SU211856A1 - DEFECTOSCOPE WORKING WITH REFLECTED MICRO-RADIO WAVES - Google Patents

DEFECTOSCOPE WORKING WITH REFLECTED MICRO-RADIO WAVES

Info

Publication number
SU211856A1
SU211856A1 SU1143719A SU1143719A SU211856A1 SU 211856 A1 SU211856 A1 SU 211856A1 SU 1143719 A SU1143719 A SU 1143719A SU 1143719 A SU1143719 A SU 1143719A SU 211856 A1 SU211856 A1 SU 211856A1
Authority
SU
USSR - Soviet Union
Prior art keywords
working
waveguide
defectoscope
radio waves
reflected
Prior art date
Application number
SU1143719A
Other languages
Russian (ru)
Inventor
М. Г. Кузнецов В. П. Ковалев
ордена Ленина электротехнический институт В. И. Уль нова Ленина Ленинградский
Publication of SU211856A1 publication Critical patent/SU211856A1/en

Links

Description

Известен дефектоскоп, работающий с помощью отраженных микрорадиоволн, по авт. св. № 179977, содержащий генератор микрорадиоволн , излучающий и приемный волноводы, аттенюатор, фазовращатель и детектор.Предлагаемый дефектоскоп отличаетс  от известного тем, что его рабочие волноводы установлены так, что плоскость пол ризации излучающего волновода перпендикул рна плоскости пол ризации приемного волновода. Это позвол ет определить внутренние напр жени  в контролируемом изделии.Known flaw detector that works with the help of reflected microwaves, according to ed. St. No. 179977, containing a microradiowave generator, emitting and receiving waveguides, an attenuator, a phase shifter and a detector. The proposed flaw detector differs from the known one in that its working waveguides are installed so that the polarization plane of the radiating waveguide is perpendicular to the polarization plane of the receiving waveguide. This allows the internal stresses in the monitored product to be determined.

На чертеже изображена схема предлагаемого дефектоскопа.The drawing shows the scheme of the proposed flaw detector.

Дефектоскоп содержит генератор 1, соединенный волноводным трактом с излучающим волноводом 2. Между ними установлено разв зывающее устройство .3 и направленный ответвитель 4 с детекторной головкой 5, а также разветвитель 6. К разветвителю присоединен аттенюатор 7, гибкий волновод 8 и фазовращатель Р, который сочленен со вторым разветБителем 10. Разветвитель 10 соединен с детекторной головкой 11, предусилителем 12 и приемным волноводом 13. Все устройство расположено над обследуемым изделием 14.The flaw detector contains a generator 1 connected by a waveguide path to the radiating waveguide 2. Between them an isolating device .3 and a directional coupler 4 with a detector head 5 are installed, as well as a splitter 6. An attenuator 7, a flexible waveguide 8 and a phase shifter P, which is articulated, are connected to the splitter with the second splitter 10. Splitter 10 is connected to the detector head 11, the preamplifier 12 and the receiving waveguide 13. The entire device is located above the inspected product 14.

Дефектоскоп работает следующим образом. Поток энергии, создаваемый генератором /, направл етс  к разветвителю 6 и расчлен етс  на две части. Перва  часть потока энергииThe flaw detector works as follows. The energy flow generated by the generator / is directed to the splitter 6 and is divided into two parts. The first part of the flow of energy

излучаетс  волноводом 2, втора  часть проходит через аттенюатор 7, гибкий волновод 6 фазовращатель 9 и разветвитель 10 к детекторной головке //. Отраженна  от обследуемого издели  14 энерги  поступает на приемный волновод. Далее, в результате воздействи  обоих сигналов на детекторную головку И (одного, прищедщего от приемного волновода 13, г. второго - от гибкого волновода 8), на входе предусилител  12 образуетс  некотора  разность потенциалов.emitted by waveguide 2, the second part passes through the attenuator 7, the flexible waveguide 6 phase shifter 9 and splitter 10 to the detector head //. The energy reflected from the examined product 14 is fed to the receiving waveguide. Further, as a result of the effect of both signals on the detector head I (one, pinching from the receiving waveguide 13, the second from the flexible waveguide 8), a certain potential difference forms at the input of the preamplifier 12.

Волны, излучаемые волноводом 2, попадают на исследуемое изделие 14 и отражаютс  от него. Благодар  своей относительно больщой длины, поток волн, проход щих внутри обследуемого издели , охватывает достаточно.больщие объемы, в силу чего возникающие под действием нагрузок напр жени  в объеме исследуемого образца оказывают воздействие на структуру пол  отраженных волн.The waves emitted by waveguide 2 fall on the test article 14 and are reflected from it. Due to its relatively large length, the flow of waves passing inside the product being inspected covers sufficiently large volumes, as a result of which the loads generated by the stress in the volume of the test sample affect the structure of the reflected waves.

№ 179977, отличающийс  тем, что, с целью определени  внутренних напр жений в контролируемом изделии, рабочие волноводыNo. 179977, characterized in that, in order to determine the internal stresses in the monitored product, the working waveguides

установлены так, что плоскость пол ризации излучающего волновода перпендикул рна плоскости пол ризации приемного волновода.are set so that the plane of polarization of the radiating waveguide is perpendicular to the plane of polarization of the receiving waveguide.

SU1143719A DEFECTOSCOPE WORKING WITH REFLECTED MICRO-RADIO WAVES SU211856A1 (en)

Publications (1)

Publication Number Publication Date
SU211856A1 true SU211856A1 (en)

Family

ID=

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156843A (en) * 1978-03-13 1979-05-29 Strandberg Engineering Laboratories, Inc. Microwave moisture indicator and control
US4500835A (en) * 1978-06-01 1985-02-19 A. Ahlstrom Osakeyhtio Method and apparatus for detecting grain direction in wood, particularly in lumber
US4581575A (en) * 1983-06-03 1986-04-08 Kanzaki Paper Manufacturing Co., Ltd. Method and apparatus for measuring orientation of constituents of webs or sheets
US4607212A (en) * 1982-09-10 1986-08-19 A.Ahlstrom Osakeyhtio Method and apparatus for detection of knots or the like in sawn lumber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156843A (en) * 1978-03-13 1979-05-29 Strandberg Engineering Laboratories, Inc. Microwave moisture indicator and control
US4500835A (en) * 1978-06-01 1985-02-19 A. Ahlstrom Osakeyhtio Method and apparatus for detecting grain direction in wood, particularly in lumber
US4607212A (en) * 1982-09-10 1986-08-19 A.Ahlstrom Osakeyhtio Method and apparatus for detection of knots or the like in sawn lumber
US4581575A (en) * 1983-06-03 1986-04-08 Kanzaki Paper Manufacturing Co., Ltd. Method and apparatus for measuring orientation of constituents of webs or sheets

Similar Documents

Publication Publication Date Title
US9140582B2 (en) Optical sensor and method of use
KR910017213A (en) Optical fiber interferometer system, optical fiber preparation method, noise suppression method in system and variation detection method in sample
Pierce et al. Surface-bonded optical fibre sensors for the inspection of CFRP plates using ultrasonic Lamb waves
SU211856A1 (en) DEFECTOSCOPE WORKING WITH REFLECTED MICRO-RADIO WAVES
CN112730613B (en) Composite board bonding layer performance degradation evaluation method
Terrien et al. Numerical predictions and experiments for optimizing hidden corrosion detection in aircraft structures using Lamb modes
CN112504433A (en) Temperature self-reference sensitivity tunable optical fiber distributed vibration detection device and method
WO2015120888A1 (en) Dual-probe sweep-free stimulated brillouin optical distributed sensing method and device
Vella et al. High‐resolution spectroscopy for optical probing of continuously generated surface acoustic waves
CN213813328U (en) Multi-point gas concentration detection device for compensating dynamic loss
Qi et al. Detection of parallel double crack in pressure vessel based on optical fibre ultrasonic sensing
Yari et al. Aircraft structural health monitoring using on-board BOCDA system
KR930020478A (en) Method and apparatus for detecting broken fuel rods using acoustic energy frequency attenuation
KR20120031674A (en) System and apparatus for measuring non-linearity of ultrasonic wave
CN112611720A (en) Multipoint gas concentration detection device for compensating dynamic loss and detection method thereof
CN113655414A (en) Optical magnetic field sensing system using piezoelectric ceramic to generate resonance frequency band
CN105910994A (en) Photoacoustic spectrum gas detection device and system based on fiber Bragg grating
CN110631735A (en) Pipeline temperature measurement system and method based on distributed sensing optical fiber
RU2797693C1 (en) Method for measuring parameters of refractive index inhomogeneities along the length of an optical fibre and an optical frequency domain reflectometer
Mariani et al. Location specific temperature compensation of guided wave signals
Soman et al. Investigating the use of polarization maintaining FBG sensors for GW-based SHM
RU2131600C1 (en) Process determining moisture content in oil product in dielectric pipeline
CN114152588A (en) Self-reference optical parameter measuring method for reflective terahertz time-domain spectroscopy composite material
Kominko Frequency Dependence of Subsurface Flaws Detection Efficiency via The Total Internal Reflection Ultrasonic Sensor
SOMAN et al. Fiber Bragg Grating Sensor Based Mode Filtering Using Cosine Distance Metric