SU401863A1 - METHOD OF TRANSFORMATION OF HEAT - Google Patents

METHOD OF TRANSFORMATION OF HEAT

Info

Publication number
SU401863A1
SU401863A1 SU1689241A SU1689241A SU401863A1 SU 401863 A1 SU401863 A1 SU 401863A1 SU 1689241 A SU1689241 A SU 1689241A SU 1689241 A SU1689241 A SU 1689241A SU 401863 A1 SU401863 A1 SU 401863A1
Authority
SU
USSR - Soviet Union
Prior art keywords
absorber
evaporator
heat
generator
salt
Prior art date
Application number
SU1689241A
Other languages
Russian (ru)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to SU1689241A priority Critical patent/SU401863A1/en
Application granted granted Critical
Publication of SU401863A1 publication Critical patent/SU401863A1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

1one

Известны способы трансформации тепла, преимущественно в бромистолитиевом абсорбционном термотрансформаторе, путем подачи низкоцотенциального теплоносител  в испаритель и генератор, конденсации паров после генератора и получени  высокопотенциального тепла в абсорбере.Methods are known for transforming heat, preferably in a bromostolithium absorption thermotransformer, by supplying a low-grade coolant to an evaporator and a generator, condensing vapors downstream of a generator, and obtaining high-grade heat in an absorber.

Цель изобретени  - повышение экономичности способа и возможность использовани  холода наружного воздуха в зимнее врем .The purpose of the invention is to increase the efficiency of the method and the possibility of using cold outside air in winter.

Дл  этого по предлагаемому способу конденсацию паров производ т непосредственным их орошением соленой водой, например водным раствором бромистого лити , охлажденным в сухой градирне, часть соленой воды после конденсации используют в качестве хладагента в испарителе. Оставшимс  в последнем солевым остатком нагревают хладагент перед испарителем, после чего подают остаток в общий поток раствора, направл емого на охлаждение в градирню.For this, according to the proposed method, vapor condensation is performed by direct irrigation with salt water, for example, an aqueous solution of lithium bromide cooled in a dry cooling tower, and part of the salt water after condensation is used as a refrigerant in the evaporator. The remaining salt residue in the latter is heated by the refrigerant in front of the evaporator, after which the residue is fed into the total solution flow, which is sent for cooling to the cooling tower.

Низкопотенциальный теплоноситель целесообразно подавать последовательно через испаритель и генератор.Low-grade coolant is advisable to apply sequentially through the evaporator and generator.

На чертеже схематично представлена установка дл  осуществлени  предлагаемого способа .The drawing shows schematically an installation for carrying out the proposed method.

Низкопотенциальное тепло, например, геотермальную воду, из скважины 1 подают последовательно через испаритель 2 дл  выпари1Low-grade heat, for example, geothermal water, is supplied from well 1 successively through evaporator 2 for evaporation

вани  хладагента ч генератор 3 дл  выпаривани  водного раствора бромистого лити , циркулирующего насосом 4 и насосом 5 через абсорбер 6 и теплообменник 7. Пары послеRefrigerant generator 3 for evaporation of an aqueous solution of lithium bromide circulating by pump 4 and pump 5 through absorber 6 and heat exchanger 7. Pairs after

генератора снижают в конденсаторе 8, непосредственно ороша  их через разбрызгиватель 9 соленой водой, например водным раствором бромистого лити , охлаждаемым в сухой градирне 10. Раствор из конденсатора вgenerator is reduced in the condenser 8, directly irrigating them through the spray 9 with salt water, for example an aqueous solution of lithium bromide cooled in a dry cooling tower 10. The solution from the condenser in

градирню подаетс  насосом 11. Часть раствора после процесса конденсации подаетс  в ороситель 12 испарител , т. е. используетс  в качестве хладагента. Оставшийс  в испарителе солевой остаток используетс  в регенераторе 13 дл  нагрева хладагента перед испарителем . После этого солевой остаток направл етс  в смеситель 14, откуда с общим потоком раствора подаетс  в градирню дл  охлаждени .the cooling tower is supplied by pump 11. A part of the solution after the condensation process is fed to the evaporator 12, i.e., used as a refrigerant. The salt residue remaining in the evaporator is used in the regenerator 13 to heat the refrigerant in front of the evaporator. Thereafter, the salt residue is sent to the mixer 14, from where it is fed to the cooling tower with the total solution flow.

Тепло высокого потенциала из абсорбера с помощью теплоносител , перекачиваемого насосом 15, подаетс  потребителю 16. Геотермальна  вода после охлаждени  насосом 17 сбрасываетс  в канализацию. При использовании холода наружного воздуха в зимнее врем  конденсаци  происходит при очень низких давлени х, что позвол ет последовательно пропускать геотермальную воду через испаритель и генератор и снимать с нее больнюе количество тепла.High potential heat from the absorber is supplied to consumer 16 by a heat transfer fluid pumped by pump 15. After cooling by pump 17, geothermal water is discharged into sewers. When using cold outside air in the winter, condensation occurs at very low pressures, which allows the geothermal water to flow through the evaporator and generator in series and remove a large amount of heat from it.

3 Предмет и з о б р е т е н и 3 Subject and d optics

Claims (2)

1. Способ трансформации тепла, преинуществеиио в бромистолитиевом абсорбционном термотрансформаторе, путем подачи низкопотепциального теплопосител  в испаритель и генератор, конденсации паров после генератора и получени  высокопотенциального тепла в абсорбере, отличающийс  тем, что, с целью повышени  экономичности способа и возможности использовани  холода наружного воздуха в зИМнее врем , конденсацию паров производ т непосредственным их орошением соленой водой, например водным раствором бромистого лити , охлажденным в сухой градирне , часть соленой воды после конденсации используют в качестве хладагента в испарителе, а оставшимс  в последнем солевым остатком нагревают хладагент перед испарителем, после чего подают солевой остаток в обш,ий поток раствора, направл емого на охлаждение i« градирню.1. A method of transforming heat in a bromine lithium absorption thermotransformer by supplying a low thermal tolerant to an evaporator and a generator, condensing the vapor after a generator and obtaining high potential heat in an absorber, characterized in that, in order to improve the efficiency of the method and the possibility of using a cold heat absorber in the absorber, characterized by the fact that, in order to increase the efficiency of the method and the possibility of using a cold air absorber, it is possible to use a coolant in the absorber, which makes it more economical to use a cold potential in the absorber, which allows zinc time, vapor condensation is performed by direct irrigation with salt water, for example, an aqueous solution of lithium bromide cooled in a dry radirne, some salt water after condensation is used as the refrigerant in the evaporator, and the remaining residue in the final salt is heated before the refrigerant evaporator, and then fed into the salt residue obsh, s solution flow cooling steerable i «tower. 2. Способ по п. 1, отличающийс  тем, что низкопотенциальный теплоноситель подают последовательно через испаритель и генератор.2. A method according to claim 1, characterized in that the low-grade coolant is supplied sequentially through the evaporator and the generator. %%
SU1689241A 1971-08-09 1971-08-09 METHOD OF TRANSFORMATION OF HEAT SU401863A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU1689241A SU401863A1 (en) 1971-08-09 1971-08-09 METHOD OF TRANSFORMATION OF HEAT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU1689241A SU401863A1 (en) 1971-08-09 1971-08-09 METHOD OF TRANSFORMATION OF HEAT

Publications (1)

Publication Number Publication Date
SU401863A1 true SU401863A1 (en) 1973-10-12

Family

ID=20485422

Family Applications (1)

Application Number Title Priority Date Filing Date
SU1689241A SU401863A1 (en) 1971-08-09 1971-08-09 METHOD OF TRANSFORMATION OF HEAT

Country Status (1)

Country Link
SU (1) SU401863A1 (en)

Similar Documents

Publication Publication Date Title
CN110589921A (en) Flue gas waste heat utilization cold-fresh combined supply system and working method thereof
CN105819531A (en) Energy-saving heat pump type intermediate-temperature spray evaporation system
CN110553420A (en) Ammonia absorption type refrigerating system based on lithium bromide unit
CN113237367A (en) Warm water drainage loop heat pipe cooling device and method utilizing solar energy
CN111623550B (en) Direct cooling machine
SU401863A1 (en) METHOD OF TRANSFORMATION OF HEAT
CN105314655B (en) Method and device for utilizing brine geothermal energy and condensed water heat energy
CN209612254U (en) Thermo-compression evaporation crystal system
CN202055874U (en) Absorption heat pump water supply regenerative circulating system
JP3103224B2 (en) Absorption heat pump using low-temperature heat source
SU569735A1 (en) Thermal-refrigerating-electric plant
CN214791007U (en) Semi-closed screw type water source steam heat pump system
JPH0148203B2 (en)
JPS5926182A (en) Desalinator
EP0160109B1 (en) Absorption heat pump
SU905582A1 (en) Absorption heliorefrigeration unit
SU43653A1 (en) Heat power installation
SU382667A1 (en) WORKING BODY VACUUM-ABSORPTION REFRIGERATING
SU583354A1 (en) Method of operation of absorption refrigerating installation
SU992952A1 (en) Heliabsorbtion thermic converter and its operational method
SU567042A1 (en) Method of regeneration of a solution in a two-stage generator
SU468068A1 (en) Absorption Heat Transformer
JPS6138601A (en) Condensation method of two kinds of steam
SU438841A1 (en) Absorption refrigeration installation
JPS57153701A (en) Apparatus for evaporating liquid