SU504263A1 - A method of manufacturing a sealed nickel-hydrogen battery - Google Patents

A method of manufacturing a sealed nickel-hydrogen battery

Info

Publication number
SU504263A1
SU504263A1 SU2050987A SU2050987A SU504263A1 SU 504263 A1 SU504263 A1 SU 504263A1 SU 2050987 A SU2050987 A SU 2050987A SU 2050987 A SU2050987 A SU 2050987A SU 504263 A1 SU504263 A1 SU 504263A1
Authority
SU
USSR - Soviet Union
Prior art keywords
manufacturing
battery
electrolyte
hydrogen
hydrogen battery
Prior art date
Application number
SU2050987A
Other languages
Russian (ru)
Inventor
Борис Иоселевич Центер
Вячеслав Михайлович Сергеев
Александр Ильич Клосс
Валентин Алексеевич Никольский
Александр Исакович Служевский
Original Assignee
Предприятие П/Я В-2410
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Предприятие П/Я В-2410 filed Critical Предприятие П/Я В-2410
Priority to SU2050987A priority Critical patent/SU504263A1/en
Application granted granted Critical
Publication of SU504263A1 publication Critical patent/SU504263A1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hybrid Cells (AREA)

Description

Ч5вствительноеть к дозировке электролита ,, Как при избыточном, так и при недостаточном количестве электролита мОщностные параметры водородного электрода оказываютс  ниже, чем при некотором, оптимальном содержании электролита; Ё услови х передозировки газового электрода зат и удн етс  процесс доставки водорода к повер} ности электрода, а при недос татке электролита возникают добавочные омические сопротивлени  дл  тока ионизаци водорода. Определение оптимального количества электролита провод т по току воздушной депол ризации на водородном электроде. Это возможно потому, что процесс ионизац кислорода воздуха происходит на тех же водородных электродах и также чувствителен к дозировке. Дл  oпpeдeлeJIИ  тока ионизации кислоро да аккумул тор, в который уже залито некоторое количество электролита, перед гер метизацией подключают к источнику посто нного напр жени  величиной 0|3-1,35в. При таких значени х напр зкений на водородном электроде аккумул тора может реализоватьс  только прсшесс иоиизаций кис- лорода воздуха,: так как дл  генерации водорода на аккумул тор необходимо подать напр жение не ниже 1,4в. Определив величину тока ионизации кислорода, провод т корректировку количества электролита в данном аккумул торе в соответствии с имеющейс  зависимостью дозировки от величины тока ионизации дл  данного типа аккумул торов . фЬрмула изобретени  Способ изготовлени  герметичного никель-водородного аккумул тора путем нанесени  активной массы и катализатора на подложки разноименньос электродов, разделейн  их Сепаратором, установки в корпус, присоединени  токоотводов электродов к выводам аккумул тора, заливки электролита и герметизации, отличающийс  тем, что, с целью улучшени  электрических характеристик , выводы аккумул тора до герме -. тизации подсоедин ют к одноименньм полюсам источника посто нного напр жени  величиной 0,8-1,36в дл  ионизации кислорода воздуха на водородном электроде и заливают количество электролита, соотeTCTByraue максимальной величине тока ионизации кислорода.Part 5 to the dosage of the electrolyte; As with excessive and insufficient electrolyte, the power parameters of the hydrogen electrode are lower than with a certain, optimal electrolyte content; Under the conditions of overdose of the gas electrode, the process of hydrogen delivery to the surface of the electrode increases, and if there is a shortage of electrolyte, additional ohmic resistances arise for the current of hydrogen ionization. The determination of the optimal amount of electrolyte is carried out according to the current of air depolarization at the hydrogen electrode. This is possible because the process of ionization of air oxygen occurs on the same hydrogen electrodes and is also sensitive to dosage. For the purpose of determining the ionization current of oxygen, the battery, into which a certain amount of electrolyte is already poured, is connected to a constant voltage source with a value of 0 | 3-1.35v before the chemical insulation. With such values of voltages on the hydrogen electrode of the battery, only the succession of oxygen in the air can be realized: since a voltage of not less than 1.4 volts is required to generate the hydrogen to the battery. Having determined the amount of oxygen ionization current, the amount of electrolyte in this battery is adjusted in accordance with the dosage dependence on the value of ionization current for this type of battery. Formula of the invention A method of manufacturing a sealed nickel-hydrogen battery by applying an active mass and a catalyst on substrates of different electrodes separated by a Separator, installed in a housing, connecting the collector electrodes to the terminals of the battery, filling the electrolyte and sealing, characterized in that electrical characteristics, battery leads to germe -. Testing is connected to the same poles of a DC voltage source of 0.8-1.36V to ionize the oxygen of the air on the hydrogen electrode and pour the amount of electrolyte, according to the TCTByraue maximum oxygen ionization current.

JotM Jotm

0.07$$ 0.07

0.0500.050

0,0250.025

1515

3.03.0

7.5 Дозиродка мл7.5 Dosydrodka ml

6.06.0

f,5f, 5

SU2050987A 1974-08-06 1974-08-06 A method of manufacturing a sealed nickel-hydrogen battery SU504263A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU2050987A SU504263A1 (en) 1974-08-06 1974-08-06 A method of manufacturing a sealed nickel-hydrogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU2050987A SU504263A1 (en) 1974-08-06 1974-08-06 A method of manufacturing a sealed nickel-hydrogen battery

Publications (1)

Publication Number Publication Date
SU504263A1 true SU504263A1 (en) 1976-02-25

Family

ID=20593280

Family Applications (1)

Application Number Title Priority Date Filing Date
SU2050987A SU504263A1 (en) 1974-08-06 1974-08-06 A method of manufacturing a sealed nickel-hydrogen battery

Country Status (1)

Country Link
SU (1) SU504263A1 (en)

Similar Documents

Publication Publication Date Title
US3080440A (en) Storage battery
GB1523550A (en) Gas component sensor
TW345756B (en) Current interrupter for electrochemical cells
DE69924858D1 (en) BATTERY CONSTRUCTION WITH INCREASED INTERNAL VOLUME FOR ACTIVE MATERIALS
DE69918699D1 (en) BATTERY CONSTRUCTION WITH REDUCED VOLUME SET
BG63137B1 (en) Capacitor with double electrical layer
GB1505425A (en) High discharge capability sealed through connector
JP2938514B2 (en) Gas sensor
GB1250259A (en)
Tobias et al. The immersion potential of high surface electrodes
SU504263A1 (en) A method of manufacturing a sealed nickel-hydrogen battery
KR920018997A (en) Batteries for cell inversion
Macdonald Electrode polarization of ionic conductors
US3672994A (en) Sodium-sulfur cell with third electrode
Hills et al. Cathodic Oxygen Reduction in the Sealed Lead‐Acid Cell
US4435742A (en) Electrochemical transistor structure with two spaced electrochemical cells
FR2276704A1 (en) Electric battery - modules with conductive and liquid proof separators between positive and negative materials
FR2278168A1 (en) Electrode for electrolytic cells - consisting of three dimensional electrically non-conducting material with electrically conducting network on surface
EP0093539A3 (en) Improved double layer energy storage device
US1602915A (en) Dry cell
SE8005528L (en) ELECTRICAL BLYACK CUMULATOR WITH THIN ELECTRODES
JPH077670B2 (en) Hydrogen-oxygen fuel cell using alkaline electrolyte
JPS56143664A (en) Organic electrolyte battery
JPS6160549B2 (en)
EP0149478A3 (en) Method of operation of a fuel cell