SU1646371A1 - Method for measuring absorption of electromagnetic radiation by material - Google Patents
Method for measuring absorption of electromagnetic radiation by materialInfo
- Publication number
- SU1646371A1 SU1646371A1 SU4692599/25A SU4692599A SU1646371A1 SU 1646371 A1 SU1646371 A1 SU 1646371A1 SU 4692599/25 A SU4692599/25 A SU 4692599/25A SU 4692599 A SU4692599 A SU 4692599A SU 1646371 A1 SU1646371 A1 SU 1646371A1
- Authority
- SU
- USSR - Soviet Union
- Prior art keywords
- radiation
- sample
- helium
- absorption
- electromagnetic radiation
- Prior art date
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
1one
(22) 17.05.89(22) 05/17/89
(21) 4692599/25 (46) 27.11.98 Бюл. № 33 (72) Думеш Б.С., Швецов И.Н. (71) Институт спектроскопии АН СССР (56) Пул Ч. Техника ЭПР-спектроскопии. М.: Мир, 1970. Temple P.A. Experimental and theoretical considerations in thin laser calorimetry. - Optical Engineering, 1984, v. 23, N 3, p. 326 - 330.(21) 4692599/25 (46) 11/27/98 Bul. № 33 (72) Dumech B.S., Shvetsov I.N. (71) Institute of Spectroscopy, Academy of Sciences of the USSR (56) Poole Ch. Technique of EPR spectroscopy. M .: Mir, 1970. Temple P.A. Experimental and theoretical considerations in thin laser calorimetry. - Optical Engineering, 1984, v. 23, N 3, p. 326 - 330.
(54) СПОСОБ ИЗМЕРЕНИЯ ПОГЛОЩЕНИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ В ВЕЩЕСТВЕ(54) METHOD OF MEASURING THE ABSORPTION OF ELECTROMAGNETIC RADIATION IN MATTER
(57) Изобретение относитс к области оптической и радиоспектроскопии. Цель изобретени - расширение видов исследуемых объектов. Она достигаетс путем размещени анализируемого образца в сверхтекучем гелии и регистрации интенсивности концентрированных с помощью акустического резонатора тепловых волн, возникающих в гелии в результате преобразовани поглощенного образцом излучени . При мощност х излучени 100 мВт возможна регистраци коэффициента поглощени . 1 ил.(57) The invention relates to the field of optical and radio spectroscopy. The purpose of the invention is to expand the types of objects under study. It is achieved by placing the sample to be analyzed in superfluid helium and recording the intensity of the heat waves concentrated by means of an acoustic resonator in helium as a result of the conversion of radiation absorbed by the sample. With radiation powers of 100 mW, the absorption coefficient can be recorded. 1 il.
СЛSL
СWITH
ON -UON -U
ON UON U
1one
гГОggo
чо тгcho mr
4040
лl
4four
рR
СДSD
Изобретение относитс к области оптической и радиоспектроскопии и может найти применение дл измерени спектров поглощени твердых тел и дл аналитической спектроскопии.The invention relates to the field of optical and radio spectroscopy and can be used for measuring the absorption spectra of solids and for analytical spectroscopy.
Цель изобретени - расширение видов исследуемых объектов.The purpose of the invention is to expand the types of objects under study.
На чертеже показана схема лазерного спектрометра, осуществл ющего способ измерени поглощени электромагнитного излучени в веществе.The drawing shows a diagram of a laser spectrometer, which implements a method for measuring the absorption of electromagnetic radiation in a substance.
Лазерный спектрометр содержит гелиевый криостат 1 с окном 2, акустический резонатор 3 с измер емым образцом 4, вакуумный насос 5 с патрубком 6, импуль- сно-периодический лазер 7, коллиматор 8, термометр 9 и блок 10 регистрации.The laser spectrometer contains a helium cryostat 1 with a window 2, an acoustic resonator 3 with a measured sample 4, a vacuum pump 5 with a nozzle 6, a pulse-periodic laser 7, a collimator 8, a thermometer 9 and a recording unit 10.
Способ измерени поглощени электромагнитного излучени в веществе осуществл ют следующим образом. Гелиевый криостат 1, в котором размещен прозрачный дл излучени акустический резонатор 3 с измер емым образцом 4, заливают жидким гелием так, чтобы акустический резонатор 3 заполнилс жидкостью. После этого откачивают пары гели вакуумным насосом 4 через патрубок 5 до давлени Р 30 Торр, при котором гелий переходит в сверхтекучее состо ние. Затем излучение от импульсно- периодического лазера 7 через окно 2 и коллиматор 8 подаетс на образец 4. Частота повторени импульсов выбираетс равнойA method for measuring the absorption of electromagnetic radiation in a substance is carried out as follows. A helium cryostat 1, in which an acoustic radiation resonator 3, which is transparent to radiation, is placed with the sample 4, is filled with liquid helium so that the acoustic resonator 3 is filled with liquid. Thereafter, helium vapors are pumped out with a vacuum pump 4 through the nozzle 5 to a pressure of P 30 Torr, at which helium goes into a superfluid state. Then the radiation from the repetitively pulsed laser 7 through the window 2 and the collimator 8 is fed to the sample 4. The pulse repetition rate is chosen equal to
ФОРМУЛА ИЗОБРЕТЕНИЯCLAIM
Способ измерени поглощени электромагнитного излучени в веществе, включающий пропускание через анализируемый образец импульсно-модулированного излучени и регистрацию посредством термометра тепла, выделившегос в образце в результате преобразовани поглощенного излучени , отличающийс тем, что, с целью расширени видов исследуемых объектов, аналичастоте акустического резонатора 3. При поглощении излучени в акустическом резонаторе 3 возникает теплова волна, котора принимаетс термометром 9. Сигнал с термометра поступает в блок 10 регистрации. Дл увеличени чувствительности к термометру 9 припаиваетс металлический радиатор с развитой поверхностью (на чертеже не показан).A method of measuring the absorption of electromagnetic radiation in a substance, which includes passing a pulse-modulated radiation through an analyzed sample and recording, by means of a thermometer, the heat released in the sample as a result of the conversion of the absorbed radiation, characterized in that, in order to expand the types of objects under study, the frequency response of the acoustic resonator 3. Radiation absorption in the acoustic resonator 3 generates a heat wave, which is received by the thermometer 9. The signal from the thermometer enters the ok 10 registrations. To increase the sensitivity to the thermometer 9, a metal radiator with a developed surface is soldered (not shown in the drawing).
При использовании СВЧ-диапазона в качестве поглощающих чеек используют объемный резонатор, внутри которого и размещают акустический резонатор с образцом .When using the microwave range, a cavity resonator is used as absorbing cells, inside which the acoustic resonator with the sample is placed.
При пропускании через образец 4, наход щийс в сверхтекучем гелии, излучени , промодулированного со звуковой частотой , образец 4 излучает второй звук на той же частоте. При этом энерги второго звука равна теплу, выделившемус в образце 4 в результате поглощени . Поскольку волну второго звука концентрируют на термометр 9 посредством акустического резонатора 3, тепло, выделившеес в образце 4, передаетс термометру 9 без потерь и чувствительность способа сравнима с чувствительностью способов пр мого измерени поглощенной энергии , но применительно и к оптически тонким образцам. Например, при типичных дл ЭПР мощност х излучени 10 мВт можно регистрировать коэффициент поглощени 10 .When passing through sample 4, which is in superfluid helium, radiation modulated with an acoustic frequency, sample 4 emits a second sound at the same frequency. In this case, the energy of the second sound is equal to the heat released in sample 4 as a result of absorption. Since the second sound wave is concentrated on the thermometer 9 by means of the acoustic resonator 3, the heat released in sample 4 is transmitted to the thermometer 9 without loss and the sensitivity of the method is comparable to the sensitivity of the methods of direct measurement of the absorbed energy, but also applied to optically thin samples. For example, with typical radiation power of 10 mW for EPR, an absorption coefficient of 10 can be recorded.
зируемый образец размещают в сверхтекучем гелии, с помощью акустического резонатора концентрируют тепловые волны, возникающие в гелии в результате преобразовани поглощенного образцом излучени , на термометр , измер ют их интенсивность и по ней суд т о поглощении излучени исследуемым образцом.The sample to be placed is placed in superfluid helium, the thermal waves generated in helium as a result of the conversion of radiation absorbed by the sample are concentrated by means of an acoustic resonator, their intensity is measured, and it is judged on the absorption of radiation by the test sample.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SU4692599/25A SU1646371A1 (en) | 1989-05-17 | 1989-05-17 | Method for measuring absorption of electromagnetic radiation by material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SU4692599/25A SU1646371A1 (en) | 1989-05-17 | 1989-05-17 | Method for measuring absorption of electromagnetic radiation by material |
Publications (1)
Publication Number | Publication Date |
---|---|
SU1646371A1 true SU1646371A1 (en) | 1998-11-27 |
Family
ID=60530226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SU4692599/25A SU1646371A1 (en) | 1989-05-17 | 1989-05-17 | Method for measuring absorption of electromagnetic radiation by material |
Country Status (1)
Country | Link |
---|---|
SU (1) | SU1646371A1 (en) |
-
1989
- 1989-05-17 SU SU4692599/25A patent/SU1646371A1/en active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Von Gutfeld et al. | 20‐MHz acoustic waves from pulsed thermoelastic expansions of constrained surfaces | |
Von der Linde et al. | Molecular vibrations in liquids: Direct measurement of the molecular dephasing time; determination of the shape of picosecond light pulses | |
Moeller et al. | Laser pumping by excitation transfer in dye mixtures | |
Brueck et al. | Photo-acoustic and photo-refractive detection of small absorptions in liquids | |
US3446558A (en) | Method for measuring the characteristics of a gas | |
CN111856361B (en) | Nuclear magnetic resonance spectrometer and method for detecting energy level structure thereof | |
US3885874A (en) | Laser plasma diagnostic using ring resonators | |
SU1646371A1 (en) | Method for measuring absorption of electromagnetic radiation by material | |
Keeler et al. | Stimulated Brillouin scattering in shock-compressed fluids | |
White | An elastic wave method for the measurement of pulse-power density | |
Tam | Signal enhancement and noise suppression considerations in photothermal spectroscopy | |
US4316147A (en) | Apparatus for determining the composition of mercury-cadmium-telluride and other alloy semiconductors | |
US2986227A (en) | Acoustic wave measuring method and apparatus | |
Tam | Photothermal spectroscopy as a sensitive spectroscopic tool | |
Denisov et al. | Recent results of 0.5 terahertz gyrotrons with record power | |
Tam | Photoacoustic and photothermal spectroscopy | |
Guerra et al. | Gradient-field permanent-magnet spin-flip laser | |
Sathy et al. | Fluorescence quantum yield of rhodamine 6G using pulsed photoacoustic technique | |
Mandelis et al. | Quantum efficiency and metastable lifetime measurements in solid state laser materials via lock-in rate-window photothermal radiometry: technique and application to ruby (Cr3+: Al2O3) | |
Davis et al. | Studies of microwave absorption in liquids by optical heterodyne detection of thermally induced refractive index fluctuations | |
Gabdulhakovich et al. | New application of the Mössbauer effect-Part I. Modulation effects | |
SU1485103A1 (en) | Device for comprehensive determination of thermal and physical properties of materials | |
Rose-Innes | A frequency modulated microwave spectrometer for electron resonance measurements | |
Clayton et al. | Experimental study of the plasma beat wave accelerator | |
SU1688133A1 (en) | Temperature field measuring device |