SU475670A1 - Method for changing and stabilizing the magnetic characteristics of thin magnetic films - Google Patents

Method for changing and stabilizing the magnetic characteristics of thin magnetic films

Info

Publication number
SU475670A1
SU475670A1 SU1000752A SU1000752A SU475670A1 SU 475670 A1 SU475670 A1 SU 475670A1 SU 1000752 A SU1000752 A SU 1000752A SU 1000752 A SU1000752 A SU 1000752A SU 475670 A1 SU475670 A1 SU 475670A1
Authority
SU
USSR - Soviet Union
Prior art keywords
stabilizing
changing
magnetic
films
thin
Prior art date
Application number
SU1000752A
Other languages
Russian (ru)
Inventor
Лев Борисович Андреев
Леонид Николаевич Расторгуев
Николай Константинович Владимиров
Original Assignee
Предприятие П/Я 3657
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Предприятие П/Я 3657 filed Critical Предприятие П/Я 3657
Priority to SU1000752A priority Critical patent/SU475670A1/en
Application granted granted Critical
Publication of SU475670A1 publication Critical patent/SU475670A1/en

Links

Landscapes

  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)

Description

1one

Известные способы повышени  магнитных характеристик тонких магнитных пленок технологически сложны, длительны по циклу и не обладают воспроизводимостью результатов .The known methods for improving the magnetic characteristics of thin magnetic films are technologically complex, cycle-lasting and do not have reproducible results.

В описываемом способе упрощение и ускорение технологического процесса достигнуто применением облучени  тонких пленок рентгеновыми лучами в течение 0,5-2 час при температуре 10-30°С, чем приводит к увеличению пол  анизотропии на 8-10% и уменьшает дисперсию оси легкого намагничивани  на 12-15%.In the described method, the simplification and acceleration of the process is achieved by applying X-ray irradiation of thin films for 0.5-2 hours at a temperature of 10-30 ° C, which leads to an increase in the anisotropy field by 8-10% and reduces the dispersion of the axis of easy magnetization by 12 -15%.

П р е дм е т изобретени EXAMPLE OF INVENTION

Способ изменени  и стабилизации магнитных характеристик тонких магнитных плеиок, полученных электролитическим осаждением на подложку, отличающийс  тем, что пленки подвергают облучению рентгеновыми лучами с дозой облучени  не более 10 рентген при 10-30°С.A method of changing and stabilizing the magnetic characteristics of thin magnetic plates obtained by electrolytic deposition on a substrate, characterized in that the films are subjected to X-ray irradiation with an irradiation dose of not more than 10 X-rays at 10-30 ° C.

SU1000752A 1965-04-09 1965-04-09 Method for changing and stabilizing the magnetic characteristics of thin magnetic films SU475670A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU1000752A SU475670A1 (en) 1965-04-09 1965-04-09 Method for changing and stabilizing the magnetic characteristics of thin magnetic films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU1000752A SU475670A1 (en) 1965-04-09 1965-04-09 Method for changing and stabilizing the magnetic characteristics of thin magnetic films

Publications (1)

Publication Number Publication Date
SU475670A1 true SU475670A1 (en) 1975-06-30

Family

ID=20438486

Family Applications (1)

Application Number Title Priority Date Filing Date
SU1000752A SU475670A1 (en) 1965-04-09 1965-04-09 Method for changing and stabilizing the magnetic characteristics of thin magnetic films

Country Status (1)

Country Link
SU (1) SU475670A1 (en)

Similar Documents

Publication Publication Date Title
SU475670A1 (en) Method for changing and stabilizing the magnetic characteristics of thin magnetic films
Holden et al. Microwave Magnetic Resonance Absorption in a Nickel Salt near 1.25 Cm
GB871298A (en) Improvements in or relating to the production of polyoxymethylene
US3281289A (en) Method of producing magnetic cores
US2437913A (en) Quartz oscillator plate
CH459429A (en) Use of an agent for treating metallic surfaces
SU974622A1 (en) Method for obtaining secondary polarized gamma-radiation in electron synchrotron
Samoylovich et al. REDUCTION OF DISTORTIONS IN EMULSION LAYERS DURING DEVELOPMENT AND FIXING
Brydges Comment regarding “on surface layer effects”
Novick et al. Neutron‐Induced Discomposition in Graphite. X. Rate of Bromine Absorption
Ovenall Electron resonance measurements on radicals in gamma‐irradiated polydimethyl itaconate
GB823283A (en) A method and apparatus for the separation of isotopic ions
Maurer et al. Neutron‐Induced Discomposition in Graphite. IX. The Hall Effect
SU584626A2 (en) The method of generating hole color centers in dielectric
GUSEVA et al. Method of treatment of experimental data obtained with cloud chamber(Semiautomatic stereophotographic processing of cosmic ray shower particle interaction data from Wilson chamber)
Bodine Hall effect in metallic thorium
GEORGE et al. Measurement of anisotropy of displacement energy in silicon(Anisotropy of electron displacement energy in silicon specimens by measuring changes in net carrier concentration caused by steady monoenergetic electron irradiations)
Ashworth Some Simple Characteristic Relationships among the Ferromagnetics
El-Nesr et al. Experimental evidence for anomalous beta-gamma directional correlation in Au 198
AT253791B (en) Method of manufacturing an Mn-Bi magnetic body
Mikhailov EFFECT OF PRESSURE AND TEMPERATURE ON THE RAMAN SPECTRUM OF NITROGEN
Sidlyarenko et al. Microscopic investigation of the creation and destruction of color centers in alkali-halide crystals
Savel'Ev et al. Effect of electric and magnetic fields on the thermal decomposition of Ag2C2O4, AgN3, and BaN6
Arbuzov Redistribution of Impurities in Nickel Foils During Electron Irradiation
Chatley Planetary Densities and Gravitational Pressure