SU576533A1 - Method of monitoring chemical-heat treatment processes, particularly nitration - Google Patents

Method of monitoring chemical-heat treatment processes, particularly nitration

Info

Publication number
SU576533A1
SU576533A1 SU7602343493A SU2343493A SU576533A1 SU 576533 A1 SU576533 A1 SU 576533A1 SU 7602343493 A SU7602343493 A SU 7602343493A SU 2343493 A SU2343493 A SU 2343493A SU 576533 A1 SU576533 A1 SU 576533A1
Authority
SU
USSR - Soviet Union
Prior art keywords
heat treatment
nitration
treatment processes
monitoring chemical
load current
Prior art date
Application number
SU7602343493A
Other languages
Russian (ru)
Inventor
Юрий Михайлович Лахтин
Яков Давидович Коган
Владимир Алексеевич Александров
Константин Андреевич Грачев
Алеарк Александрович Аркуша
Вячеслав Николаевич Букарев
Original Assignee
Московский Автомобильно-Дорожный Институт
Предприятие П/Я А-7555
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Московский Автомобильно-Дорожный Институт, Предприятие П/Я А-7555 filed Critical Московский Автомобильно-Дорожный Институт
Priority to SU7602343493A priority Critical patent/SU576533A1/en
Application granted granted Critical
Publication of SU576533A1 publication Critical patent/SU576533A1/en

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

1one

Изобретение относитс  к области химикотермической обработки металлов и сплавов, в частности к способам контрол  качества диффузионных слоев и скорости их формировани .The invention relates to the field of chemical-heat treatment of metals and alloys, in particular, to methods for controlling the quality of diffusion layers and the speed of their formation.

Известен способ контрол  фазового состава поверхности при химико-термической обработке , заключающийс  в рентгеноструктурном контроле поверхности непосредственно при термической обработке 1.The known method of controlling the phase composition of the surface during chemical heat treatment, which consists in the X-ray structural testing of the surface directly during heat treatment 1.

Недостатком способа  вл етс  ограниченность получаемой информации и невозможность контрол  глубины диффузионного сло .The disadvantage of this method is the limited information received and the inability to control the depth of the diffusion layer.

Известен также способ контрол  процессов химико-термической обработки, например, азотировани , заключающийс  в измерении напр жепи , пропорционального амплитуде тока нагрузки.There is also known a method for controlling the processes of chemical heat treatment, for example, nitriding, which consists in measuring a voltage proportional to the amplitude of the load current.

Недостаток этого способа состоит в низкой чувствительности измерени , позвол ющей контролировать ограниченный класс материалов .The disadvantage of this method is the low sensitivity of the measurement, allowing control of a limited class of materials.

Дл  повышени  точности, по предлагаемому способу измер ют разностный сигнал между напр жением, пропорциональным частоте и амплитуде тока нагрузки.To improve accuracy, the proposed method measures the difference signal between a voltage proportional to the frequency and amplitude of the load current.

Изменение структуры и химического состача образца в процессе химико-термической обработки вызываег изменение электрических параметров датчика, что в свою очередь мен ет частоту и амплитуду тока нагрузки измерительного генератора. Частота и амплитуда тока нагрузки завис т от структуры и химического состава как сердцевины, так и поверхности образца. Р1зменение структуры и состава поверхностого сло  в большей степени вли ют на изменение частоты тока нагрузки, а изменение структуры сердцевины вли ет в одинаковой степени на изменение как амплитуды,The change in the structure and chemical composition of the sample during the process of chemical heat treatment leads to a change in the electrical parameters of the sensor, which in turn changes the frequency and amplitude of the load current of the measuring generator. The frequency and amplitude of the load current depends on the structure and chemical composition of both the core and the sample surface. Changing the structure and composition of the surface layer to a greater extent influences the change in the frequency of the load current, and the change in the structure of the core affects the change in both the amplitude and

так и частоты тока нагрузки. Таким образом, измерение разностного сигнала между напр жением , пропорциональным амплитуде тока нагрузки, и напр жением, пропорциональным частоте тока нагрузки будет зависеть толькоand load current frequency. Thus, measuring the difference signal between a voltage proportional to the amplitude of the load current and a voltage proportional to the frequency of the load current will only depend

от изменени  фазового состава и строени  поверхностного сло  анализируемого образца.from changes in the phase composition and structure of the surface layer of the analyzed sample.

На черт, показано предлагаемое устройство , которое состоит из датчика 1, измерительного генератора 2, эталонного генератора 3, смесител  4, усилител  5, частотомера 6, индикатора 7, образца 8, герметичного муфел  9.The devil shows the proposed device, which consists of a sensor 1, a measuring generator 2, a reference generator 3, a mixer 4, an amplifier 5, a frequency meter 6, an indicator 7, a sample 8, a sealed muffle 9.

Устройство работает следующим образом. Обезжиренный образец полмещаетс  в индуктивный проходной датчик, который прикреплен к крышке герметичного муфел  и находитс  в зоне рабочей печи.The device works as follows. The defatted sample is placed in an inductive pass-through sensor, which is attached to the lid of the sealed muffle and is located in the zone of the working furnace.

В процессе химико-термической обработки измен етс  структура диффузного (азотироIn the process of chemical heat treatment, the structure of the diffuse (nitrogenous

SU7602343493A 1976-03-23 1976-03-23 Method of monitoring chemical-heat treatment processes, particularly nitration SU576533A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU7602343493A SU576533A1 (en) 1976-03-23 1976-03-23 Method of monitoring chemical-heat treatment processes, particularly nitration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU7602343493A SU576533A1 (en) 1976-03-23 1976-03-23 Method of monitoring chemical-heat treatment processes, particularly nitration

Publications (1)

Publication Number Publication Date
SU576533A1 true SU576533A1 (en) 1977-10-15

Family

ID=20655465

Family Applications (1)

Application Number Title Priority Date Filing Date
SU7602343493A SU576533A1 (en) 1976-03-23 1976-03-23 Method of monitoring chemical-heat treatment processes, particularly nitration

Country Status (1)

Country Link
SU (1) SU576533A1 (en)

Similar Documents

Publication Publication Date Title
US4888818A (en) Method and apparatus for the determination of the setting process in an inorganic aqueous binder system
SU576533A1 (en) Method of monitoring chemical-heat treatment processes, particularly nitration
SE8403225D0 (en) METHOD OF FIXED SAMPLING OF A PERIODIC SIGNAL
SU667923A1 (en) Method of magnetic noise inspection of ferromagnetic articles
SU991280A1 (en) Magnetic noise structuroscopy method
SU1216716A1 (en) Electromagnetic method of measuring specific electric conductance of non-ferromagnetic conducting articles
SU661449A1 (en) Method of measuring amplification factor of magnetic field concentrator
SU670879A1 (en) Device for magnetic-noise inspection of ferromagnetic materials
RU99104345A (en) METHOD FOR DETERMINING IRON CONTENT IN OPERATIONAL SAMPLES OF ORE MATERIAL AND DEVICE FOR ITS IMPLEMENTATION
SU672708A1 (en) Method of indirect monitoring of dynamic eccentricity of induction electric machine
SU1165970A1 (en) Method of structuroscopy of ferromagnetic articles
SU684099A1 (en) Method of investigating stability of soil to washout
SU1390529A1 (en) Method and device for determining density of fluid media
SU1219966A1 (en) Method of measuring thickness and specific conductance of sheet materials
SU866518A1 (en) Device for measuring ferrite content in specimen
SU691784A1 (en) Method of the determination of iron oxide content in materials
SU983526A1 (en) Electromagnetic structurescope
SU1714466A1 (en) Method for determining coefficient of friction of materials
SU578610A1 (en) Method of multiparametric checking with aid of eddy currents
SU1216637A1 (en) Thickness gauge of dielectric coatings
SU409131A1 (en) METHOD FOR DETERMINATION OF KOH !!, ENTRATION AND PRIMSGY IN HIGH-PURE GLA;: TLL, G5AH, and ALLOYS
SU1089487A1 (en) Metal material cavitaion stability determination method
SU864104A1 (en) Method of determining the depth of surface flaws of ferromagnetic articles
SU1037165A1 (en) Electromagnetic structure scope
SU637655A1 (en) Method of electromagnetic testing of article mechanical properties