SU220645A1 - - Google Patents

Info

Publication number
SU220645A1
SU220645A1 SU1116672A SU1116672A SU220645A1 SU 220645 A1 SU220645 A1 SU 220645A1 SU 1116672 A SU1116672 A SU 1116672A SU 1116672 A SU1116672 A SU 1116672A SU 220645 A1 SU220645 A1 SU 220645A1
Authority
SU
USSR - Soviet Union
Prior art keywords
neurons
stimulation
inputs
outputs
block
Prior art date
Application number
SU1116672A
Other languages
English (en)
Russian (ru)
Original Assignee
В. С. Гладкий Таганрогский радиотехнический институт
Publication of SU220645A1 publication Critical patent/SU220645A1/ru

Links

SU1116672A SU220645A1 (cs)

Publications (1)

Publication Number Publication Date
SU220645A1 true SU220645A1 (cs)

Family

ID=

Similar Documents

Publication Publication Date Title
Pei et al. Noise-mediated spike timing precision from aperiodic stimuli in an array of Hodgekin-Huxley-type neurons
Hafliger Adaptive WTA with an analog VLSI neuromorphic learning chip
US20160224888A1 (en) Discovering and using informative looping signals in a pulsed neural network having temporal encoders
Kreiser et al. On-chip unsupervised learning in winner-take-all networks of spiking neurons.
Hertz et al. Learning short synfire chains by self-organization
Maass et al. Principles of real-time computing with feedback applied to cortical microcircuit models
Liang et al. The impact of encoding–decoding schemes and weight normalization in spiking neural networks
SU220645A1 (cs)
Chauvet Habituation rules for a theory of the cerebellar cortex
US20230267318A1 (en) Neuromorphic system for implementing spike timing dependent plasticity operation
CN111630529B (zh) 类神经电路以及运作方法
Javed et al. Online real-time recurrent learning using sparse connections and selective learning
EP0606213A1 (en) Charge domain synapse cell
RU2748257C2 (ru) Способ кодирования информации в импульсных нейронных сетях
Popescu et al. Simulation of Logic Circuits Using Bursting Neuron Models
Upegui et al. A functional spiking neuron hardware oriented model
CN116894470A (zh) 一种模拟动物操作性条件反射的神经功能性电路
Lobov et al. STRDP: A simple rule of rate dependent STDP
Amit et al. Architecture of attractor neural networks performing cognitive fast scanning
Araki et al. Supervised STDP Learning with Weight Decay for Spiking Neural Networks
Westerman et al. Antidromic spikes drive Hebbian learning in an artificial dendritic tree
Westerman et al. A hybrid (hardware/software) approach towards implementing hebbian learning in silicon neurons with passive dendrites
van Hemmen et al. A ‘microscopic’model of collective oscillations in the cortex
Satyaraj et al. A simple pstdp circuit for analog implementation of spiking neural networks
Peddicord et al. A neuron model for simulation of frequency response characteristics