SU361433A1 - METHOD FOR DETERMINING THE EFFICIENT ENERGY OF THE CRACKED FORMATION OF REFRACTORY MATERIALS - Google Patents

METHOD FOR DETERMINING THE EFFICIENT ENERGY OF THE CRACKED FORMATION OF REFRACTORY MATERIALS

Info

Publication number
SU361433A1
SU361433A1 SU1645271A SU1645271A SU361433A1 SU 361433 A1 SU361433 A1 SU 361433A1 SU 1645271 A SU1645271 A SU 1645271A SU 1645271 A SU1645271 A SU 1645271A SU 361433 A1 SU361433 A1 SU 361433A1
Authority
SU
USSR - Soviet Union
Prior art keywords
determining
refractory materials
efficient energy
sample
cracked formation
Prior art date
Application number
SU1645271A
Other languages
Russian (ru)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to SU1645271A priority Critical patent/SU361433A1/en
Application granted granted Critical
Publication of SU361433A1 publication Critical patent/SU361433A1/en

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

1one

Изобретение относитс  к области исследовани  свойств огнеупорных материалов и стекла.The invention relates to the field of research of the properties of refractory materials and glass.

Известен способ определени  эффективной энергии трещинообразовани  огнеупорных материалов и стекла путем образовани  начальной трещины в образце и последующего его разрушени .There is a known method for determining the effective energy of cracking of refractory materials and glass by forming an initial crack in a specimen and its subsequent destruction.

Цель изобретени  - упростить и повысить точность определени  эффективной энергии.The purpose of the invention is to simplify and improve the accuracy of determining the effective energy.

Это достигаетс  тем, что начальную трещину в образце создают локальным интенсивным охлаждением равномерно нагретого образца.This is achieved by the fact that the initial crack in the sample is created by local intensive cooling of the uniformly heated sample.

Способ осуществл ют следующим образом. Образцы ,в виде дисков или пр моугольных призм нагревают до 150-300°С, в зависимости от размеров, и выдерживают до равномерного распределени  температур. Затем с места ожидаемой трещины интенсивно отводитс  тепло. Это достигаетс , например, прикосновением ребра .металлического стержн . Температура образца в месте отвода тепла снижаетс  и создаютс  локальные раст гивающие термические напр жени , которые и вызывают естественную термическую трещину. После этого путем полного механического разрущени  образца определ етс  эффективна  энерги  трещинообразовани . /The method is carried out as follows. Samples, in the form of discs or rectangular prisms, are heated to 150-300 ° C, depending on the size, and kept up to a uniform temperature distribution. Then, heat is rapidly removed from the site of the expected crack. This is achieved, for example, by touching the rib of a metal rod. The temperature of the sample at the site of heat removal decreases and local tensile thermal stresses are created, which cause a natural thermal crack. Thereafter, the effective fracture energy is determined by complete mechanical destruction of the sample. /

Описываемым способом определ лась, например , эффективна  энерги  трещинообразовани  дл  различных сортов силикатного стекла и плотной высокотемпературной керамики на основе двуокиси циркони  и окиси алюмини . При этом круглые пластинки толщинойThe described method was used to determine, for example, the effective cracking energy for different grades of silicate glass and dense high-temperature zirconia and alumina-based ceramics. In this round plate thickness

до 5 мм и диаметром 50 мм равномерно нагреваютс  в лабораторной печи примерно до 200°С.up to 5 mm and a diameter of 50 mm are uniformly heated in a laboratory oven to approximately 200 ° C.

Дл  местного отвода тепла используют медный призматический стержень 5X40X250 мм.For local heat removal, a copper prismatic core of 5X40X250 mm is used.

К центру пластины прикасаютс  ребром длиной 5 мм. Получаютс  трещины длиной до 7 мм с естественной остротой концов. После создани  естественной трещины диаметральным сжатием производ т полное разрущениеThe center of the plate is touched by an edge 5 mm long. Cracks of up to 7 mm in length are obtained with the natural sharpness of the ends. After the creation of a natural crack, diametral compression produces complete destruction.

образцов при зафиксировании разрушающей силы. Затем вычисл ютс  значени  эффективной энергии трещинообразовани .samples when fixing the destructive force. The values of the effective energy of cracking are then calculated.

Предмет и з о б р е т е н И  Subject and reference

2020

Способ определени  эффективной энергии трещинообразовани  огнеупорных .материалов и стекла путем образовани  начальной трещины в образце и последующего его разрущени , отличающийс  тем, что, с целью упрощени  и повыщени  точности определени , начальную трещину в образце создают локальным интенсивным охлаждением равномерно нагретогоThe method for determining the effective energy of cracking of refractory materials and glass by forming an initial crack in the sample and its subsequent destruction, characterized in that, in order to simplify and improve the determination accuracy, the initial crack in the sample is created by local intensive cooling of the uniformly heated

образца.sample.

SU1645271A 1971-04-22 1971-04-22 METHOD FOR DETERMINING THE EFFICIENT ENERGY OF THE CRACKED FORMATION OF REFRACTORY MATERIALS SU361433A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU1645271A SU361433A1 (en) 1971-04-22 1971-04-22 METHOD FOR DETERMINING THE EFFICIENT ENERGY OF THE CRACKED FORMATION OF REFRACTORY MATERIALS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU1645271A SU361433A1 (en) 1971-04-22 1971-04-22 METHOD FOR DETERMINING THE EFFICIENT ENERGY OF THE CRACKED FORMATION OF REFRACTORY MATERIALS

Publications (1)

Publication Number Publication Date
SU361433A1 true SU361433A1 (en) 1972-12-07

Family

ID=20471994

Family Applications (1)

Application Number Title Priority Date Filing Date
SU1645271A SU361433A1 (en) 1971-04-22 1971-04-22 METHOD FOR DETERMINING THE EFFICIENT ENERGY OF THE CRACKED FORMATION OF REFRACTORY MATERIALS

Country Status (1)

Country Link
SU (1) SU361433A1 (en)

Similar Documents

Publication Publication Date Title
Kingery Factors affecting thermal stress resistance of ceramic materials
Li et al. Normalized evaluation of thermal shock resistance for ceramic materials
Müller et al. Thermal shock resistance of tempered archaeological ceramics
Martinović et al. Influence of sintering temperature on thermal shock behavior of low cement high alumina refractory concrete
SU361433A1 (en) METHOD FOR DETERMINING THE EFFICIENT ENERGY OF THE CRACKED FORMATION OF REFRACTORY MATERIALS
Venturelli Heating microscopy and its applications
Boccaccini et al. Service life prediction for refractory materials
Boccaccini et al. Quality Control and Thermal Shock Damage Characterization of High‐Temperature Ceramics by Ultrasonic Pulse Velocity Testing
Kirchner et al. Fracture mirrors in polycrystalline ceramics and glass
Terzić et al. Application of results of nondestructive testing methods in the investigation of microstructure of refractory concretes
Wan et al. Evaluation of elastic modulus and strength of glass and brittle ceramic materials by compressing a notched ring specimen
Lucio-Martin et al. Effect of geometry in concrete spalling risk subjected to high temperatures for thermal inertia studies
Arikawa et al. Evaluation of thermal shock resistance for ceramic materials by Young’s modulus
Nikiforov et al. Heat-Engineering Characteristics of Diatomaceous-Earth Materials in a Wide Temperature Range
Kogut et al. The research of ceramic materials for applications in the glass industry including microwave heating techniques
VÖRÖS et al. Refractive index variations of glass microfragments by annealing–forensic applications.
Liu et al. Evaluating high temperature modulus and strength of alumina tube in vacuum by a modified split ring method
Yuan et al. Size effects on fracture parameters of high alumina refractories
JP3081010B2 (en) Thermal shock inspection method for refractories
Mark et al. Evaluation of some refractory characteristics of Ohiya and Uzuakoli clays
Terzić et al. Influence of the phase composition of refractory materials on creep
Antonovich et al. Study on the destruction of heat-resistant chamotte concrete during sharp heating and cooling
Štefková et al. Use of Impact-echo Method to Test High-temperature Degraded Cementitious Composite Materials Containing Rubber Aggregates and Acrylic Polymer Binder
Gogotsi Deformation, fracture resistance and heat resistance of elastic and inelastic ceramics
Aksel'rod et al. A study of the thermal shock resistance of coke-oven dinas under laboratory conditions