SU605348A1 - Dielectric material shf heating method - Google Patents

Dielectric material shf heating method

Info

Publication number
SU605348A1
SU605348A1 SU762333231A SU2333231A SU605348A1 SU 605348 A1 SU605348 A1 SU 605348A1 SU 762333231 A SU762333231 A SU 762333231A SU 2333231 A SU2333231 A SU 2333231A SU 605348 A1 SU605348 A1 SU 605348A1
Authority
SU
USSR - Soviet Union
Prior art keywords
shf
dielectric material
heating method
heating
electromagnetic wave
Prior art date
Application number
SU762333231A
Other languages
Russian (ru)
Inventor
Виктор Николаевич Язиков
Original Assignee
Саратовский политехнический институт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Саратовский политехнический институт filed Critical Саратовский политехнический институт
Priority to SU762333231A priority Critical patent/SU605348A1/en
Application granted granted Critical
Publication of SU605348A1 publication Critical patent/SU605348A1/en

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Description

1one

Изобретение относитс  к СВЧ-энергетике и может использоватьс  при нагреве диэлектрических материалов с целью их тепловой обработки .The invention relates to microwave energy and can be used when heating dielectric materials for the purpose of heat treatment.

Известен способ, при котором нагрев материала осуществл етс  линейно-пол ризованной электромагнитной волной и эффект дроблени  напластованной горной породы зависит от пол ризации волны относительно направлени  пластов, причем взрывное дробление камн  наблюдаетс  лишь в том случае, когда вектор электрического пол  ориентирован перпендикул рно к плоскости слоев породыA known method in which the material is heated by a linearly polarized electromagnetic wave and the crushing effect of stratified rock depends on the wave polarization relative to the direction of the strata, and explosive fragmentation of the stone is observed only when the electric field vector is oriented perpendicular to the plane of the layers breeds

1. Однако при этом способе нагрев не контролируетс .1. However, with this method, heating is not controlled.

Наиболее близким техническим решением  вл етс  способ сверхвысокочастотного нагрева диэлектрических материалов, основанный на облучении материала электромагнитной волной {2.The closest technical solution is the method of microwave heating of dielectric materials, based on the irradiation of the material by the electromagnetic wave {2.

Однако и при этом способе нагрев неравномерен .However, with this method, the heating is uneven.

Цель изобретени  - повышение равномерности нагрева.The purpose of the invention is to increase the uniformity of heating.

Дл  этого в способе сверхвысокочастотного нагрева диэлектрических материалов, основанном на облучении материала электромагнитной волной, материал облучают электромагнитной волной круговой пол ризации. For this, in the method of microwave heating of dielectric materials based on the irradiation of a material by an electromagnetic wave, the material is irradiated with an electromagnetic wave of circular polarization.

Предлагаемый способ иллюстрируетс  чертежом .The proposed method is illustrated in the drawing.

Способ сверхвысокочастотного нагрева заключаетс  в следующем.The method of microwave heating is as follows.

Согласно электромагнитной теории слоисто-неоднородна  среда с толщиной слоев, малой по сравнению с длиной волны, обладает свойствами одноосного кристалла с оптической осью, перпендикул рной к сло м.According to electromagnetic theory, a layered-inhomogeneous medium with a layer thickness that is small compared to the wavelength, has the properties of a uniaxial crystal with an optical axis perpendicular to the layers.

Выделим из сложной двухкомпонентной слоистой среды два элемента, имеющих взаимно перпендикул рную ориентацию слоев.We distinguish from a complex two-component layered medium two elements having mutually perpendicular orientation of the layers.

Тензор комплексной диэлектрической проницаемости мелкослоистой среды  вл етс  однократно вырожденным и имеет следующие главные значени :The complex dielectric permittivity tensor of a thin layer medium is singly degenerate and has the following principal values:

g EI - 2(1 + 2) g EI - 2 (1 + 2)

(1) (2) h в2+h2 l(1) (2) h B2 + h2 l

е - J iiiJL 2f2 Л1 + Л,e - J iiiJL 2f2 L1 + L,

где Ej. и е II -соответственно комплексные диэлектрические проницаемости выделенных элементов;where is ej. and e II, respectively, the complex dielectric constant of the selected elements;

81 и 62 - соответственно комплексные диэлектрические проницаемости отдельных слоев двухкомпонентной структуры;81 and 62 are, respectively, the complex dielectric permeabilities of individual layers of a two-component structure;

hi и hz - толщины слоев.hi and hz are the layer thicknesses.

Отсюда видно, что электрофизические параметры элементов слоисто-неоднородногоThis shows that the electrophysical parameters of the elements are layered inhomogeneous

SU762333231A 1976-03-11 1976-03-11 Dielectric material shf heating method SU605348A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU762333231A SU605348A1 (en) 1976-03-11 1976-03-11 Dielectric material shf heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU762333231A SU605348A1 (en) 1976-03-11 1976-03-11 Dielectric material shf heating method

Publications (1)

Publication Number Publication Date
SU605348A1 true SU605348A1 (en) 1978-04-30

Family

ID=20651847

Family Applications (1)

Application Number Title Priority Date Filing Date
SU762333231A SU605348A1 (en) 1976-03-11 1976-03-11 Dielectric material shf heating method

Country Status (1)

Country Link
SU (1) SU605348A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684776A (en) * 1985-05-01 1987-08-04 Shell Oil Company Method and apparatus for uniform microwave bulk heating of thick viscous materials in a cavity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684776A (en) * 1985-05-01 1987-08-04 Shell Oil Company Method and apparatus for uniform microwave bulk heating of thick viscous materials in a cavity

Similar Documents

Publication Publication Date Title
Zhang et al. Large phase modulation of THz wave via an enhanced resonant active HEMT metasurface
Kukhtarev et al. Transient energy transfer during hologram formation in LiNbO3 in external electric field
Chen et al. Generation and Control of Terahertz Spin Currents in Topology‐Induced 2D Ferromagnetic Fe3GeTe2| Bi2Te3 Heterostructures
Forouzmand et al. Tunable two dimensional optical beam steering with reconfigurable indium tin oxide plasmonic reflectarray metasurface
Kamanina Fullerene-dispersed nematic liquid crystal structures: dynamic characteristics and self-organization processes
RU2014137445A (en) OPHTHALMIC DEVICE WITH VARIABLE OPTICAL PROPERTIES, INCLUDING LIQUID CRYSTAL ELEMENTS
SU605348A1 (en) Dielectric material shf heating method
Entezar et al. Nonreciprocal optical isolation via graphene based photonic crystals
US5267076A (en) Process for obtaining a structure generating non-linear electrooptical effects, structure obtained and applications thereof
Qiao et al. Enhancing the brightness of quantum dot light-emitting diodes by multilayer heterostructures
Mita et al. Two-photon resonant Raman and luminescence of excitonic molecules in CuCl
Tao et al. Tailoring Dirac plasmons via anisotropic dielectric environment by design
Jamshidi-Ghaleh et al. Designing tunable narrow band filters using a plasma photonic crystal structure with sinusoidal modulated plasma defect layer
US3854141A (en) Zoom interferometer antenna
Ren et al. A electrically tunable patch antenna with P (VDF-TrFE) thin film
Tanaka et al. Electrically controlled millimeter-wave focusing properties of liquid crystal lens
Nozue et al. Guided wave mode of the surface exciton polariton in anthracene crystal
Zhu et al. Tunable graphene FSS for terahertz applications
US3021754A (en) Light polarizing apparatus or the like
Mo et al. Tunable Infrared Reflection Polarization Converter Based on Graphene Metasurface
Mo et al. Transmissive Two-bit Terahertz Encoder Based on VO2 Metamaterial
Scott et al. Multilayer light scattering and the laser gyro
Bai et al. Polarization independent and optical-controlled metamaterial modulator in terahertz regime
Jung Dielectric Permittivity Tensor of ErFeO3 for Radiation in the Visible Spectrum
Liu et al. Terahertz Beam Splitter Based on Self-Complementary Coding Metasurfaces