SK6206Y1 - System for measuring deformation, especially of water gates and procedure for performing the measurement - Google Patents

System for measuring deformation, especially of water gates and procedure for performing the measurement Download PDF

Info

Publication number
SK6206Y1
SK6206Y1 SK207-2011U SK2072011U SK6206Y1 SK 6206 Y1 SK6206 Y1 SK 6206Y1 SK 2072011 U SK2072011 U SK 2072011U SK 6206 Y1 SK6206 Y1 SK 6206Y1
Authority
SK
Slovakia
Prior art keywords
measuring
deformation
measurement
arm
gate
Prior art date
Application number
SK207-2011U
Other languages
Slovak (sk)
Other versions
SK2072011U1 (en
Inventor
Milan Macko
Zuzana Kovarikova
Frantisek Nagy
Original Assignee
Vuez A S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vuez A S filed Critical Vuez A S
Priority to SK207-2011U priority Critical patent/SK6206Y1/en
Publication of SK2072011U1 publication Critical patent/SK2072011U1/en
Publication of SK6206Y1 publication Critical patent/SK6206Y1/en

Links

Abstract

System for measuring deformation mainly water gate characterized in that the gate (10) are on the wall at intervals of several fixed bracket (21, 22, 23, 24, 25, 26), for the brackets (21, 22, 23,24 , 25,26) are mounted adjustable measuring plate (1, 2, 3, 4, 5, 6), then the top of the gate (10) is mounted pointing arm (9) with a laser rangefinder (8). At the bottom gate (10) is located reference point (7), located on the reference bracket (27). Procedure of measurement of deformations especially water gate is as follows: after the conclusion of the gate (10) without water filled reference measurement is started when the record focus position of the reference point (7) initial tilt arm (9) with a laser rangefinder (8) at no load condition gate (10), when the initial deformation is recorded in a state of no-load door (10). After the initial focus position measurement plates (1, 2, 3, 4, 5, 6). Subsequently, the gradual filling of water into the load lock chambers occurs door (10) due to the crushing force (11), then for each line of the laser beam emitted laser rangefinder (8) on a movable arm (9), the arm (9) is periodically horizontal moves and record the distance (12) when they hit a laser beam to the measuring edge of the measuring plate (1, 2, 3, 4, 5, 6). Distance (12) records the change in distance of the reflected light after being pushed over the edge of each grid plate (1, 2, 3, 4, 5, 6). Evaluation of distance (12) movable arm (9) from the initial position for all the measuring plate (1, 2, 3, 4, 5, 6) is obtained by deformation process incl. The actual measurement of deformation is made on a proposal in a few lines of static gates. Each line is the deformation measured in a number of measuring points and one reference point. In total, the available amount of data required for deformation. These are readily available in visual form. Exceeded the critical values is secured alarm system. The system allows continuous access to data measured at any time of measurement. Logging is also information about water levels and periodic measurements are processed during deformation depending on the level. The system also records and other supporting data - state opening of doors and temperature. This solution is applicable to the measurement, which can not be measured deformations using a laser scanner from dispersed and extensive grounds of the structure measured body inside the body and the effects of weather or other outside body.

Description

SK 6206 Υ1SK 6206 Υ1

Oblasť technikyTechnical field

Technické riešenie sa týka systému na meranie deformácií, najmä vodných vrát a iných podobných predmetov, používaných na vodných dielach a v priemysle.The technical solution relates to a system for measuring deformations, in particular water gates and other similar objects used on water structures and in industry.

Doterajší stav technikyBACKGROUND OF THE INVENTION

Pri prevádzke vodných vrát na vodných dielach vzniká v dôsledku rozdielu pôsobiacich síl na steny vrát v procese napúšťania a vypúšťania plavebných komôr deformácia vrát. Spoľahlivá a bezpečná prevádzka vodného diela si vyžaduje trvalé sledovanie a záznam tejto deformácie. Pri zistení neštandardných hodnôt deformácie mimo rozsahu povolených, vypočítaných hodnôt je potrebný okamžitý zásah obsluhy do prevádzky komory. Na meranie deformácie sú používané tenzometrické merania. Počas prevádzky vrát sa toto meranie ukázalo ako značne nespoľahlivé. Samotné meranie bolo ovplyvňované okrem sledovanej meranej veličiny viacerými parazitnými vplyvmi. Išlo hlavne o pôsobenie vplyvu teploty na tenzometrické snímače najmä pri napúšťaní plavebnej komory. Keď boli vo vypustenom stave vráta v časti nad vodnou hladinou v letnom období zohriate na teplotu okolitého vzduchu, a potom sa pri napúšťaní pomerne rýchle ochladzovali stúpajúcou vodnou hladinou, nastali také rýchle zmeny teploty na jednotlivé tenzometrické snímače, že ani teplotné kompenzované zapojenie tenzometrov ich nedokázalo potlačiť a merací systém tieto vplyvy vyhodnotil ako nepovolené deformácie. Podobná situácia bola i v zime, keď vráta boli chladnejšie ako voda v plavebnej komore. Boli pozorovateľné aj vplyvy svietiaceho slnka striedavo zacláňaného a odcláňaného oblakmi na oblohe na hodnoty deformácií.In the operation of gates on water structures, the difference in the forces applied to the gates' walls during the filling and discharge of the lock chambers results in gates deformation. Reliable and safe operation of the waterworks requires constant monitoring and recording of this deformation. If non-standard deformation values are detected outside the allowed calculated values, immediate intervention of the operator into the chamber operation is necessary. Strain gauge measurements are used to measure deformation. During the operation of the door, this measurement proved to be considerably unreliable. The measurement itself was influenced in addition to the measured quantity by several parasitic influences. It was mainly the effect of temperature on strain gauges, especially when filling the lock chamber. When the door was discharged in the part above the water level during the summer period to the ambient air temperature and then cooled relatively quickly by the rising water level during the filling, such rapid changes of temperature to the individual strain gauge sensors occurred that even temperature compensated tensiometer connection failed and the measurement system evaluated these effects as unauthorized deformations. The situation was similar in winter, when the gate was colder than the water in the lock. The effects of the shining sun alternately obscured and deflected by clouds in the sky on the deformation values were also observable.

Podstata technického riešeniaThe essence of the technical solution

Uvedené nedostatky súčasného stavu techniky do značnej miery odstraňuje systém na meranie deformácií, najmä vodných vrát podľa technického riešenia, spočívajúci v meraní deformácie vrát v stanovených meracích bodoch s využitím laserového svetelného lúča. Tento lúč je vysielaný a prijímaný zdrojom s vyhodnotením odrazu - laserovým diaľkomerom umiestneným na polohovacom ramene v hornej časti vrát a vytvára meranie v jednej línii.These deficiencies of the prior art are largely eliminated by a system for measuring deformations, in particular water gates according to the invention, consisting in measuring the deformation of gates at specified measuring points using a laser light beam. This beam is transmitted and received by a reflection-evaluating source - a laser rangefinder located on the positioning arm at the top of the door and generates a single-line measurement.

Počas pohybu laserového diaľkomera po ramene sú identifikované odrazy laserového svetelného lúča postupne od jednotlivých meracích platničiek nastaviteľné umiestnených na konzolách, upevnených na vrátach v meracích bodoch a zaznamenáva sa pritom vzdialenosť pohyblivého ramena od počiatočnej polohy pohyblivého ramena v okamihu, keď sa zmenila vzdialenosť spätne odrazeného laserového svetelného lúča. Toto identifikuje moment, keď sa svetlo prestalo odrážať od danej meracej platničky a začalo sa odrážať od ďalšej meracej platničky. Na základe toho je presne zmeraná vodorovná poloha hrany meracej platničky. Po následnom softvérovom spracovaní je zistená deformácia v jednotlivých meracích bodoch.As the laser rangefinder moves along the arm, the reflections of the laser light beam are identified sequentially from the individual measuring plates adjustable on the brackets mounted on the gates at the measuring points, and the distance of the moving arm from the initial position of the moving arm is recorded. light beam. This identifies the moment when the light ceased to reflect from the given measuring plate and started to reflect from the next measuring plate. As a result, the horizontal position of the measuring plate edge is accurately measured. After subsequent software processing, deformation at individual measuring points is detected.

Postup merania: Po uzatvorení vrát bez napustenia vody sa spustí referenčné meranie. Vtedy sa zaznamená zameraním polohy referenčného bodu počiatočné naklonenie ramena so zdrojom laserového svetelného lúča v stave bez zaťaženia vrát a zamerajú sa počiatočné polohy meracích platničiek. Pri postupnom napúšťaní vody do plavebnej komory nastane zaťaženie vrát v dôsledku deformačnej sily. Pre každú líniu je laserový svetelný lúč vysielaný, prijímaný a vyhodnocovaný laserovým diaľkomerom na pohyblivom ramene. Toto rameno sa periodicky horizontálne pohybuje a zaznamenáva sa vzdialenosť ramena od počiatočnej polohy pohyblivého ramena pri dopade laserového svetelného lúča na meraciu hranu každej meracej platničky. Vzniknú tak údaje pre meranie deformácie v meracích bodoch na meracích platničkách v jednej meracej línii. Tieto sú v meracom systéme numericky spracované tak, že ich výsledkom je údaj o deformácii vrát vo všetkých meracích bodoch. Meracích systémov podľa obrázka č. 1 je vo vrátach celkove osem. Spolu je tak k dispozícii riadiacej veži vodného diela vo vizuálnej forme štyridsaťosem údajov o deformácii. Prekročenie kritických hodnôt je strážené alarmovým systémom.Measurement procedure: After closing the door without water filling, the reference measurement is started. In this case, by measuring the position of the reference point, the initial tilt of the arm with the laser light source in the no-load state of the gates is recorded and the initial positions of the measuring plates are measured. When the water is gradually filled into the lock chamber, the loading of the gates occurs due to the deformation force. For each line, a laser light beam is transmitted, received and evaluated by a laser rangefinder on the movable arm. This arm moves periodically horizontally and the distance of the arm from the initial position of the movable arm is recorded when the laser light beam strikes the measuring edge of each measuring plate. This produces data for measuring the deformation at the measuring points on the measuring plates in one measuring line. These are numerically processed in the measuring system so that they result in the deformation of the gates at all measuring points. The measurement systems according to FIG. 1 is eight in the gate. Together, the water tower control tower is available in visual form forty-eight deformation data. Exceeding of critical values is monitored by alarm system.

Na vrátach je nasadená sústava takýchto líniových meracích bodov s platničkami a sumárnym softvérovým spracovaním nameraných údajov je periodicky meraná celková deformácia vrát. Výsledky meraní sú ukladané do databázy a sú okamžite k dispozícii vo vizuálnej forme. Prekročenie kritických hodnôt je strážené alarmovým systémom. Systém umožňuje trvalý prístup k údajom, nameraným v ľubovoľnom čase merania.The gate is equipped with a set of such line measuring points with plates and the total software processing of measured data is periodically measured the total deformation of the door. The measurement results are stored in a database and are immediately available in visual form. Exceeding of critical values is monitored by alarm system. The system allows permanent access to the data measured at any time of measurement.

SK 6206 VISK 6206 VI

Prehľad obrázkov na výkresochBRIEF DESCRIPTION OF THE DRAWINGS

Na obrázku č. 1 je zobrazený počiatočný stav jednej meracej línie vrát bez zaťaženia v okamihu merania deformácie meracieho bodu meracej platničky. Obrázok znázorňuje použitie šiestich meracích platničiek. Ich počet môže byť i ľubovoľne iný.In the picture no. 1 shows the initial state of one measuring line of the door without load at the moment of measuring the deformation of the measuring point of the measuring plate. The illustration shows the use of six measuring plates. The number may be arbitrarily different.

Na obrázku č. 2 je zobrazený stav v okamihu merania deformácie meracieho bodu meracej platničky 3 po zaťažení vrát v dôsledku tlaku vodnej hladiny napúšťanej plavebnej komory.In the picture no. 2 shows the state at the moment of measuring the deformation of the measuring point of the measuring plate 3 after loading of the gates due to the water level pressure of the impregnated lock chamber.

Príklady uskutočneniaEXAMPLES

Meranie deformácie na vrátach 10 plavebnej komory vodného diela spočíva v použití meracích platničiek 1,2, 3,4, 5, 6, nastaviteľné uložených na konzolách 21, 22. 21, 24.25, 26 referenčného bodu 7 pevne umiestneného na referenčnej konzole 27, pričom konzoly 21, 22. 23, 24. 25. 26. 27 sú nerozoberateľne upevnené na vrátach 10 plavebnej komory, vo vrchnej časti vrát 10 je umiestnené polohovacie rameno 9 s laserovým diaľkomerom 8.The measurement of the deformation at the gate of the waterway lock chamber consists of using the measuring plates 1,2, 3,4, 5, 6, adjustable on the brackets 21, 22, 21, 24.25, 26 of the reference point 7 fixedly fixed on the reference bracket 27, the brackets 21, 22, 23, 24, 25, 26 are permanently attached to the lock chamber gate 10, at the top of the gate 10 a positioning arm 9 with a laser rangefinder 8 is located.

Samotné meranie je uskutočnené na základe návrhu statika v štyroch líniách v každej časti vrát 10, celkove teda v ôsmich meracích líniách. Jedna meracia línia je tvorená meracími platničkami 1, 2, 3, 4, 5, 6, konzolami 21, 22. 23. 24. 25. 26 na upevnenie meracích platničiek 1, 2, 3, 4, 5, 6, referenčným bodom 2 umiestneným na referenčnej konzole 27 situovanej v spodnej časti vrát 10 s laserovým diaľkomerom 8 pohyblivo umiestneným na polohovacom ramene 9. Na vrátach 10 je o stenu nerozoberateľne upevnených ľubovoľný počet konzol 21, 22. 23. 24. 25. 26. Na týchto konzolách 21. 22, 23, 24, 25. 26 sú nastaviteľné upevnené meracie platničky 1, 2, 3, 4, 5, 6. Vo vrchnej časti vrát 10 je upevnené polohovacie rameno 9 s laserovým diaľkomerom 8.The measurement itself is carried out on the basis of a static design in four lines in each part of the door 10, in total in eight measurement lines. One measuring line consists of measuring plates 1, 2, 3, 4, 5, 6, brackets 21, 22, 23, 24, 25 for fixing the measuring plates 1, 2, 3, 4, 5, 6, reference point 2 located on the reference bracket 27 situated at the bottom of the door 10 with the laser rangefinder 8 movably mounted on the positioning arm 9. An arbitrary number of brackets 21, 22, 23, 24, 25, 26 are permanently attached to the wall 10. 22, 23, 24, 25, 26, adjustable measuring plates 1, 2, 3, 4, 5, 6 are adjustable. In the upper part of the door 10 a positioning arm 9 with a laser rangefinder 8 is fixed.

Po uzatvorení vrát 10 bez napustenia vody sa spustí referenčné meranie. Vtedy sa zaznamená zameraním polohy referenčného bodu 7 počiatočné naklonenie ramena 9 s laserovým diaľkomerom 8 v stave bez zaťaženia vrát 10 a zamerajú sa počiatočné polohy meracích platničiek 1, 2, 3, 4, 5, 6. Potom pri postupnom napúšťaní vody do plavebnej komory nastane zaťaženie vrát 10 v dôsledku deformačnej sily 11. Pre každú líniu je laserový svetelný lúč vysielaný laserovým diaľkomerom 8 na pohyblivom ramene 9. Toto rameno 9 sa periodicky horizontálne pohybuje a zaznamenáva sa vzdialenosť 12 pri dopade laserového svetelného lúča na meraciu hranu každej meracej platničky 1, 2, 3, 4, 5, 6 (na obrázku 2 je situácia v okamihu merania platničky 3). Vzniknú tak údaje pre meranie deformácie v meracích bodoch na meracích platničkách 1, 2, 3, 4, 5, 6 v jednej meracej línii. Tieto sú v meracom systéme numericky spracované tak, že ich výsledkom je údaj o deformácii vrát vo všetkých meracích bodoch. Meracích systémov podľa obrázka 1 je vo vrátach 10 celkove osem. Spolu je tak k dispozícii riadiacej veži vodného diela vo vizuálnej forme štyridsaťosem údajov o deformácii. Prekročenie kritických hodnôt je strážené alarmovým systémom. Systém umožňuje trvalý prístup k údajom, nameraným v ľubovoľnom čase merania. Zaznamenávané sú i údaje o výškach vodných hladín (horná a dolná) a pri periodickom priebehu merania sú spracované závislosti deformácie vrát 10 od výšky hladiny. Systém ďalej zaznamenáva aj ďalšie pomocné údaje - stavy otvorenia vrát 10 a teploty. Periodické meranie prebieha počas celého procesu zaťaženia vrát 10 (počas celého napúšťacieho a vypúšťacieho cyklu plavebnej komory)When the door 10 is closed without water filling, the reference measurement is started. Then, by measuring the position of the reference point 7, the initial inclination of the arm 9 with the laser rangefinder 8 in the no-load state of the gate 10 is recorded and the initial positions of the measuring plates 1, 2, 3, 4, 5, 6 are measured. the load of the gates 10 due to the deformation force 11. For each line, a laser light beam is transmitted by a laser rangefinder 8 on the movable arm 9. This arm 9 moves periodically horizontally and the distance 12 is recorded when the laser light beam strikes the measuring edge of each measuring plate 1. 2, 3, 4, 5, 6 (Figure 2 shows the situation at the moment of measurement of the plate 3). This provides data for measuring the deformation at the measuring points on the measuring plates 1, 2, 3, 4, 5, 6 in one measuring line. These are numerically processed in the measuring system so that they result in the deformation of the gates at all measuring points. The measurement systems of Figure 1 have a total of eight in the door 10. Together, the water tower control tower is available in visual form forty-eight deformation data. Exceeding of critical values is monitored by alarm system. The system allows permanent access to the data measured at any time of measurement. Data on water level heights (upper and lower) are also recorded, and during the periodic measurement, the dependence of the deformation of the gate 10 with the surface level is processed. The system also records additional auxiliary data - door opening states 10 and temperature. Periodic measurement takes place during the whole loading process of the gate 10 (during the entire loading and discharge cycle of the lock)

Priemyselná využiteľnosťIndustrial usability

Technické riešenie nachádza uplatnenie pri meraní deformácií vodných vrát vo vodnom hospodárstve, ale i celkove v priemysle pri meraní deformácií iných objektov. Toto riešenie je použiteľné i na merania, kde nie je možné merať deformácie s využitím laserového skenera z dôvodov členitej a rozsiahlej konštrukcie meraného telesa vnútri telesa a poveternostných alebo iných vplyvov zvonka telesa.The technical solution finds application in the measurement of deformations of water gates in water management, but also in industry when measuring deformations of other objects. This solution is also applicable for measurements where it is not possible to measure deformations using a laser scanner due to the rugged and extensive construction of the measured body inside the body and weather or other influences from outside the body.

NÁROKY NA OCHRANUPROTECTION REQUIREMENTS

Claims (2)

1. Systém na merania deformácií najmä vodných vrát, vyznačujúci sa tým, že na vrátach (10) sú o stenu v rozstupoch pripevnené viaceré konzoly (21,22, 23,24, 25,26), na týchto konzolách (21, 22, 23, 24, 25, 26) sú nastaviteľné upevnené meracie platničky (1, 2, 3, 4, 5, 6), potom vo vrchnej časti vrát (10) je upevnené polohovacie rameno (9) s laserovým diaľkomerom (8) a v spodnej časti vrát (10) je situovaný referenčný bod ( 7 ) umiestnený na referenčnej konzole (27).A system for measuring deformations, in particular of a water gate, characterized in that a plurality of brackets (21, 22, 23, 24, 25, 26) are attached to the wall at intervals on the door (10), 23, 24, 25, 26) are adjustable fixed measuring plates (1, 2, 3, 4, 5, 6), then in the upper part of the door (10) is fixed positioning arm (9) with laser rangefinder (8) and in the lower In the part of the door (10) is situated a reference point (7) located on the reference console (27). 2. Postup vykonania merania systémom podľa nároku 1, vyznačujúci sa tým, že po uzatvorení vrát (10) bez napustenia vody sa spustí referenčné meranie, kedy sa zaznamená zameraním polohy re3Method for carrying out a system measurement according to claim 1, characterized in that after closing the gates (10) without water inlet, a reference measurement is started, which is recorded by positioning the position re3 SK 6206 Υ1 ferenčného bodu (7) počiatočné naklonenie ramena (9) s laserovým diaľkomerom (8) - zdrojom laserového svetelného lúča a snímačom jeho odrazu v stave bez zaťaženia vrát (10), potom sa zamerajú počiatočné polohy meracích platničiek (1, 2, 3, 4, 5, 6), následne pri postupnom napúšťaní vody do plavebnej komory nastane zaťaženie vrát (10) v dôsledku deformačnej sily (11), potom je pre každú líniu vysielaný a vyhodnocovaný 5 laserový svetelný lúč laserovým diaľkomerom (8) na pohyblivom ramene (9), toto rameno (9) sa periodicky horizontálne pohybuje a zaznamenáva sa vzdialenosť (12) pri dopade laserového svetelného lúča na meraciu hranu každej meracej platničky (1, 2, 3, 4, 5, 6), vzdialenosť (12) sa zaznamenáva pri zmene vzdialenosti odrazeného laserového svetelného lúča po vysunutí za hranu danej meracej platničky (1, 2, 3, 4, 5, 6), vyhodnocovaním vzdialenosti (12) ramena (9) od počiatočnej polohy pre všetky meracie platničky (1, 2, 3, 4, 5, 6) sa 10 získava priebeh deformácie vrát.Initial tilt of the arm (9) with the laser rangefinder (8) - the laser light source and its reflection sensor in the no-load state (10), then the initial positions of the measuring plates (1, 2, 3, 4, 5, 6), consequently, as the water is gradually introduced into the lock chamber, the door (10) is loaded by the deformation force (11), then a 5 laser light beam is transmitted and evaluated for each line by a laser rangefinder (8) on the arm (9), this arm (9) moves periodically horizontally and the distance (12) is recorded when the laser light beam strikes the measuring edge of each measuring plate (1, 2, 3, 4, 5, 6), distance (12) is recorded by changing the distance of the reflected laser light beam after extending beyond the edge of the measuring plate (1, 2, 3, 4, 5, 6), by evaluating the distance (12) of the arm (9) from the starting position for all measurements ie, the plates (1, 2, 3, 4, 5, 6) 10 obtain a deformation waveform including.
SK207-2011U 2011-11-10 2011-11-10 System for measuring deformation, especially of water gates and procedure for performing the measurement SK6206Y1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SK207-2011U SK6206Y1 (en) 2011-11-10 2011-11-10 System for measuring deformation, especially of water gates and procedure for performing the measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SK207-2011U SK6206Y1 (en) 2011-11-10 2011-11-10 System for measuring deformation, especially of water gates and procedure for performing the measurement

Publications (2)

Publication Number Publication Date
SK2072011U1 SK2072011U1 (en) 2012-03-02
SK6206Y1 true SK6206Y1 (en) 2012-08-06

Family

ID=45768656

Family Applications (1)

Application Number Title Priority Date Filing Date
SK207-2011U SK6206Y1 (en) 2011-11-10 2011-11-10 System for measuring deformation, especially of water gates and procedure for performing the measurement

Country Status (1)

Country Link
SK (1) SK6206Y1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758325A (en) * 2016-04-28 2016-07-13 杭州凯达电力建设有限公司 Holding pole deformation measuring instrument

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113188434A (en) * 2021-04-21 2021-07-30 中国电建集团北京勘测设计研究院有限公司 Automatic monitoring system for surface deformation of water gate on soft foundation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758325A (en) * 2016-04-28 2016-07-13 杭州凯达电力建设有限公司 Holding pole deformation measuring instrument
CN105758325B (en) * 2016-04-28 2018-01-26 杭州凯达电力建设有限公司 A kind of pole distortion measurement instrument

Also Published As

Publication number Publication date
SK2072011U1 (en) 2012-03-02

Similar Documents

Publication Publication Date Title
US10627219B2 (en) Apparatus and methods for monitoring movement of physical structures by laser deflection
US20170363504A1 (en) System and method for determining the risk of failure of a structure
Lichti et al. Comparison of digital photogrammetry and laser scanning
US20190390955A1 (en) Method of vertical displacement measurement of building structural elements
CN106595537A (en) Building safety state monitoring device based on BeiDou satellite and monitoring method thereof
CN103487350B (en) Method for automatically lifting, weighing and measuring moisture content of ground surface combustible
SK6206Y1 (en) System for measuring deformation, especially of water gates and procedure for performing the measurement
CN201672907U (en) Measuring device of opening height of gate valve for water conservancy project
Pozzi et al. MEMS-based sensors for post-earthquake damage assessment
CN102725453A (en) Integrity monitored concrete pilings
WO2015001344A1 (en) Apparatus & method for monitoring strength development of concrete
CN108535771B (en) Underground pipeline earthquake monitoring system and simulation experiment device
Furinghetti et al. Shaking table tests of a full-scale base-isolated flat-bottom steel silo equipped with curved surface slider bearings
CN106643605B (en) Door body level jump real-time monitoring device and its monitoring method under ship gateway operation state
Lipták et al. Monitoring of bridge dynamics by radar interferometry
JP7206247B2 (en) Structural monitoring system and method
CN111678625B (en) Wheel shaft detection device based on dot-matrix pressure-sensitive sensor
Alba et al. Monitoring of the main spire of the Duomo di Milano
Klug et al. High resolution monitoring of expansion joints of a concrete arch dam using fiber optic sensors
Podestà et al. Reliability of dynamic identification techniques connected to structural monitoring of monumental buildings
CN205665185U (en) Bituminous mixture line shrinkage coefficient testing arrangement
CN117537783B (en) Anti-inclination detection method and system for caisson construction
Sakellariou Securing the Future of Cultural Heritage Sites, Utilizing Smart Monitoring Technologies: from the Laboratory Applications to the Acropolis of Athens
Geethalankara et al. Studying the factors affect for the accuracy of reflectorless Total Station observations
Chen et al. Fiber bragg grating strain sensor applied in security monitoring of road tunnel structure