trace oxygen analysis method for steel
Wood et al. The determination of oxygen in titanium-manganese alloys
West et al. Microdetermination of copper using dithiooxamide crayons and the ring-oven technique
FR2388889A1 (en) PERFECTED PROCESS FOR MELTED METAL REFINING
US4673655A (en) Method of analyzing oxygen or nitrogen contained in titanium group metal or alloy thereof
Sigworth et al. Conditions for nucleation of oxides in Fe-Si-O alloys
Zholdubayeva et al. Studies of changes in the activity of dissolved oxygen in the simulation of ferromanganese filtration
Fitterer et al. Oxygen in Steel Refining as Determined by Solid Electrolyte Techniques
SE425766B (en) TERN.R PROTECTIVE GAS BLEND FOR LIGHT REAR WELDING
JPH07146288A (en) Analysis sample collecting device for molten metal
Lindskog et al. Removal of oxide inclusions resulting from strong deoxidizers
SU1594142A1 (en) Method of dissolving molybdenum
Shevtsov et al. Solubility of Oxygen in High-Manganese Iron Melts