SU527775A1 - A method of manufacturing a porous electrode for a chemical current source with a non-aqueous electrolyte - Google Patents

A method of manufacturing a porous electrode for a chemical current source with a non-aqueous electrolyte

Info

Publication number
SU527775A1
SU527775A1 SU2101906A SU2101906A SU527775A1 SU 527775 A1 SU527775 A1 SU 527775A1 SU 2101906 A SU2101906 A SU 2101906A SU 2101906 A SU2101906 A SU 2101906A SU 527775 A1 SU527775 A1 SU 527775A1
Authority
SU
USSR - Soviet Union
Prior art keywords
current source
manufacturing
aqueous electrolyte
porous electrode
chemical current
Prior art date
Application number
SU2101906A
Other languages
Russian (ru)
Inventor
Николай Степанович Лидоренко
Анатолий Степанович Макаревич
Петр Александрович Середа
Рудольф Петрович Соболев
Николай Сергеевич Николаев
Евгений Георгиевич Ипполитов
Борис Матвеевич Жигарновский
Original Assignee
Предприятие П/Я В-2763
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Предприятие П/Я В-2763 filed Critical Предприятие П/Я В-2763
Priority to SU2101906A priority Critical patent/SU527775A1/en
Application granted granted Critical
Publication of SU527775A1 publication Critical patent/SU527775A1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

электродов из порошкового и гранулированного металлического лити .electrodes from powder and granulated lithium metal.

Предлагаемый порообразователь при кошакте с электролитом химического источника, содержащим электрсшроводную добавку, или даже чистым растаортпелем раствор етс  и переходат в электролит, образу  поры в электроде, и станош{тс  компонентом электролита.The proposed blowing agent with koshakte with an electrolyte of a chemical source containing an electrically conductive additive, or even pure rastaortpelle dissolves and passes into the electrolyte, forming pores in the electrode, and stanza {ts component of the electrolyte.

Наиболее пригоден бшгодор  своей тг троосопичности в качеетве порообразсшатеп  гексафторфос ат кали , который при контакте электрода с электролитом, состо пщм из 1-ЗМ pacTBopjiThe most suitable is its tg of troosopicity as a pore-forming hexafluorophos atom, which, when the electrode contacts the electrolyte, consists of 1-ZM pacTBopji

Количество порообразовател , гексафторфосфата кали , вес. The amount of the blowing agent, potassium hexafluorophosphate, weight.

Отсутствует 15 30None 15 30

гексафторарсёната лити  в метилформамйате, вступает в обменную реакцию с электропроводной добавкой, образу  хорошо растворимью соли.lithium hexafluoroarsenate in methylformamyate, enters an exchange reaction with an electrically conductive additive, forming a highly soluble salt.

В полученных)по предлагаемому способу электродах поры распределены равномерно по всему объему, рабоча  поверхность высокоразвита . Это приводит к снижению пол ризапви и увеличению , разр дного тока химического источника. In the obtained) according to the proposed method, the electrodes pores are evenly distributed throughout the volume, the working surface is highly developed. This leads to a decrease in polarization and an increase in the discharge current of the chemical source.

В таблице представлено увеличение времени работы химического источника тока в зависимости от количества порообразовател  использовашюго в составе электродов.The table shows the increase in the operating time of the chemical current source, depending on the amount of the blowing agent used in the composition of the electrodes.

Врем  работы до конечного напр жени  разр да 2 в, часWork time to final voltage of discharge 2 per hour

1one

1,51.5

66

Примечание: температура электролит - 1,5М раствор Note: electrolyte temperature - 1.5M solution

Claims (2)

1.Патент Фрашдаи 2.054.938. М.юк И 01 m 13/00,07.05.1971 г.1. Patent Fradsdai 2.054.938. M. yuk and 01 m 13 / 00.07.05.1971 2.Патент Фракили 2.093.287 М. кл. Н 01 m 13/00 от 28.01.1972 г.2. The patent of Frakili 2.093.287 M. cl. H 01 m 13/00 of 01/28/1972
SU2101906A 1975-02-03 1975-02-03 A method of manufacturing a porous electrode for a chemical current source with a non-aqueous electrolyte SU527775A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU2101906A SU527775A1 (en) 1975-02-03 1975-02-03 A method of manufacturing a porous electrode for a chemical current source with a non-aqueous electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU2101906A SU527775A1 (en) 1975-02-03 1975-02-03 A method of manufacturing a porous electrode for a chemical current source with a non-aqueous electrolyte

Publications (1)

Publication Number Publication Date
SU527775A1 true SU527775A1 (en) 1976-09-05

Family

ID=20609060

Family Applications (1)

Application Number Title Priority Date Filing Date
SU2101906A SU527775A1 (en) 1975-02-03 1975-02-03 A method of manufacturing a porous electrode for a chemical current source with a non-aqueous electrolyte

Country Status (1)

Country Link
SU (1) SU527775A1 (en)

Similar Documents

Publication Publication Date Title
US2996562A (en) Electric-current producing cell and generation of current with same
GB834122A (en) Electric current producing cell and method of generating current with same
US4056663A (en) Performance in an organic electrolyte
US3873369A (en) Tungsten oxide-containing cathode for non-aqueous galvanic cell
ES468997A1 (en) Additive for an alkaline battery employing divalent silver oxide positive active material
ATE60464T1 (en) PROTECTED METALLIC COMPONENTS.
Hussey et al. An electrochemical study of the Fe (iii)/Fe (ii) electrode reaction in the aluminum chloride+ N-(n-butyl) pyridinium chloride molten salt system
ES448081A1 (en) Secondary battery or cell
SU527775A1 (en) A method of manufacturing a porous electrode for a chemical current source with a non-aqueous electrolyte
ES465435A1 (en) Non-aqueous cell having as cathode a mixture of lead dioxide and lead monoxide and/or lead particles
JPS6110869A (en) Porous lithium electrode and use in nonaqueous electrochemical cell
Fujinaga et al. Electrochemical studies of sulfonates in non-aqueous solvents: Part I. Polarographic reductions of alkali metal ions with sulfonate supporting electrolyte in N, N-dimethylformamide and acetonitrile
JPS5661771A (en) Battery
JPS5918831B2 (en) battery
US3565695A (en) Method of forming an amalgamated zinc electrode
US3367800A (en) High energy-density heat-activated voltaic cells at intermediate temperatures
JPS59112573A (en) Alkali earth metal adding agent for nonaqueous battery with manganese dioxide
US3547703A (en) Nonaqueous battery with ethylene glycol sulfite electrolyte solvent
JPS6110871A (en) Corroded metal electrode and use in nonaqueous battery
Dowgird et al. Deactivation of manganese after its reduction at mercury electrodes
US3582403A (en) Process for preparing electrodes suitable for alkaline storage batteries
US3532553A (en) Cell with peroxydiphosphate depolarizer
Fahys et al. Influence of water addition on structural and electrochemical behaviour of liquid ammoniates: A study of LiClO4· 4NH 3 ammoniate/H2O mixtures
Salomon Conductivities in Thionyl Chloride
SU128508A1 (en) Galvanic cell