SU522196A1 - The method of obtaining reactive polystyrene - Google Patents

The method of obtaining reactive polystyrene

Info

Publication number
SU522196A1
SU522196A1 SU2112282A SU2112282A SU522196A1 SU 522196 A1 SU522196 A1 SU 522196A1 SU 2112282 A SU2112282 A SU 2112282A SU 2112282 A SU2112282 A SU 2112282A SU 522196 A1 SU522196 A1 SU 522196A1
Authority
SU
USSR - Soviet Union
Prior art keywords
copolymer
peroxide
weight
styrene
sodium
Prior art date
Application number
SU2112282A
Other languages
Russian (ru)
Inventor
Станислав Андреевич Воронов
Владимир Алексеевич Пучин
Евгений Михайлович Киселев
Виктор Сергеевич Токарев
Original Assignee
Львовский Ордена Ленина Политехнический Институт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Львовский Ордена Ленина Политехнический Институт filed Critical Львовский Ордена Ленина Политехнический Институт
Priority to SU2112282A priority Critical patent/SU522196A1/en
Application granted granted Critical
Publication of SU522196A1 publication Critical patent/SU522196A1/en

Links

Claims (6)

п рный вес рассчитывают по данным вискозиметрии с использованием К 1,23 и оС 0,7 2. Содержание активного кислорода вычисл кт на основании результатов иодо- метрического титровани , а также данных эпемеьтаркого анализа. ИК-спектры полимеров снимают на двухлучевом спектрометре ИСК-14 в вкде пленок из растворов на призмахКаСЕи LtF . Синтез перекиснофункциональны с сополимеров стирола. Пример 1. В герметичный реактор тщательно продутый сухим аргоном, помещают 17,76 г тетрагидрофурана и пропускают через него сухой аргон, после чего раствор ют в нем 0,4 О г нафталина и внос т в раствор 0,10 г металлического нат- руг . Образовениб натрийнафталинового комплекса фикс ИРУЮТ по возникновению сине- зег.екой окраски, и в момент полного израс ходоЕ-ани  натри  в раствор добавл кТ смес 14,25 г (вес 95%) стирола и 0,75 г (5 вес.%) диметилвинилэтинилметил-третбутапг .ерекрюи. Сополимеризацию провод т при 2О С и за 5 час конверси  составл ет 99,1%. Полученный сополимер имеет мол. в. 9О . 10 и содержит О;42 вес.% (97,8% от теоретического) активног-о кислорода, В ИК-спектре сополимера обнаруживают две полосы поглощени  при 1614 и 15О5 см , относ щиес  к валентным колебан  м двойных св зей бекаольного кольца, а также ггрк 3012 см соответствующие св  з м C-I, а также полосы вглентнь х колебаний перекиси при 86 съ , что подтвер ждает строение синтезированного перекисно функпиокалыюго полистирола, Г; р и IV е р The average weight is calculated using viscometry data using K 1.23 and oC 0.7 2. The content of active oxygen was calculated based on the results of iodometric titration, as well as data from the thermal analysis. The IR spectra of the polymers are taken on an ISK-14 dual-beam spectrometer in a film of solutions from prism K-CAC and LtF. Synthesis of peroxide functional with styrene copolymers. Example 1. 17.76 g of tetrahydrofuran was placed in a sealed reactor thoroughly purged with dry argon, and dry argon was passed through it, after which 0.4 O g of naphthalene was dissolved therein and 0.10 g of metallic tension was introduced into the solution. Formation of the sodium naphthalene complex fix IRRUUT by the occurrence of a blue-orange color, and at the time of complete consumption of sodium E-solution to the solution add a kT mixture of 14.25 g (weight 95%) of styrene and 0.75 g (5 weight%) of dimethylvinyl ethynylmethyl - tertbutag. The copolymerization is carried out at 2 ° C and in 5 hours the conversion is 99.1%. The resulting copolymer has a mol. at. 9O. 10 and contains; 42 wt.% (97.8% of theoretical) active oxygen. In the IR spectrum of the copolymer, two absorption bands are found at 1614 and 15O5 cm, referring to the valence vibrations of double bonds of the benzoic ring, and also, HGRP 3012 cm, the corresponding bonds of CI, as well as the bands of inhale peroxide vibrations at 86 sg, which confirms the structure of the synthesized peroxide functional polyoxylene, G; p and iv e p 2. Натрийнафталиновый комплекс готов т по методике, описанной в примере 1, путем взаимодействи  0,2 г нафталина и О,С5 г металлического натри  После образовани  комплекса в реактор ввод т смесь 14,25 г (вес 95%) стирола и О,75 г (З вес.%) диметилввнилэтинилме тил-трет-бутилперекиск. За 9 час при 2О с хлубила превра ени достигает 98,8%. Полученггый сополимер имеет мол.Е. 160 . Юи содержит 0,42 вес теореактивного кислорода .У,t5,; от тического) . ИК-спектр сополимера иденти чек описанному в примере ,1. При м е р 2. The sodium naphthalene complex is prepared according to the procedure described in Example 1 by reacting 0.2 g of naphthalene and O, C5 g of metallic sodium. After forming the complex, a mixture of 14.25 g (weight 95%) of styrene and O, 75 is introduced into the reactor. g (W wt.%) dimethylvniletinylmethyl-tert-butylperekisk. For 9 hours at 2 ° C, the conversion reached 98.8%. The resulting copolymer has a mol.E. 160 Yui contains 0.42 times the weight of teoreactive oxygen. U, t5 ,; from tic). The IR spectrum of the copolymer is identical to that described in Example 1. Example 3. Сополимеризадию диметилвинилэтинил- метил-трет-бутилперекиси со стиролом при соотношении и по методике, указаннь х в примере 1, провод т при |4О С, За 2 час конверси  сбставп ет 99,4%. Перекиснофункцио.кальный сополимер имеет мол.в. 98 . 1О содержит 0,42 вес.% активного кислорода (97,8% от теоретического ). ИК-спектр сополимера идентичен опианному в примере 1. Пример 3. The copolymerisadium dimethylvinyl ethynyl methyl tert-butyl peroxide with styrene at a ratio and according to the method indicated in example 1 is carried out at | 4 ° C. For 2 hours, conversion is 99.4%. The peroxide functional copolymer has a mol.v. 98 1O contains 0.42% by weight of active oxygen (97.8% of theoretical). The IR spectrum of the copolymer is identical to the opian in example 1. Example 4. Натрийнафталиновый комплекс готов т о методике, описанной в примере 1, путем заимодействи  0,4 г нафталина и О,1О г металлического натри . После образовани  комплекса в реактор ввод т смесь 5,17 г (51,7 вес.%) диметилвинилэтиннлметил- рет-бутилперекиси и 4,83 г (48,3 вес.%) тирола Полимеризацию провод т при минус 30 С и за 7 час глубина полимеризаии достигает 78%. Полученный с ополимер имеет мол. в. 7 0.10 и содержит 1,325 вес.% акаивного кислорода (99,0% от теоретического). ИК-спектр сополимера идентичен описанному в примере 1. Пример 4. The sodium naphthalene complex is prepared using the procedure described in Example 1, by borrowing 0.4 g of naphthalene and O, 1O g of metallic sodium. After the formation of the complex, a mixture of 5.17 g (51.7 wt.%) Of dimethylvinyl etinnemethyl-butyl peroxide and 4.83 g (48.3 wt.%) Of the tyrol is introduced into the reactor. Polymerization is carried out at minus 30 C and for 7 hours polymerization depth reaches 78%. Obtained from the polymer has a mol. at. 7 0.10 and contains 1,325 wt.% Acaivable oxygen (99.0% of theoretical). The IR spectrum of the copolymer is identical to that described in Example 1. Example 5. Со полимеризацию 14,625 .г (вес 97,5) стирола и О,375 г вес. 2,5%) диметилвинипэтикилметил-трет- бутилперекиси провод т в присутствий комплекса приготовленного по методике, описанной в примере 1, и при тех же услови х . ; За 2 час конверси  составл ет 96,0%, сополимер имеет мол.в. 1ОО .10 и содержит 0,22 вес.% активного кислорода (98% от теоретического). ИК.-спектр сополимера идентичен описанному в примере 1. 1 р и м е р 5. With the polymerization of 14.625. G (weight 97.5) of styrene and O, 375 g weight. 2.5%) dimethylvinyl ethyl methyl tert-butyl peroxide is carried out in the presence of the complex prepared according to the procedure described in Example 1 and under the same conditions. ; In 2 hours, the conversion is 96.0%, the copolymer is mol. 1OO .10 and contains 0.22 wt.% Of active oxygen (98% of theoretical). The IR-spectrum of the copolymer is identical to that described in example 1. 1 6. В герметический реактор , тщательно продутый сухим аргоном, помещают 17,76 г тетрагидрофурана и пропускают через него сухой аргон, после чего раствор ют в нем 0,4 г нафталина и внос т в раствор О,1 г металлического натри . В раствор добавл ют смесь 13,5 г (90 Бес.%) диметилвинилэтинил1.1етил-трет- бутилперекиси и 1,5 г (Ю вес/о) стирола. Сополиьаеркзацию провод т при flO С и за 10 час конверси  составл ет 82 вес.%. Перекисно-функциональный сополимер имеет характеристическую, в зкость 0,22 дл/г и содержит вес. 7, активного кислорода (98,5% от теоретического). ПК-спектр сополимера индентичен описанному в примере 1. Формула изобретени  Способ г.олучени  реакдио шоспособногс полистирола путем сополимеризации стирола с перекискым мономером в среде органического растворител , отличающийс  тем, что, с целью получени  полистирола с высоким содержан1-:ем переК .1СНЫХ групп, в качестве перекисного моОо6. In a hermetic reactor, thoroughly purged with dry argon, 17.76 g of tetrahydrofuran are placed and dry argon is passed through it, after which 0.4 g of naphthalene is dissolved in it and 0 g of sodium metal is added to the solution. To the solution is added a mixture of 13.5 g (90 Bes.%) Dimethylvinyl ethynyl1.1 tetyl-tert-butyl peroxide and 1.5 g (10 w / o) styrene. Copolyarcations are carried out at flO C and in 10 hours the conversion is 82 wt.%. The peroxide-functional copolymer has a characteristic viscosity of 0.22 dl / g and contains weight. 7, active oxygen (98.5% of theoretical). The PC spectrum of the copolymer is identical to that described in Example 1. The invention The method of obtaining reactive polystyrene by copolymerizing styrene with peroxide monomer in an organic solvent, characterized in that, in order to obtain polystyrene with a high content of: as peroxide mooo номера используют диметипвинипэтинипме-Источники информации, прин тые во внитип-трет-бутипперекись и процесс провод тмание при экспертизе:The numbers use dimetypvinipetinipme-Sources of information, received in vnitip-tert-butypepepekis and the process is carried out at examination: в присутствии натрий нафтапиново1го ком-1. Патент США № 3536676, класс 26Оплекса при минус 7О - плюс 4О С.78.5, 1969 г.in the presence of sodium naphthapinate com-1. US patent No. 3536676, class 26Opleksa at minus 7O - plus 4O P.78.5, 1969 522196 522196
SU2112282A 1975-03-11 1975-03-11 The method of obtaining reactive polystyrene SU522196A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU2112282A SU522196A1 (en) 1975-03-11 1975-03-11 The method of obtaining reactive polystyrene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU2112282A SU522196A1 (en) 1975-03-11 1975-03-11 The method of obtaining reactive polystyrene

Publications (1)

Publication Number Publication Date
SU522196A1 true SU522196A1 (en) 1976-07-25

Family

ID=20612373

Family Applications (1)

Application Number Title Priority Date Filing Date
SU2112282A SU522196A1 (en) 1975-03-11 1975-03-11 The method of obtaining reactive polystyrene

Country Status (1)

Country Link
SU (1) SU522196A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2410248A (en) * 2004-01-22 2005-07-27 Gen Electric Charge transfer-promoting materials and electronic devices incorporating same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2410248A (en) * 2004-01-22 2005-07-27 Gen Electric Charge transfer-promoting materials and electronic devices incorporating same

Similar Documents

Publication Publication Date Title
Shirakawa et al. Infrared spectra of poly (acetylene)
Inoue et al. Stereochemistry of copolymerization of carbon dioxide with epoxycyclohexane
Yamamoto et al. Activation of Iron-Alkyl Bonds in Dialkylbis (dipyridyl) iron (II) by Interaction with Olefins
Kurihara et al. Synthesis of ionic block polymers for desalination membranes
Miyashita et al. End-functionalized polymers of styrene and p-methylstyrene by living cationic polymerization with functionalized initiators
Yamashita et al. Block Copolymerization. III. Syntheses of Multiblock Copolymers of Polytetrahydrofuran and Polystyrene by Ion Coupling
SU522196A1 (en) The method of obtaining reactive polystyrene
Miwa et al. Polymerization of bis-oxetanes consisting of oligo-ethylene oxide chain with lithium salts as initiators
Saegusa Cationic polymerization involving covalent propagating species
Saegusa et al. Polymerization via Zwitterion. 10. Alternating Cooligomerization of 2-Methyl-2-oxazoline with Ethylenesulfonamide
Saegusa et al. Studies on the Ring-Opening Polymerization of Cyclic Ethers. Kinetics of Initiation Reaction by Triethyloxonium Tetrafluoroborate
Narita et al. Anionic polymerization of fluorine‐containing vinyl monomers, 4.‘Ate’complex initiated polymerizations of fluoroalkyl acrylates and methacrylates
Meunier et al. Poly (vinyl chloroformate) and derivatives: 1. Polymerization of vinyl chloroformate, vinyl carbamates and vinyl carbonates
Abu-Abdoun et al. Cationic polymerization photochemically and thermally induced by phenothiazine cation radical salts
Posada et al. Photooxidation of cured fluorinated polymers—II. Comparison with non-fluorinated polyethers
Uno et al. Grafting of a bicycloorthoester onto polymers bearing sulfonium salt structures
Ren et al. Amide transformation as an efficient postpolymerization modification approach for the synthesis of functional polyacetylenes
Onen et al. Polymers with acyloxime ester in the main chain: Synthesis, characterization and initiator properties of an azo‐containing ester initiator
Rabek et al. Studies on photodegradation of poly (vinyl chloride) accelerated by α-hydroperoxy-tetrahydrofuran
Yuki et al. Anionic Copolymerization of Styrene and trans-Stilbene with n-Butyllithium
Kushibiki et al. Spontaneous polymerization of the nitroethylene–isobutyl vinyl ether system
Yatsu et al. Polymerization of Ethylene by Trialkylaluminum-Lewis Base-Peroxide Catalyst
Azuma et al. Cationic ring‐opening copolymerization of seven‐membered cyclic sulfite and oxetane in one‐shot feeding
González et al. Influence of Water on the Cationic Polymerisation of 2‐Ethenylfuran by Trifluoroacetic Acid in Methylene Dichloride
Aybar et al. Electroinitiated polymerization of butadiene sulfone