SU418777A1 - - Google Patents

Info

Publication number
SU418777A1
SU418777A1 SU1763628A SU1763628A SU418777A1 SU 418777 A1 SU418777 A1 SU 418777A1 SU 1763628 A SU1763628 A SU 1763628A SU 1763628 A SU1763628 A SU 1763628A SU 418777 A1 SU418777 A1 SU 418777A1
Authority
SU
USSR - Soviet Union
Prior art keywords
flame
atomic absorption
samples
methods
gas
Prior art date
Application number
SU1763628A
Other languages
Russian (ru)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to SU1763628A priority Critical patent/SU418777A1/ru
Application granted granted Critical
Publication of SU418777A1 publication Critical patent/SU418777A1/ru

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

1one

Изобретение относитс  к способам определени  химического состава вещества.The invention relates to methods for determining the chemical composition of a substance.

Известны способы тр мого атомдо-абсорбционного анализа, например, путем катодного распылени  металлов инертным тазом в разборной Т1руб.ке € лольгм катодом или с помощью дуги 1переменного тока в качестве атомизатора .путем измерени  поглощени  светавого потока в межэлектродном Промежутке в периоды горени  дуги. Недостатки этих способов состо т iB плохой -восггроизводимости результатов и сложности реализации.Methods are known for the solid atomic absorption analysis, for example, by cathodic sputtering of metals with an inert basin in a collapsible T1 rub. By a hollow cathode or by using an alternating current arc 1 as an atomizer. The disadvantages of these methods are iB poor-performance and results of implementation complexity.

Предложенный способ атомно-абсорбдиоНного анализа заключаетс  в том, что дл  диспергировани  и испарени  металлических образцов используетс  иоировой разр д, а образовавшиес  пары «месте с потоком воздуха или другого газа подаютс  в плам  газовой горелки.The proposed method of atomic absorption analysis consists in using an ionic discharge to disperse and evaporate metal samples, and the resulting vapor with air or other gas is fed into the flame of a gas burner.

Способ по сн етс  чертежом.The method is explained in the drawing.

Светом лампы 1 просвечивают плам  газовой горелки 2, в которое потоком воздуха внос тс  пары анализируемого образца металла.The light of the lamp 1 illuminates the flame of the gas burner 2, into which the vapor of the analyzed metal sample is introduced by air flow.

Анализируемые образцы устанавливают в держатели 3, помещенные в проточной камере 4. Держатели подключают к искровому генератору 5.The analyzed samples are installed in the holders 3, placed in the flow chamber 4. The holders are connected to the spark generator 5.

При анализе серебр ных корольков на содержание золота предложенным способом чувствительность оцределени  золота составила около 0,001%. Коэффициент вариации равен 4-15% в зависимости от .концентрации. АнаЛИЗ сплавов может быть осуществлен на типовом атомно-абсорбционном спектрофотометре с искровым генератором.When analyzing the silver beads for gold content by the proposed method, the gold determination sensitivity was about 0.001%. The coefficient of variation is 4-15% depending on the concentration. AnALYSIS of alloys can be carried out on a typical atomic absorption spectrophotometer with a spark generator.

15П р е д м е т и 3 о б р е т е и и  15P REDOMET AND 3 ABOUT THEM and and

Способ атомно-абсорбционного анализа :металлических образцов с использованием пламени в ка:чест1ве атомизатора, отличающийс  тем, что, с .целью ускорени  процесса испарени  и диспергировани  образцов, примен ют искровой разр д и образующиес  пары потоком газа ввод т в плам .Atomic absorption analysis method: metal samples using a flame in a caterpillar of the atomizer, characterized in that, in order to accelerate the process of evaporation and dispersion of the samples, a spark is used and the resulting vapors are introduced into the flame by a gas stream.

HOHorpoмоторуHOHorpomotoru

77 77

SU1763628A 1972-03-21 1972-03-21 SU418777A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU1763628A SU418777A1 (en) 1972-03-21 1972-03-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU1763628A SU418777A1 (en) 1972-03-21 1972-03-21

Publications (1)

Publication Number Publication Date
SU418777A1 true SU418777A1 (en) 1974-03-05

Family

ID=20507835

Family Applications (1)

Application Number Title Priority Date Filing Date
SU1763628A SU418777A1 (en) 1972-03-21 1972-03-21

Country Status (1)

Country Link
SU (1) SU418777A1 (en)

Similar Documents

Publication Publication Date Title
Lockyer et al. The quantitative determination of some noble metals by atomic-absorption spectroscopy
Zheng et al. Online mercury determination by laser-induced breakdown spectroscopy with the assistance of solution cathode glow discharge
Červený et al. Determination of mercury in water samples by electrochemical cold vapor generation coupled to microstrip microwave induced helium plasma optical emission spectrometry
Brooks et al. Atomic absorption spectrometry and other instrumental methods for quantitative measurements of arsenic
Falk et al. FANES (Furnace Atomic Nonthermal Excitation Spectrometry)—a new emission technique with high detection power
Tsunoda et al. Platinum atomic lines for determination of ultratrace fluoride by aluminum monofluoride molecular absorption spectrometry
FR2415299A1 (en) ANALYTICAL PROCESS AND DEVICE FOR DETERMINING TOTAL NITROGEN CONTENTS IN AQUEOUS SYSTEMS
Broekaert et al. Recent trends in atomic spectrometry with microwave-induced plasmas
SU418777A1 (en)
Mattson et al. Coaxial cathode ion source for solids mass spectrometry
Cavalli et al. Determination of submicrogram amounts of mercury in various matrices by flameless atomic-fluorescence spectrometry
ES2050127T3 (en) LIGHTING DISCHARGE SOURCE OF IONIZATION FOR ATMOSPHERIC SAMPLES.
US3545863A (en) Method for detection of mercury in a helium glow discharge
Adlard et al. A review of Detectors for gas chromatography part II: Selective detectors
Matsumoto et al. Hydride generation and atomic emission spectrometry with helium glow discharge detection for analysis of biological samples
Beinrohr et al. Determination of lead by electrothermal vaporization microwave-induced plasma atomic emission spectrometry after flow-through electrolytic deposition in a graphite tube packed with reticulated vitreous carbon
Korkmaz et al. Interference studies in slotted silica tube trap technique
SU830141A1 (en) Method of determining concentration of elements in rock samples
Monarca et al. A rapid routine method for quantitative determination of benzo (a) pyrene in water by low-temperature spectrofluorimetry
Dawson et al. Electrolytic extraction combined with flame atomic-absorption for the determination of metal ions in aqueous solution
Yanagisawa et al. Separative column atomizer (SCA) for direct analysis by atomic absorption spectrometry. GC separation characteristics
JPS62115343A (en) Flameless atomic absorption spectrophotometer
Dogan et al. Preconcentration on silver wool of volatile organo-mercury compounds in natural waters and air and the determination of mercury by flameless atomic absorption spectrometry
Goyal et al. Direct determination of beryllium, copper and zinc in Al U matrices by electrothermal atomization atomic-absorption spectrometry
Broekaert Application of hollow cathode excitation coupled to vidicon detection to the simultaneous multielement determination of toxic elements in airborne dust.‐A Unique sampling‐analysis procedure for lead and cadmium‐