SU528376A1 - Method for determining corrosion state of steel reinforcement - Google Patents
Method for determining corrosion state of steel reinforcementInfo
- Publication number
- SU528376A1 SU528376A1 SU2115903A SU2115903A SU528376A1 SU 528376 A1 SU528376 A1 SU 528376A1 SU 2115903 A SU2115903 A SU 2115903A SU 2115903 A SU2115903 A SU 2115903A SU 528376 A1 SU528376 A1 SU 528376A1
- Authority
- SU
- USSR - Soviet Union
- Prior art keywords
- steel reinforcement
- corrosion state
- steel
- potential
- reinforcement
- Prior art date
Links
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Description
1one
Изобретение относитс к технике защиты железобетонных конструкций от коррозии и может быть использовано при оценке коррозионного состо ни стальной арматуры.This invention relates to a technique for protecting reinforced concrete structures from corrosion and can be used in assessing the corrosion state of steel reinforcement.
Известен способ оценки коррозионного состо ни стальной арматуры, заключающийс в том, что пол ризуют образец и измер ют плотность тока (1). Недостатком известного способа вл етс то, что необходимо знать площадь исследуемого образца, что трудно осуществить в естественных услови х.A known method for evaluating the corrosion state of steel reinforcement consists in polarizing a sample and measuring the current density (1). The disadvantage of this method is that it is necessary to know the area of the sample under study, which is difficult to implement in natural conditions.
Известен способ оценки коррозионного состо ни стальной арматуры в железобетонных конструкци х без вскрыти защитного сло бетона путем измерени электрического потенциала стали (2).A known method for evaluating the corrosion state of steel reinforcement in reinforced concrete structures without opening the protective layer of concrete by measuring the electric potential of the steel (2).
Недостатком этого способа вл етс неопределенность оценки состо ни арматуры при стационарном потенциале - 300 мА и ниже , поскольку мала величина потенциала может быть вызвана торможением катодного процесса и не свидетельствовать о коррозии стали.The disadvantage of this method is the uncertainty of the assessment of the state of the reinforcement at a stationary potential of 300 mA and lower, since the small potential value can be caused by inhibition of the cathodic process and does not indicate corrosion of the steel.
Цель изобретени - повышение достоверности измерений.The purpose of the invention is to increase the reliability of measurements.
Это достигаетс тем, что по предлагаемому способу арматуру предварительно пол ризуют в течение 1 мин током при потенциале от -f-1 до , затем отключают ток и измер ют врем изменени потенциала до О В.This is achieved by the fact that according to the proposed method, the reinforcement is pre-polarized for 1 min with a current at a potential from -f-1 to, then the current is turned off and the time of potential change is measured to O.
22
По результатам измерений оценивают коррозионное состо ние: стальна арматура не корродирует, если потенциал снижаетс до ±0 В более, чем за 1 мин, арматура корродирует , если потенциал снижаетс до ±0 В менее , чем за 1 мин.According to the measurement results, the corrosion condition is assessed: the steel reinforcement does not corrode, if the potential drops to ± 0 V in more than 1 minute, the reinforcement corrodes, if the potential drops to ± 0 V in less than 1 minute.
Выбор времени 1 мин. сделан с учетом того , что при более длительной пол ризации арматуры в бетоне анодным током на поверхности стали образуетс слой продуктов коррозии , а также измен етс состав среды у поверхности стали; в результате этого пассивирование стали после отключени тока замедл етс или становитс вовсе невозмол ным. Увеличение продолжительности пол ризации понижает достоверность измерений и увеличивает их длительность, что в услови х обследований железобетонных конструкций, когда необходимо выполнить больпаое количество измерений , затрудн ет работу. Увеличение продолжите .тьности пол ризации сверх 1 мин. не дает технических преимуществ.Timing 1 min. made taking into account the fact that with longer polarization of reinforcement in concrete by anode current, a layer of corrosion products forms on the steel surface, and the composition of the medium near the steel surface changes; as a result, the passivation of the steel after a current shutdown slows down or becomes completely non-extinct. An increase in the polarization duration decreases the reliability of measurements and increases their duration, which, under the conditions of surveys of reinforced concrete structures, when it is necessary to perform a large number of measurements, makes work difficult. Zoom in. Continue polarization in excess of 1 min. does not provide technical advantages.
Нижний предел накладываемого напр жени выбран с учетом того, что в предлагаемом способе предусматриваетс временное выведение стали из пассивного состо ни , дл этого наложенный потенциал с учетом омической составл ющей должен быть не ниже +1,0 В. Максимальна величина наложенного потенциала +12 В выбрана из услови безопаснойThe lower limit of the applied voltage is chosen taking into account the fact that the proposed method provides for the temporary removal of steel from the passive state. For this, the applied potential, taking into account the ohmic component, must be no less than +1.0 V. The maximum value of the applied potential is +12 V. out of condition safe
работы. Кроме того, дальнейшее увеличение потенциала вызывает интенсивное образование продуктов коррозии на поверхности стали и снижает достоверность измерений.work. In addition, a further increase in potential causes an intensive formation of corrosion products on the steel surface and reduces the reliability of measurements.
На чертеже показана электрическа схема измерени .The drawing shows an electrical measurement circuit.
На поверхность железобетонной конструкции 1 устанавливают медносульфатный электрод 2, который соединен с источником тока 3 и катодным вольтметром 4. Дл вклю ;ени и выключени тока служит выключатель 5.A copper sulphate electrode 2 is installed on the surface of the reinforced concrete structure 1, which is connected to a current source 3 and a cathode voltmeter 4. A switch 5 is used to turn the current on and off.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SU2115903A SU528376A1 (en) | 1975-03-21 | 1975-03-21 | Method for determining corrosion state of steel reinforcement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SU2115903A SU528376A1 (en) | 1975-03-21 | 1975-03-21 | Method for determining corrosion state of steel reinforcement |
Publications (1)
Publication Number | Publication Date |
---|---|
SU528376A1 true SU528376A1 (en) | 1976-09-15 |
Family
ID=20613487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SU2115903A SU528376A1 (en) | 1975-03-21 | 1975-03-21 | Method for determining corrosion state of steel reinforcement |
Country Status (1)
Country | Link |
---|---|
SU (1) | SU528376A1 (en) |
-
1975
- 1975-03-21 SU SU2115903A patent/SU528376A1/en active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Andrade et al. | Corrosion rate monitoring in the laboratory and on-site | |
JPH0464583B2 (en) | ||
Vedalakshmi et al. | Reliability of Galvanostatic Pulse Technique in assessing the corrosion rate of rebar in concrete structures: Laboratory vs field studies | |
Rosa et al. | Electrolysis in Concrete: EB Rosa, Chief Physicist, Burton McCollum, Associate Physicist, and OS Peters, Assistant Physicist, Bureau of Standards | |
US4051436A (en) | Apparatus for and method of measuring polarization potential of a metallic structure | |
SU528376A1 (en) | Method for determining corrosion state of steel reinforcement | |
Berke et al. | Electrochemical methods of determining the corrosivity of steel in concrete | |
Pangrazzi et al. | Cathodic polarization and protection of simulated prestressed concrete pilings in seawater | |
JPH10221292A (en) | Detecting method for steel material corrosion in concrete | |
Qian et al. | Evaluation of Reinforcement Corrosion in Repaired Concrete Bridge SlabsA Case Study | |
JP2000044364A (en) | Detection of repair-needing portion of concrete structure and its repair | |
RU2069861C1 (en) | Method of current conductive structure polarization potential measurement | |
Vedalakshmi et al. | Embeddable corrosion rate‐measuring sensor for assessing the corrosion risk of steel in concrete structures | |
ATE23753T1 (en) | METHOD OF DETECTING AND QUANTIFICATION OF DAMAGE TO METALLIC STRUCTURES. | |
McKubre et al. | Harmonic Impedance Spectroscopy for the determination of corrosion rates in cathodically protected systems | |
Novokshchenov | Corrosion surveys of prestressed bridge members using a half-cell potential technique | |
Giorgini et al. | Assessment of the throwing power generated by a surface applied galvanic cathodic protection system on a light weight concrete bridge deck soffit | |
JPH07333188A (en) | Polarization resistance measuring method of under-film metal and polarization resistance measuring sensor therefor | |
Geng et al. | A time-saving method for assessing the corrosion inhibitor efficiency | |
JP3516587B2 (en) | Method for detecting continuity of steel in concrete | |
JPH0342422B2 (en) | ||
SU1293574A1 (en) | Method of determining corrosion conditions of underground reinforced concrete structures | |
Ohtsuka et al. | Insulation diagnosis of GIS based on amplitude ratio of first incoming PD-induced electromagnetic wave measured by UHF method | |
Sørensen et al. | Monitoring of reinforcement corrosion in marine concrete structures by the galvanostatic pulse method | |
Lee et al. | Use of Alternating Current Impedance Spectra as a Supplemental Verification of Rebar Passivation in Two Marine Viaducts |