SK7494Y1 - Zemný výmenník tepla - Google Patents
Zemný výmenník tepla Download PDFInfo
- Publication number
- SK7494Y1 SK7494Y1 SK50035-2015U SK500352015U SK7494Y1 SK 7494 Y1 SK7494 Y1 SK 7494Y1 SK 500352015 U SK500352015 U SK 500352015U SK 7494 Y1 SK7494 Y1 SK 7494Y1
- Authority
- SK
- Slovakia
- Prior art keywords
- tubular body
- ground
- heat exchanger
- exchanger
- heat transfer
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/0052—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using the ground body or aquifers as heat storage medium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/10—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
- F24T10/13—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
- F24T10/15—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using bent tubes; using tubes assembled with connectors or with return headers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/10—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
- F24T10/13—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
- F24T10/17—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T2010/50—Component parts, details or accessories
- F24T2010/53—Methods for installation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Zemný výmenník (1) tepla je tvorený rúrkovým telesom (2), ktoré je vybavené prostriedkami na zatlačenie, narazenie alebo zavŕtanie do zeminy, kde v dutine (6) rúrkového telesa (2) je komora (13), obsahujúca prostriedky (10) na rozvod teplonosného média a/alebo teplonosné médium na prenos tepla do rúrkového telesa (2), pripojené na prívod (8) a/alebo odvod (9) teplonosného média.
Description
Technické riešenie sa týka výmenníkov tepla na prenos tepla z a do zeminy.
Doterajší stav techniky
V súčasnosti sa využívajú na odvádzanie tepelných prebytkov solárnych energetických systémov najmä plastové rúrky v slučke, ktoré sú vložené do vrtov alebo kanálov, zvislo alebo vodorovne s minimálnou izoláciou, ale veľkým objemom stavebných prác.
Z dokumentu WO 8100754 A1 je známy podzemný nízkoteplotný akumulátor tepla na uchovávanie solárnej energie zo solárneho kolektora. Tento akumulátor obsahuje ako výmenník tepla zo a do zeminy zakopané rúrky zložené z vonkajšej rúrky a vnútornej rúrky. Vnútorná rúrka je pritom vyvedená na spodok vonkajšej rúrky, pričom privádza do vonkajšej rúrky teplo zo solárnych panelov prostredníctvom kvapaliny. Teplo je potom z vonkajšej rúrky odovzdávané do zeminy. V tomto riešení sú rúrky do zeminy zakopané šikmo, aby ich konce pri povrchu boli čo najbližšie pri sebe na minimalizovanie veľkosti centrálnej šachty akumulátora tepla a zvýšenie akumulačného objemu v zemine. Toto riešenie však stále predpokladá rozsiahle zemné práce pri zakopávaní rúrok.
Podstata technického riešenia
Nevýhody doterajšieho stavu techniky v podstatnej miere odstraňuje zemný výmenník tepla rúrkového tvaru s prostriedkami na privádzanie a/alebo odvádzanie teplonosného média podľa tohto technického riešenia, ktorého podstata spočíva v tom, že je tvorený rúrkovým telesom, ktoré je vybavené prostriedkami na zatlačenie, narazenie alebo zavŕtanie do zeminy, kde v dutine rúrkového telesa je komora obsahujúca prostriedky na rozvod teplonosného média a/alebo teplonosné médium na prenos tepla do rúrkového telesa, pripojené na prívod a/alebo odvod teplonosného média.
Prostriedky na zatlačenie, narazenie alebo zavŕtanie do zeminy sú najmä prerážací a/alebo zavŕtavcí hrot, závit na zavŕtavacom hrote a/alebo rúrkovitom telese a príruba alebo prostriedky na pripojenie zavŕtavacieho alebo zatláčacieho mechanizmu.
Výmenník tepla podľa tohto technického riešenia v jednom z najvýhodnejších vyhotovení môže byť zemná ihla, ktorá je tvorená rúrkovým telesom na jednom konci vybaveným prerážacím hrotom, kde v dutine tohto telesa je komora ohraničená priečkou medzi týmto rúrkovým telesom a prerážacím hrotom a prírubou vybavenou prívodom a/alebo odvodom teplonosného média.
Výmenník tepla v ďalšom z najvýhodnejších vyhotovení môže byť zemná skrutka, ktorá je tvorená rúrkovým telesom na jednom konci vybaveným zavŕtavacím hrotom so zavŕtavacím závitom alebo závitmi na zavŕtavacom hrote a/alebo rúrkovom telese, kde v dutine rúrkového telesa je komora ohraničená priečkou medzi rúrkovým telesom a zavŕtavacím hrotom a prírubou vybavenou prívodom a/alebo odvodom teplonosného média. Zavŕtavací hrot môže byť na začiatku výhodne vybavený aj prerážacím hrotom, čo uľahčuje zavŕtavanie výmenníka tepla do tvrdých alebo kamenistých zemín.
Rúrkové teleso môže byť na vonkajšej strane výhodne vybavené prostriedkami na zväčšenie vonkajšej plochy tohto telesa. Pri výmenníku tepla so zavŕtvacím závitom vonkajšiu plochu rúrkového telesa výmenníka výhodne zväčšuje priamo tento závit.
Výmenník tepla sa zatlačí, narazí alebo zavŕta do zeme pričom nie je potrebný žiadny výkop. V prípade tvrdých alebo kamenistých zemín sa môže urobiť predbežný alebo prieskumný vrt, ktorého priemer je však vždy menší ako vonkajší priemer rúrkového telesa. Takto je pri aplikácii okolie rúrkového telesa výmenníka lokálne zhutnené, čo zlepšuje prestup tepla medzi zeminou a telesom výmenníka. Vnútrom výmenníka tepla prúdi teplonosné médium. Výmenník tepla odovzdáva svojím telesom teplo zemine. V prípade, ak je výmenník vytvorený na zavŕtanie prenos tepla, tiež zlepšuje plocha závitu, pretože sa zväčší vonkajšia prestupná plocha. V prípade výmenníka vytvoreného na zatlačenie alebo narazenie sa môže vonkajšia prestupná plocha zväčšiť pridanými plochami, ktoré sú vytvorené pozdĺžne s osou rúrkového telesa tak, aby nebránili zatláčaniu alebo narážaniu výmenníka tepla do zeme.
Tento výmenník tepla odstráni najbežnejší problém, ktorým je drahé vŕtanie hĺbkových vrtov alebo veľkoplošný výkop pre zemný kolektor.
Výmenník tepla podľa tohto technického riešenia tiež umožňuje kombinovať funkciu založenia jednoduchej stavby s funkciou zemného výmenníka tepla. Teleso výmenníka totiž po aplikácii do zeminy vytvorí z mechanického hľadiska zemnú kotvu, ku ktorej je možné pripojiť nadzemnú stavbu.
SK 7494 Υ1
Prehľad obrázkov na výkresoch
Technické riešenie je bližšie vysvetlené na pripojených výkresoch, na ktorých obrázok 1 znázorňuje výmenník tepla podľa tohto technického riešenia, vo forme zemnej ihly, v pohľade zboku v reze, s voľne prechádzajúcim kvapalným teplonosným médiom privedeným do komory rúrkového telesa;
obrázok 2 znázorňuje výmenník tepla podľa tohto technického riešenia, vo forme zemnej ihly, v pohľade zboku s prostriedkami na zväčšenia vonkajšej plochy rúrkového telesa;
obrázok 3 znázorňuje výmenník tepla podľa tohto technického riešenia, vo forme zemnej skrutky, v pohľade zboku v reze, s voľne prechádzajúcim kvapalným teplonosným médiom privedeným do komory rúrkového telesa;
obrázok 4 znázorňuje výmenník tepla podľa tohto technického riešenia, vo forme zemnej skrutky, v pohľade zboku v reze, s uzatvoreným rozvodom kvapalného teplonosného média v komore rúrkového telesa, pričom komora je vyplnená samostatným kvapalným teploprenosným médiom;
obrázok 5 znázorňuje výmenník tepla podľa tohto technického riešenia, vo forme zemnej skrutky, v pohľade zboku v reze, s uzatvoreným rozvodom kvapalného teplonosného média v komore rúrkového telesa, pričom komora je vyplnená pevnou teploprenosnou látkou;
obrázok 6 znázorňuje prvky na zväčšenie celkovej vonkajšej aktívnej plochy telesa výmenníka vo forme plochých závitov, v pohľade zboku;
obrázok 7 znázorňuje prvky na zväčšenie celkovej vonkajšej aktívnej plochy telesa výmenníka vo forme lamiel pozdĺžnych s osou rúrkového telesa, v pohľade zboku;
obrázok 8 znázorňuje prvky na zlepšenie odovzdávania a rozvodu tepla v komore, v priečnom reze rúrkovým telesom.
Príklady uskutočnenia
Výmenník X tepla podľa tohto technického riešenia podľa obrázka 1 je vo forme zemnej ihly. Výmenník X obsahuje rúrkové teleso 2 na jednom konci vybavené prerážacím hrotom 5. Na druhom konci je rúrkové teleso 2 vybavené prírubou 7 s prostriedkami na pripojenie prívodu 8 a odvodu 9 teplonosného média, pričom v tomto príklade táto príruba 7 zároveň slúži ako uzáver dutiny 6 rúrkového telesa 2. Táto príruba 7, resp. tento koniec rúrkového telesa 2 tiež obsahuje prostriedky na pripojenie zatláčacieho alebo narážacieho mechanizmu pri zatláčaní alebo narážaní výmenníka X do zeme. V prípade, ak výmenník X tiež slúži ako základ stavebnej konštrukcie, obsahuje uvedený koniec rúrkového telesa 2 prostriedky na pripojenie nadzemnej časti stavebnej konštrukcie. Uvedené prostriedky na pripojenie zatláčacieho alebo narážacieho mechanizmu ako aj prostriedky na pripojenie nadzemnej časti stavebnej konštrukcie sú známe a nie je ich potrebné ďalej opisovať. Na zjednodušenie tiež nie sú takéto prostriedky znázornené na výkresoch.
V tomto príklade uskutočnenia je rúrkové teleso 2 oddelené od prerážacieho hrotu 5 priečkou XX, ktorá môže byť tvorená dnom rúrkového telesa 2. Takto sa v dutine 6 rúrkového telesa 2 vytvorí komora 13, v ktorej sú umiestnené prostriedky 10 na rozvod teplonosného média. Prostriedky 10 na rozvod teplonosného média sú v tomto príklade tvorené rúrkou voľne vyústenou do komory 13 pri dne rúrkového telesa 2, t. j. pri priečke 11 medzi rúrkovým telesom 2 a prerážacím hrotom 5. Príruba 7 a priečka 11 v tomto príklade tesne uzatvára komoru 13, takže takýto výmenník X je vhodný na využitie kvapalného teplonosného média, ktoré voľne vypĺňa komoru 13. Veľkosť komory 13 v rúrkovom telese 2, ako aj veľkosť rúrkového telesa 2 je určená výpočtom odovzdávania alebo prijímania tepla, geologických pomerov alebo statických požiadaviek v prípade, ak výmenník X slúži tiež ako základ stavebnej konštrukcie.
V tomto príklade uskutočnenia výmenník X tepla pracuje nasledovným spôsobom:
Výmenník X sa pomocou zatláčacieho alebo narážacieho mechanizmu, buď ručného, alebo strojového, zatlačí alebo narazí známym spôsobom do podkladu, bez akejkoľvek extrakcie zeminy vrtom alebo výkopom.
V prípade tvrdých zemín je možné pred zatlačením alebo narazením výmenníka X do zeme uskutočniť predbežný alebo prieskumný vrt, ktorého priemer je menší ako priemer rúrkového telesa 2. Tento vrt sa vykoná príslušne upraveným zemným vrtákom, pričom pri takomto vrte nie je výhodne zemina z vrtu extrahovaná, ale sa prakticky len roztlačí na priemer tela použitého vrtáku. Do takto pripravenej diery sa potom zatlačí alebo narazí výmenník X.
K prívodu 8 a odvodu 9 teplonosného média sa pripojí príslušný vstup a výstup z nadzemnej aplikácie. Nadzemnou aplikáciou môžu byť napríklad solárne panely na ohrev vody, pričom výmenník tepla podľa tohto technického riešenia môže v tomto prípade slúžiť na odvod a uskladnenie prebytočného tepla z ohriatej vody do zemného zásobníka. Ohriata voda je privedená prívodom 8 do prostriedkov 10 na rozvod teplonosného média. Privedená voda v tomto prípade prechádza prostriedkami 10 na rozvod teplonosného média k odvodu 9, pričom odovzdáva teplo kvapaline v komore 13, ktorá následne odovzdá teplo cez najmä rúrkové teleso 2 do zeminy zemného zásobníka.
SK 7494 Υ1
Výmenník J_ tepla podľa tohto technického riešenia podľa obrázka 2 je vo forme zemnej ihly. Výmenník J_ obsahuje rúrkové teleso 2 na jednom konci vybavené prerážacím hrotom 5. Na druhom konci je rúrkové teleso 2 vybavené prírubou 7 s prostriedkami na pripojenie prívodu 8 a odvodu 9 teplonosného média, pričom v tomto príklade táto príruba 7 zároveň slúži ako uzáver dutiny 6 rúrkového telesa 2. Táto príruba 7, resp. tento koniec rúrkového telesa 2 tiež obsahuje prostriedky na pripojenie zatláčanieho alebo narážacieho mechanizmu pri zatláčaní alebo narážaní výmenníka J_ do zeme. V prípade, ak výmenník J_ tiež slúži ako základ stavebnej konštrukcie, obsahuje uvedený koniec rúrkového telesa 2 prostriedky na pripojenie nadzemnej časti stavebnej konštrukcie. Uvedené prostriedky na pripojenie zatláčacieho alebo narážacieho mechanizmu, ako aj prostriedky na pripojenie nadzemnej časti stavebnej konštrukcie sú známe a nie je ich potrebné ďalej opisovať. Na zjednodušenie tiež nie sú takéto prostriedky znázornené na výkresoch.
Z hľadiska zvýšenia účinnosti odovzdania tepla výmenníkom J_ zo alebo do zeminy je výmenník J_ vybavený prvkami na zväčšenie celkovej vonkajšej aktívnej plochy výmenníka T Takéto prvky sú v tomto príklade vytvorené vo forme lamiel 16 usporiadaných v smere osi rúrkového telesa 2. Ide v podstate o prvky tvaru plutvy, ktoré sú umiestnené na rúrkovom telese 2. Pri zatláčaní alebo narážaní výmenníka J_ do zeminy sú tieto lamely 16 unášané s rúrkovým telesom 2 do zeminy, do ktorej sa v podstate vrezávajú. Keďže uvedené prvky na zväčšenie vonkajšej plochy výmenníka 1 vytvárajú ďalší odpor pri jeho zatláčaní alebo narážaní do zeminy, je výhodné uskutočniť predbežný alebo prieskumný vrt, ako bolo opísané v predchádzajúcom príklade.
Vnútorné usporiadanie výmenníka 1, ako aj spôsob práce je analogické, ako je opísané v predchádzajúcom a tiež ďalších príkladoch uskutočnenia.
Výmenník 1 tepla podľa tohto technického riešenia podľa obrázka 3 je vo forme zemnej skrutky. Výmenník 1 obsahuje rúrkové teleso 2 na jednom konci vybavené zavŕtavacím hrotom 3. Zavŕtavací hrot 3 môže byť vybavený prerážacím hrotom 5. Takýmto hrotom 5 je zavŕtavací hrot 3 výhodne vybavený na aplikácie výmenníka J_ do kamenistých zemín. Na druhom konci je rúrkové teleso 2 vybavené prírubou 7 s prostriedkami na pripojenie prívodu 8 a odvodu 9 teplonosného média, pričom v tomto príklade táto príruba 7 zároveň slúži ako uzáver dutiny 6 rúrkového telesa 2. Táto príruba 7, resp. tento koniec rúrkového telesa 2 tiež obsahuje prostriedky na pripojenie zavŕtavacieho mechanizmu, pri zavŕtavaní výmenníka 1 do zeme. V prípade, ak výmenník J_ tiež slúži ako základ stavebnej konštrukcie, obsahuje uvedený koniec rúrkového telesa 2 prostriedky na pripojenie nadzemnej časti stavebnej konštrukcie. Uvedené prostriedky na pripojenie zavŕtavacieho mechanizmu, ako aj prostriedky na pripojenie nadzemnej časti stavebnej konštrukcie sú známe a nie je ich potrebné ďalej opisovať. Na zjednodušenie tiež nie sú takéto prostriedky znázornené na výkresoch.
Výmenník 1 je na zavŕtavacom hrote 3 vybavený zavŕtavacím závitom 4, pričom v tomto príklade zavŕtavací závit 4 prechádza na rúrkové teleso 2 výmenníka T Závit 4 na rúrkovom telese 2 zároveň zväčšuje plochu na prenos tepla do zeme. Sú však možné uskutočnenia, kde závit 4 je len na zavŕtavacom hrote 3 alebo prechádza len na malú časť rúrkového telesa 2. Toto je možné pri ľahko priestupných zeminách, pričom je možné ušetriť istú časť nákladov na výrobu výmenníka tepla podľa tohto vynálezu, avšak na úkor zníženia plochy na prenos tepla.
V tomto príklade uskutočnenia je rúrkové teleso 2 oddelené od zavŕtavacieho hrotu 3 priečkou 11, ktorá môže byť tvorená dnom rúrkového telesa 2. Takto sa v dutine 6 rúrkového telesa 2 vytvorí komora 13, v ktorej sú umiestnené prostriedky 10 na rozvod teplonosného média. Prostriedky 10 na rozvod teplonosného média sú v tomto príklade tvorené rúrkou voľne vyústenou do komory 13 pri dne rúrkového telesa 2, t. j. pri priečke 11 medzi rúrkovým telesom 2 a zavŕtavacím hrotom 3. Príruba 7 a priečka 11 v tomto príklade tesne uzatvára komoru 13, takže takýto výmenník 1 je vhodný na využitie kvapalného teplonosného média, ktoré voľne vypĺňa komoru 13. Veľkosť komory 13 v rúrkovom telese 2, ako aj veľkosť rúrkového telesa 2 je určená výpočtom odovzdávania alebo prijímania tepla, geologických pomerov alebo statických požiadaviek v prípade, ak výmenník 1 slúži tiež ako základ stavebnej konštrukcie.
V tomto príklade uskutočnenia výmenník tepla pracuje nasledovným spôsobom:
Výmenník 1 sa pomocou zavŕtavacieho mechanizmu, buď ručného, alebo strojového, zavŕta známym spôsobom do podkladu, bez akejkoľvek extrakcie zeminy vrtom alebo výkopom. K prívodu 8 a odvodu 9 teplonosného média sa pripojí príslušný vstup a výstup z nadzemnej aplikácie. Nadzemná aplikácia môže byť napríklad chladič fotovoltických panelov, ktoré sú uložené na nosnej konštrukcii pripevnenej na výmenník 1 tepla. Ohriata voda z chladiča je privedená prívodom 8 do prostriedkov 10 na rozvod teplonosného média. Privedená voda v tomto prípade zaplní komoru 13 v rúrkovom telese 2 a ako teplonosné médium odovzdá teplo cez najmä rúrkové teleso 2 do okolitej horniny. Odvodom 9 sa potom ochladená voda vracia do chladiča fotovoltických panelov.
Výmenník J_ tepla podľa tohto technického riešenia podľa obrázka 4 je tiež vo forme zemnej skrutky obdobnej ako na obrázok 1. Výmenník j_ obsahuje rúrkové teleso 2 na jednom konci vybavené zavŕtavacím hrotom 3. Na druhom konci je rúrkové teleso 2 vybavené prírubou 7 s prostriedkami na pripojenie prívodu 8 a odvodu 9 teplonosného média, pričom v tomto príklade táto príruba 7 zároveň slúži ako uzáver dutiny 6 rúrkového telesa 2. Táto príruba 7, resp. tento koniec rúrkového telesa 2 tiež môže obsahovať prostriedky na pripojenie zavŕtavacieho mechanizmu pri zavŕtavaní výmenníka J_ do zeme. V prípade, ak výmenník J_ tiež
SK 7494 Υ1 slúži ako základ stavebnej konštrukcie, môže obsahovať uvedený koniec rúrkového telesa 2 prostriedky na pripojenie nadzemnej časti stavebnej konštrukcie. Výmenník j_ je na zavŕtavacom hrote 3 vybavený zavŕtavacím závitom 4, pričom v tomto príklade zavŕtavací závit 4 prechádza na rúrkové teleso 2 výmenníka 1.
V tomto príklade uskutočnenia je rúrkové teleso 2 oddelené od zavŕtavacieho hrotu 3 priečkou 11 tvorenou dnom rúrkového telesa 2, čím sa v rúrkovom telese 2 vytvorí komora 13, v ktorej sú umiestnené prostriedky 10 na rozvod teplonosného média. Prostriedky 10 na rozvod teplonosného média sú v tomto príklade tvorené spojitou rúrkou tvaru U. S cieľom zvýšenia odovzdávania tepla z privádzaného teplonosného média môžu byť prostriedky 10 na rozvod teplonosného média príslušne vyhotovené, usporiadané alebo upravené na zvýšenie účinnosti prenosu tepla. Uvedené zahŕňa napríklad stočenie rozvodnej rúrky do závitov, použite vrapovej hadice na vytvorenie turbulentného prúdenia a pod.
Príruba 7 a priečka 11 v tomto príklade tesne uzatvára komoru 13. Do komory 13 je rúrkou 12 privedená teplovodivá kvapalina, napr. voda, ktorá komoru 13 vyplní. Okrem vody môžu byť tiež použité aj iné kvapaliny alebo zmesi s požadovanou tepelnou vodivosťou.
V tomto príklade uskutočnenia výmenník tepla pracuje nasledovným spôsobom:
Výmenník 1 sa pomocou zavŕtavacieho mechanizmu, buď ručného, alebo strojového, zavŕta známym spôsobom do podkladu, bez akejkoľvek extrakcie zeminy vrtom alebo výkopom. K prívodu 8 a odvodu 9 teplonosného média sa pripojí príslušný vstup a výstup z nadzemnej aplikácie. Nadzemnou aplikáciou môžu byť napríklad solárne panely na ohrev vody, pričom výmenník tepla podľa tohto technického riešenia je v tomto prípade určený na odvod a uskladnenie prebytočného tepla z ohriatej vody v zemnom zásobníku. Ohriata voda je privedená prívodom 8 do prostriedkov 10 na rozvod teplonosného média. Privedená voda v tomto prípade prechádza prostriedkami 10 na rozvod teplonosného média k odvodu 9, pričom odovzdáva teplo kvapaline v komore 13, ktorá následne odovzdá teplo cez najmä rúrkové teleso 2 do zeminy zemného zásobníka.
Výmenník j_ tepla podľa tohto technického riešenia podľa obrázka 5 je vo forme zemnej skrutky. Výmenník 1 obsahuje rúrkové teleso 2 na jednom konci vybavené zavŕtavacím hrotom 3. Na druhom konci je rúrkové teleso 2 vybavené prírubou 7 s prostriedkami na pripojenie prívodu 8 a odvodu 9 teplonosného média, pričom v tomto príklade táto príruba 7 zároveň slúži ako uzáver dutiny 6 rúrkového telesa 2. Vzhľadom na to, že dutina 6 obsahuje pevnú látku, nemusí byť spojenie príruby 7 a rúrkového telesa 2 tesné. Táto príruba 7, resp. tento koniec rúrkového telesa 2 tiež môže obsahovať prostriedky na pripojenie zavŕtavacieho mechanizmu, pri zavŕtavaní výmenníka j_ do zeme. V prípade, ak výmenník j_ tiež slúži ako základ stavebnej konštrukcie, môže obsahovať uvedený koniec rúrkového telesa 2 prostriedky na pripojenie nadzemnej časti stavebnej konštrukcie. Výmenník j_ je na zavŕtavacom hrote 3 a časti rúrkového telesa 2 vybavený zavŕtavacím závitom 4.
V dutine 6 rúrkového telesa 2 je komora 13 vyplnená pevnou teplovodivou látkou, napríklad betónom. Prostriedky 10 na rozvod teplonosného média sú v komore 13, v tomto prípade teda zaliate betónom. Prostriedky 10 na rozvod teplonosného média sú v tomto príklade tvorené spojitou rúrkou tvaru U, na ktorej sú pre lepšiu účinnosť odvodu tepla vytvorené zatočenia.
Výmenník j_ tepla podľa tohto príkladu tiež obsahuje prívod 15 zavlažovacej vody, ktorý je realizovaný rúrkou prechádzajúcou z hornej časti výmenníka j_, cez rúrkové teleso 2, do dolnej časti výmenníka j_, v tomto prípade do hrotu 3. Rúrka prívodu 15 zavlažovacej vody je vyústená do hrotu 3, resp. do dutiny hrotu 3 kde zavlažovacia voda vyteká otvormi 19 do okolitej zeminy. Toto riešenie je výhodné v prípade suchej zeminy, kedy sa takýmto zvlhčovaním zlepší tepelná vodivosť zeminy.
Prívod 15 zavlažovacej vody môže byť tiež analogicky vytvorený na výmenníku 1 vytvorenom vo forme zemnej ihly. V takomto prípade je prívod 15 realizovaný rúrkou prechádzajúcou z hornej časti výmenníka j_, cez rúrkové teleso 2, do dolnej časti výmenníka j_, v tomto prípade do prerážacieho hrotu 5.
Výmenník j. tiež môže byť vybavený snímačom 20 teploty.
Z hľadiska zvýšenia účinnosti odovzdania tepla výmenníkom j_ zo alebo do zeminy je výmenník j_ vybavený prvkami na zväčšenie celkovej vonkajšej aktívnej plochy výmenníka T Tieto prvky môžu byť vytvorené vo forme plochého závitu 14 alebo lamiel 16 usporiadaných v smere osi rúrkového telesa 2.
Príklad usporiadania plochého závitu alebo závitov 14 na výmenníku j_ je znázornený na obrázku 6. Plochý závit alebo závity 14 môžu byť súčasťou závitu 4 výmenníka j_ a/alebo môžu byť vytvorené nezávisle od závitu 4 výmenníka T Závit 4 výmenníka j_ tiež môže byť celý vytvorený ako plochý závit 14. Plochý závit alebo závity 14 pritom môžu byť vytvorené tak na rúrkovom telese 2, ako aj na zavŕtavacom hrote 3. Príklad lamiel 16 usporiadaných v smere osi rúrkového telesa 2 je znázornený na obrázku 7. Ide v podstate o prvky tvaru plutvy, ktoré sú umiestnené rúrkovom telese 2 tak, aby sa pri otáčaní výmenníka j_ pri jeho zavŕtavaní do zeminy neotáčali. Pri zavŕtavaní výmenníka j_ sú tieto lamely 16 vťahované s rúrkovým telesom 2 do zeminy, do ktorej sa v podstate vrezávajú. Ako je zrejmé z obrázka 8 tieto prvky na zväčšenie celkovej vonkajšej aktívnej plochy výmenníka J_je možné kombinovať.
Opísané prvky 14, 16 sú určené na zväčšenie celkovej vonkajšej aktívnej plochy výmenníka T Výmenník j_ môže ďalej obsahovať aj prvky 17, 18 na zlepšenie odovzdávania a rozvodu tepla vnútri výmenníka 1, t. j.
SK 7494 Υ1 v dutine 6 alebo komore 13. Príklady uvedené prvky 17, 18 na zlepšenie odovzdávania a rozvodu tepla sú znázornené na obrázku 6, vo variantoch a, b, c, d, e, f.
Dutina 6, resp. komora 13 výmenníka J_ je vyplnená pevnou látkou, napr. betónom. V tejto pevnej látke sú zaliate prostriedky 10 na rozvod teplonosného média a prvky 17, 18 na zlepšenie odovzdávania a rozvodu tepla.
V príklade podľa obrázka 8 a sú prvky 17 tvorené oceľovou tyčou umiestnenou v podstate v osi komory 13.
V príklade podľa obrázka 8b sú prvky 17 tvorené sústavou tvarových plechov, ktoré sa vzájomne dotýkajú, pričom sa dotýkajú prostriedkov 10 na rozvod teplonosného média a tiež rúrkového telesa 2.
V príklade podľa obrázka 8c sú spolu s prostriedkami 10 na rozvod teplonosného média zaliate prvky 18 na zlepšenie, v tomto prípade, odovzdávania tepla vo forme elektrických odporových káblov, ktoré sú pripojiteľné k zdroju elektrického prúdu. Takéto vyhotovenie výmenníka 1 tepla slúži najmä na zvýšenie tepelného výkonu pomocou elektrického prúdu v prípade potreby zvýšenia tepla v zemnom zásobníku tepla.
V príkladoch podľa obrázka 8 d, e, f sú prvky 17 tvorené stočeným plechom, ktorý sa nemusí dotýkať prostriedkov 10 na rozvod teplonosného média alebo rúrkového telesa 2 podľa obrázka 8d alebo sa tento stočený plech dotýka len prostriedkov 10 na rozvod teplonosného média podľa obrázka 8 e, f.
V prípade potreby, napríklad na dosiahnutie väčších hĺbok, môže byť rúrkové teleso 2 vytvorené z viacerých častí. V takomto prípade sa k časti rúrkového telesa už aplikovaného do zeminy pripojí ďalšia časť rúrkového telesa 2 a pokračuje sa v zatláčaní, narážaní, alebo zavŕtavaní. Spojenie častí rúrkového telesa 2 je možné uskutočniť známymi spôsobmi spájania rúrok, či už tesného, alebo netesného. Takéto jednotlivé časti rúrkového telesa 2 potom môžu tiež jednotlivo alebo v kombinácii obsahovať všetky možné skôr opísané prvky na zväčšenie celkovej vonkajšej aktívnej plochy výmenníka J_
Priemyselná využiteľnosť
Zemný výmenník tepla podľa tohto technického riešenia je možné využiť všade tam, kde je potrebné vytvoriť prenos tepla z nadzemnej energetickej aplikácie do zeme, pri výrazne znížených nákladoch na sprievodné zemné a stavebné práce.
NÁROKY NA OCHRANU
Claims (8)
1. Zemný výmenník tepla rúrkového tvaru s prostriedkami na privádzanie a/alebo odvádzanie teplonosného média, vyznačujúci sa tým, že je tvorený rúrkovým telesom (2), ktoré je vybavené prostriedkami na zatlačenie, narazenie alebo zavŕtanie do zeminy, kde v dutine (6) rúrkového telesa (2) je komora (13) obsahujúca prostriedky (10) na rozvod teplonosného média a/alebo teplonosné médium na prenos tepla do rúrkového telesa (2), pripojené na prívod (8) a/alebo odvod (9) teplonosného média.
2. Zemný výmenník tepla podľa nároku 1, vyznačujúci sa tým, že prostriedky na zatlačenie, narazenie alebo zavŕtanie do zeminy sú vybrané zo skupiny prerážací hrot (5), zavŕtavcí hrot (3), zavŕtavací závit (4), príruba (7) na pripojenie zatláčacieho, narážacieho alebo zavŕtavacieho mechanizmu.
3. Zemný výmenník tepla podľa ktoréhokoľvek z predchádzajúcich nárokov, vyznačujúci sa tým, že komora (13) je od prostriedkov na zatlačenie, narazenie alebo zavŕtanie do zeminy oddelená priečkou (11) a/alebo prírubou (7).
4. Zemný výmenník tepla podľa ktoréhokoľvek z predchádzajúcich nárokov, vyznačujúci sa tým, že rúrkové teleso (2) je na vonkajšej strane vybavené prvkami na zväčšenie vonkajšej plochy rúrkového telesa (2).
5. Zemný výmenník tepla podľa nároku 4, vyznačujúci sa tým, že prvky na zväčšenie vonkajšej plochy rúrkového telesa (2) sú vybrané zo skupiny zemný závit (4), plochý závit (14), lamely (16) usporiadané v smere osi rúrkového telesa (2).
6. Zemný výmenník tepla podľa ktoréhokoľvek z predchádzajúcich nárokov, vyznačujúci sa tým, že rúrkové teleso (2) obsahuje prostriedky na zavlažovanie zeminy.
7. Zemný výmenník tepla podľa nároku 6, vyznačujúci sa tým, že prostriedky na zavlažovanie zeminy sú tvorené rúrkou prívodu (15) zavlažovacej vody prechádzajúcou z hornej časti rúrkového telesa (2) do prerážacieho hrotu (5) a/alebo zavŕtavacieho hrotu (3) a otvormi (19) v prerážacom hrote (5) a/alebo zavŕtavacom hrote (3).
8. Zemný výmenník tepla podľa ktoréhokoľvek z predchádzajúcich nárokov, vyznačujúci sa tým, že rúrkové teleso (2) je vytvorené z dvoch alebo viacerých navzájom spojiteľných častí.
5 výkresov
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SK50035-2015U SK7494Y1 (sk) | 2015-04-20 | 2015-04-20 | Zemný výmenník tepla |
DE202016008787.9U DE202016008787U1 (de) | 2015-04-20 | 2016-04-19 | Erdwärmetauscher |
EP16166027.9A EP3086055A1 (en) | 2015-04-20 | 2016-04-19 | Ground heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SK50035-2015U SK7494Y1 (sk) | 2015-04-20 | 2015-04-20 | Zemný výmenník tepla |
Publications (2)
Publication Number | Publication Date |
---|---|
SK500352015U1 SK500352015U1 (sk) | 2015-11-03 |
SK7494Y1 true SK7494Y1 (sk) | 2016-07-01 |
Family
ID=54348551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SK50035-2015U SK7494Y1 (sk) | 2015-04-20 | 2015-04-20 | Zemný výmenník tepla |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3086055A1 (sk) |
DE (1) | DE202016008787U1 (sk) |
SK (1) | SK7494Y1 (sk) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT201600095972A1 (it) * | 2016-09-23 | 2018-03-23 | Nordwind S R L | Sonda geotermica di tipo coassiale e metodo per realizzarla |
CN113357839B (zh) * | 2021-06-26 | 2022-12-02 | 中化地质矿山总局山东地质勘查院 | 一种中深层地埋管换热装置及供热系统 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4277946A (en) * | 1979-08-13 | 1981-07-14 | Bottum Edward W | Heat pump |
DK155107C (da) | 1979-09-06 | 1989-06-26 | Niels Kristian Knudsen | Varmeakkumulator til lagring af solenergi |
JP2004233031A (ja) * | 2002-12-05 | 2004-08-19 | Nippon Steel Corp | 回転圧入工法で埋設された中空管体による地中熱交換器およびそれを利用した高効率エネルギーシステム |
WO2007070905A2 (de) * | 2005-12-19 | 2007-06-28 | Atlas Copco Mai Gmbh | Wärmetauscher |
FR2918086B1 (fr) * | 2007-06-26 | 2013-02-08 | Climatisation Par Puits Canadiens | Echangeur visse vertical enterre pour installation de chauffage ou de rafraichissement |
GB2478130B (en) * | 2010-02-25 | 2015-10-21 | Nicholas James Wincott | Load bearing construction pile |
US9109398B2 (en) * | 2011-10-28 | 2015-08-18 | Mechanical & Electrical Concepts, Inc. | Method for forming a geothermal well |
JP2013148255A (ja) * | 2012-01-18 | 2013-08-01 | Kawada Industries Inc | 熱交換器、及び、熱交換器モジュール |
-
2015
- 2015-04-20 SK SK50035-2015U patent/SK7494Y1/sk unknown
-
2016
- 2016-04-19 DE DE202016008787.9U patent/DE202016008787U1/de not_active Expired - Lifetime
- 2016-04-19 EP EP16166027.9A patent/EP3086055A1/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
DE202016008787U1 (de) | 2019-08-26 |
SK500352015U1 (sk) | 2015-11-03 |
EP3086055A1 (en) | 2016-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5816314A (en) | Geothermal heat exchange unit | |
US5623986A (en) | Advanced in-ground/in-water heat exchange unit | |
EP3961122B1 (en) | Geothermal energy mining system using stepped gravity-assisted heat pipe having no accumulated liquid effect | |
CN106168418B (zh) | 一种冷热电联产地下连续墙装置及其施工方法 | |
CN106225268B (zh) | 一种冷热电联产灌注桩装置及其施工方法 | |
CS251756B2 (en) | Device for storage of heat energy | |
CN106225269B (zh) | 一种冷热电联产pcc桩装置及其制作方法 | |
JP2004233031A (ja) | 回転圧入工法で埋設された中空管体による地中熱交換器およびそれを利用した高効率エネルギーシステム | |
WO2018014609A1 (zh) | 一种冷热电联产高压旋喷插芯组合桩系统及其施工方法 | |
CN202209808U (zh) | 地埋管换热器保温系统 | |
US20150007960A1 (en) | Column Buffer Thermal Energy Storage | |
KR101944023B1 (ko) | 지하수 관정을 활용한 복합 지중 열교환장치 | |
EP3118558B1 (en) | Ground heat accumulator | |
CN106225270B (zh) | 一种冷热电联产预应力管桩装置及其制作方法 | |
SK7494Y1 (sk) | Zemný výmenník tepla | |
CN209893671U (zh) | 一种基于闭合回路热媒管的高效地热利用系统 | |
US20080169084A1 (en) | Geothermal energy system | |
CN110542339A (zh) | 一种被动式跨季节供能蓄能系统 | |
CN1451931A (zh) | 不冻液循环式地热利用装置 | |
JP3902515B2 (ja) | 熱交換井戸の掘削及び地中熱交換システムとその設置方法 | |
CN205156415U (zh) | 一种多u型管式干热岩换热器 | |
CN113357839B (zh) | 一种中深层地埋管换热装置及供热系统 | |
KR100991002B1 (ko) | 지중 열교환 장치 | |
CN205156703U (zh) | 一种热管式干热岩换热器 | |
CN211120796U (zh) | 被动式跨季节供能蓄能系统,被动式供冷、供热系统 |