SU152100A1 - The method of obtaining in the pyrometer total radiation of various types of functional dependence of the amount of radiation energy on temperature - Google Patents

The method of obtaining in the pyrometer total radiation of various types of functional dependence of the amount of radiation energy on temperature

Info

Publication number
SU152100A1
SU152100A1 SU775661A SU775661A SU152100A1 SU 152100 A1 SU152100 A1 SU 152100A1 SU 775661 A SU775661 A SU 775661A SU 775661 A SU775661 A SU 775661A SU 152100 A1 SU152100 A1 SU 152100A1
Authority
SU
USSR - Soviet Union
Prior art keywords
radiation
pyrometer
temperature
obtaining
various types
Prior art date
Application number
SU775661A
Other languages
Russian (ru)
Inventor
Д.Я. Свет
Original Assignee
Д.Я. Свет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Д.Я. Свет filed Critical Д.Я. Свет
Priority to SU775661A priority Critical patent/SU152100A1/en
Application granted granted Critical
Publication of SU152100A1 publication Critical patent/SU152100A1/en

Links

Landscapes

  • Radiation Pyrometers (AREA)

Description

Известны способы получени  в пирометре суммарной радиации дл  определени  температуры свет щихс  объектов по величине суммарной энергии излучени , воспринимаемой чувствительным элементом пирометра .Methods are known for obtaining in the pyrometer total radiation for determining the temperature of luminous objects from the magnitude of the total radiation energy perceived by the sensitive element of the pyrometer.

По закону Стефана - Больцмана энерги  Е пропорциональна четвертой степени температуры Г, отсчитываемой от абсолютного нул , т. е. Е аТ, где о - коэффициент пропорциональности. Неизменность величины энергии, принимаемой чувствительным элементом пирометра при получении суммарной радиации известными способами, не позво .л ет получать различного вида температурные шкалы.According to the Stefan-Boltzmann law, the energy E is proportional to the fourth power of the temperature T, measured from absolute zero, i.e. E aT, where o is the proportionality coefficient. The constancy of the magnitude of the energy received by the sensitive element of the pyrometer when the total radiation is obtained by known methods does not allow one to obtain various types of temperature scales.

Предлагаемый способ отличаетс  тем, что спектральное распреде . ление энергии излучени  измен ют путем установки перед приемником излучени  элемента с соответствующей спектральной характеристикой. Это позвол ет получать температурные шкалы требуемого вида.The proposed method is characterized in that the spectral distribution. The radiation energy is changed by installing an element with an appropriate spectral characteristic in front of the radiation receiver. This allows temperature scales of the desired type to be obtained.

Дл  выполнени  способа перед приемником радиационного пирометра устанавливают элемент, например светофильтр. Этот элемент об , ладает определенным видом спектральной характеристики /((А,), котора  может выражать зависимость величины пропускани  элемента от длины волиы при работе на пропускание, а также зависимость от длины волны коэффициента отражени , если дл  создани  требуемого вида характеристики используют  вление отражени , в том числе многократного (например, при использовании металлических или волоконных световодов).In order to perform the method, an element, for example a light filter, is installed in front of the receiver of the radiation pyrometer. This element is about, gives a certain type of spectral characteristic / ((A,), which can express the dependence of the element transmission value on the wavelength during transmission operation, as well as the reflection coefficient wavelength, if the reflection effect is used to create the desired type of characteristic including multiple (for example, when using metal or optical fibers).

Дл  реализации способа наиболее эффективным:  вл етс  исполь .зование зависимости: /С(Я)ЛЯ, где п - некоторое положительное или .отрицательное число; Я- длина волны; А - посто нный коэффициент.For the implementation of the method, the most effective: is the use of the dependency: / S (I) LN, where n is some positive or negative number; I - wavelength; A is a constant coefficient.

SU775661A 1962-04-24 1962-04-24 The method of obtaining in the pyrometer total radiation of various types of functional dependence of the amount of radiation energy on temperature SU152100A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU775661A SU152100A1 (en) 1962-04-24 1962-04-24 The method of obtaining in the pyrometer total radiation of various types of functional dependence of the amount of radiation energy on temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU775661A SU152100A1 (en) 1962-04-24 1962-04-24 The method of obtaining in the pyrometer total radiation of various types of functional dependence of the amount of radiation energy on temperature

Publications (1)

Publication Number Publication Date
SU152100A1 true SU152100A1 (en) 1962-11-30

Family

ID=48306668

Family Applications (1)

Application Number Title Priority Date Filing Date
SU775661A SU152100A1 (en) 1962-04-24 1962-04-24 The method of obtaining in the pyrometer total radiation of various types of functional dependence of the amount of radiation energy on temperature

Country Status (1)

Country Link
SU (1) SU152100A1 (en)

Similar Documents

Publication Publication Date Title
Olson On the ratio of total-to-selective absorption.
JPS57166529A (en) Method and device for measuring temperature
CN105300563A (en) Correction method of up-conversion fluorescence strength ratio temperature measurement technology
US2218253A (en) Method and means for measuring color
SU152100A1 (en) The method of obtaining in the pyrometer total radiation of various types of functional dependence of the amount of radiation energy on temperature
Bengt et al. The refractive index of air
JPS5582032A (en) Out-off wavelength measuring method for lp11 mode in optical fiber and measuring unit
JPS5278448A (en) Apparatus for manufacturing optical fiber
JPS55134324A (en) Radiation thermometer
SU149914A1 (en) Method for measuring the temperature of bodies by their radio emission
Rybanský New method of photometry of coronal lines 5303 Å and 6374 Å at Lomnický Stít
BAVYKIN et al. An optical method of measuring the burning- surface temperature of condensed systems(Optical measurement method for burning surface temperature of condensed systems, realizing radiation from surface of combustion by light guide of monocrystalline aluminum oxide)
JPS5435757A (en) Measuring method of refractive index distribution of optical fibers
JPS5435759A (en) Measuring method of numerical aperture of optical fibers
FECTEAU Development of a high accuracy luminance calibration service for radioluminous sources[Final Report]
Sitnik Effect of Scattered Light in a Monochromator on Absolute Measurements Using a Standard Source.
Pim Fitzgerald RASC Papers-The Use of Calcium Emission Lines as a Distance Indicator
Abbane et al. Study of the system responsivity to measure the blackbody's temperature by optical pyrometry from 1200 K to 1570 K
JPS57116234A (en) Measuring method for photo loss
Liller Photoelectric photometry of planetary nebulae.
ANDREEV et al. Method of measuring the light sensitivity of photographic materials for holography
JPS531042A (en) Transmission characteristics measuring method of optical fiber
Mulders Calibration of Rowland's scale of intensities for solar lines in equivalent breadth.(Communication from the Heliophysical Institute of the Physical Laboratory at Utrecht.) Mit 1 Abbildung.
JPS51129252A (en) Optical cell for measuring optical transmission lines
Pismis On the Period-Luminosity Relation in Cluster-Type Cepheids