SK288772B6 - Method of rapid and reliable detection of gases using differential absorption LIDAR - Google Patents

Method of rapid and reliable detection of gases using differential absorption LIDAR Download PDF

Info

Publication number
SK288772B6
SK288772B6 SK3-2013A SK32013A SK288772B6 SK 288772 B6 SK288772 B6 SK 288772B6 SK 32013 A SK32013 A SK 32013A SK 288772 B6 SK288772 B6 SK 288772B6
Authority
SK
Slovakia
Prior art keywords
lasers
determined
wavelength
laser
concentrations
Prior art date
Application number
SK3-2013A
Other languages
Slovak (sk)
Other versions
SK32013A3 (en
Inventor
Jiří Viceník
Zdeněk Moník
Štefan Grešík
Peter Maro
Zina Sedláčková
Original Assignee
Sec Tech S R O
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sec Tech S R O filed Critical Sec Tech S R O
Priority to SK3-2013A priority Critical patent/SK288772B6/en
Publication of SK32013A3 publication Critical patent/SK32013A3/en
Publication of SK288772B6 publication Critical patent/SK288772B6/en

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Method for fast and reliable gas detection by means of differential absorption LIDAR uses two or more lasers, of which at least one is always tuned to a wavelength λON strongly absorbed by the detected gas and at least one is tuned to a wavelength λOFF weakly absorbed by the detected gas, wherein all lasers successively emit one laser pulse and the first concentration of the detected substance is determined from the return energies. Subsequently, all lasers are retuned from the wavelengths λON to the wavelengths λOFF and vice versa. A second series of pulses is then sent and the second concentration is similarly determined from the results, the average of the first and second concentrations being taken as the result. Subsequently, the concentrations of the detected substance for each laser separately are determined from the measured return energies, the detection being considered positive only if the concentrations determined from both series for each of the lasers individually are positive and exceed a specified minimum value.

Description

Oblasť technikyTechnical field

Vynález sa týka spôsobu rýchlej a spoľahlivej detekcie plynov meraním koncentrácií plynných látok v atmosfére pomocou diferenciálneho absorpčného LIDAR-a s dvomi alebo viacerými lasermi. Vynález patrí do laserovej techniky.The invention relates to a method for the rapid and reliable detection of gases by measuring the concentrations of gaseous substances in the atmosphere by means of a differential absorption LIDAR with two or more lasers. The invention belongs to the laser technique.

Doterajší stav technikyPrior art

Systémy DIAL používajúce jeden preladiteľný laser určujú koncentráciu delegovanej látky na meracej trase tak, že sa laser naladí najprv na vlnovú dĺžku λοΝ, ktorá je danou látkou pohlcovaná silno, a cez skúmanú atmosféru sa na terč vyšle laserový impulz. Laserové žiarenie odrazené od terča sa zachytí optickým prijímačom systému a premení sa v ňomna napäťový signál Uon. Následne sa laser naladí na vlnovú dĺžku Zoff, ktorá je danou látkou pohlcovaná slabo, postup sa zopakuje a získa sa napäťový signál Uoff. Z pomeru veľkostí Uon/Uoff sa potom určí koncentrácia meranej plynnej látky. Hlavnou nevýhodou takto pracujúceho systému DIAL je fakt, že laserové žiarenie na vlnovej dĺžke Zoff prechádza atmosférou so značným oneskorením proti žiareniu na vlnovej dĺžke λ on (oneskorenie je dané maximálnou opakovacou frekvenciou lasera, ktorá býva malá, tzn. zriedka nad 10 impulzov za sekundu); optické vlastnosti turbulentnej atmosféry sa však menia rýchlejšie, čo pri takomto systéme DIAL spôsobuje veľké chyby merania.DIAL systems using one tunable laser determine the concentration of the delegated substance in the measuring path by first tuning the laser to the wavelength λοΝ, which is strongly absorbed by the substance, and sends a laser pulse to the target through the examined atmosphere. The laser radiation reflected from the target is captured by the optical receiver of the system and the voltage signal Uon is converted into it. Subsequently, the laser is tuned to the wavelength Zoff, which is weakly absorbed by the substance, the procedure is repeated and a voltage signal Uoff is obtained. The concentration of the measured gaseous substance is then determined from the Uon / Uoff size ratio. The main disadvantage of the DIAL system working in this way is the fact that laser radiation at the Zoff wavelength passes through the atmosphere with a considerable delay against radiation at the wavelength λ on (the delay is given by the maximum laser repetition frequency, which is usually small, ie rarely above 10 pulses per second) ; however, the optical properties of a turbulent atmosphere change faster, which causes large measurement errors with such a DIAL system.

Systémy DIAL, ktoré používajú dva, prípadne i viac laserov, tento problém odstraňujú tak, že aspoň jeden laser sa naladí na vlnovú dĺžku λ on a aspoň jeden na vlnovú dĺžku Zoff. Potom sa lasery spúšťajú s veľmi malým oneskorením, teda oneskorenie impulzu z lasera (laserov) naladeného (naladených) na vlnovú dĺžku Zoff proti impulzu z lasera naladeného na vlnovú dĺžku Zon je omnoho kratšie (bežne o niekolko rádov) a vplyv turbulencií sa neprejaví. Inak je funkcia systému obdobná.DIAL systems that use two or more lasers eliminate this problem by tuning at least one laser to the wavelength λ on and at least one to the wavelength Zoff. Then the lasers start with a very small delay, i.e. the delay of the pulse from the laser tuned to the Zoff wavelength versus the pulse from the laser tuned to the Zon wavelength is much shorter (usually by several orders of magnitude) and the effect of turbulence does not occur. Otherwise, the function of the system is similar.

Koncentráciu meranej plynnej látky na trase je opäť možné určiť z pomeru útlmov na vlnovej dĺžke Zon a na vlnovej dĺžke Zoff (pozri napr. Killinger, D. K. a kol.: Optical and Laser Remote Sensing. SpringerVerlag, Berlín 1983, 383 s.; Measures, R. M.: Laser Remote Sensing. John Wiley and Sons, New York, 1983, 510 s.; CO2 Lasers and Applications. Proc. of SPIE, Voľ 1042, Los Angeles 1989, 139 s.). Jedno úplné meranie sa spravidla skladá z väčšieho počtu individuálnych meraní. Individuálne meranie sa získa vyslaním jedného impulzu z každého lasera.The concentration of the measured gaseous substance in the route can again be determined from the attenuation ratio at the Zon wavelength and at the Zoff wavelength (see, e.g., Killinger, DK et al .: Optical and Laser Remote Sensing. SpringerVerlag, Berlin 1983, 383 p .; Measures, RM: Laser Remote Sensing. John Wiley and Sons, New York, 1983, 510 s .; CO2 Lasers and Applications. Proc. Of SPIE, Vol. 1042, Los Angeles 1989, 139 p.). One complete measurement usually consists of a large number of individual measurements. Individual measurement is obtained by sending one pulse from each laser.

Na výpočet koncentrácie delegovanej látky na meracej trase sapoužíva pomer:To calculate the concentration of the delegated substance in the measuring path, the ratio is used:

P = Uon/UoffP = Uon / Uoff

Pri takomto systéme DIAL môžu vzniknúť chyby merania, ktoré vyplývajú z technických nedokonalostí diferenciálneho absorpčného LIDAR-a a chyby spôsobené nehomogénnosťouterčapoužitého pri meraní.With such a DIAL system, measurement errors can occur due to technical imperfections of the differential absorption LIDAR and errors caused by inhomogeneity of the measurement material.

Tieto chyby potláča riešenie opísané v slovenskom patente č. 282 472 s názvom„Spôsob určovania koncentrácie plynov s diferenciálnym absorpčným LIDAR-ompotláčajúci chyby merania“. Riešenie podľa tohto patentu potláča spomenuté chyby merania, zatiaľ čo „chybné“ meranie je možné odhaliť štatistickým spracovaním výsledkov. Pod „chybným“ meraním sa rozumie meranie, ktoré bolo ovplyvnené náhodnými poruchami vnútri systému DIAL alebo v atmosfére - pozdĺž meracej trasy, napríklad náhodným zaclonenímjedného laserového impulzu vegetáciou. V dôsledku vznikne „chybné“, tzn. falošné meranie: látka nie je delegovaná, hoci je na meracej trase prítomná, alebo naopak. Ak sa pri využití spomínaného patentu použijú aspoň štyri laserové impulzy z každého lasera, štatistické spracovanie výsledkov individuálnych meraní „chybné“ meranie jednoznačne odhalí - štatisticky vypočítaná chyba merania je väčšia ako nameraná koncentrácia. Použitie menšieho počtu impulzov odhalenie „chybného“ merania opísaným spôsobomneumožňuje.These errors are suppressed by the solution described in Slovak patent no. 282 472 entitled "Method for determining the concentration of gases with differential absorption LIDAR-suppressing measurement errors". The solution according to this patent suppresses the mentioned measurement errors, while the "erroneous" measurement can be detected by statistical processing of the results. By "erroneous" measurement is meant a measurement that has been affected by accidental disturbances within the DIAL system or in the atmosphere - along the measuring path, for example by accidental shielding of one laser pulse by vegetation. As a result, "erroneous" will occur, ie. false measurement: the substance is not delegated even though it is present on the measurement path or vice versa. If at least four laser pulses from each laser are used in the use of the said patent, the statistical processing of the results of the individual measurements clearly reveals the "erroneous" measurement - the statistically calculated measurement error is greater than the measured concentration. The use of fewer pulses does not detect the "erroneous" measurement in the manner described.

V praxi sa však stáva, že i vyslanie štyroch impulzov z každého lasera trvá príliš dlho; buď používateľ vyžaduje rýchlejšiu odozvu systému DIAL na situáciu v atmosfére, alebo časová nestabilita koncentrácie delegovanej látky v atmosfére meranie anuluje.In practice, however, it happens that even sending four pulses from each laser takes too long; either the user requires a faster response of the DIAL system to the situation in the atmosphere, or the time instability of the concentration of the delegated substance in the atmosphere cancels the measurement.

Podstata vynálezuThe essence of the invention

Uvedené nedostatky do značnej miery odstraňuje spôsob rýchlej a spoľahlivej detekcie plynov pomocou diferenciálneho absorpčného LIDAR-a podľa tohto vynálezu, ktorého podstata spočíva v tom, že detekcia prebieha tak, že z LIDAR-a, v ktorom sú aspoň dva alebo viaceré preladiteľné lasery, zktorých je vždy aspoň jeden naladený na vlnovú dĺžku Zon silne pohlcovanú detegovanýmplynoma najmenej jeden je naladený na vlnovú dĺžku Zoff slabo pohlcovanú delegovaným plynom Všetky lasery cez skúmanú atmosféru postupne vyšlú po jednom laserovom impulze s minimálnym možným oneskorením a z návratových energií sa určí prvá koncentrácia delegovanej látky.The above-mentioned drawbacks are largely eliminated by the method for fast and reliable detection of gases by means of differential absorption LIDAR-a according to the present invention, the essence of which consists in that the detection takes place in such a way that LIDAR-a contains at least two or more tunable lasers at least one is tuned to the wavelength Zon strongly absorbed by the detected gas and at least one is tuned to the wavelength Zoff weakly absorbed by the delegated gas All lasers successively emit one laser pulse through the test atmosphere with minimal possible delay and the first concentration of delegated substance is determined from the return energies.

S K 288772 B6S K 288772 B6

Následne sa všetky laseiy preladia z vlnových dĺžok Zon na vlnové dĺžky Loff a naopak. Potom sa vyšle druhá séria impulzov a z výsledkov sa obdobne určí druhá koncentrácia, pričom za výslednú sa považuje priemer prvej a druhej koncentrácie.Subsequently, all lasei are retuned from Zon wavelengths to Loff wavelengths and vice versa. A second series of pulses is then sent and the results are similarly determined from the second concentration, the average of the first and second concentrations being taken as the result.

Výsledky merania sa vyhodnotia spôsobom opísaným vo vynáleze SK 282 472, tzn. ako priemer z dvoch individuálnych meraní, z ktorých každé je získané pomocou všetkých laserov systému. Okrem toho sa však zo zmeraných návratových energií určia i koncentrácie delegovanej látky pre každý laser osobitne, pričom detekcia sa považuje za pozitívnu iba ak i koncentrácie určené z oboch sérií pre každý z laserov jednotlivo sú pozitívne a prekročia stanovenú minimálnu hodnotu.The measurement results are evaluated according to the method described in the invention SK 282 472, i.e. as the average of two individual measurements, each of which is obtained using all the lasers of the system. In addition, however, the concentrations of the delegated substance for each laser separately are determined from the measured return energies, and detection is considered positive only if the concentrations determined from both series for each of the lasers individually are positive and exceed a specified minimum.

Výhody spôsobu rýchlej a spoľahlivej detekcie plynov pomocou diferenciálneho absorpčného LIDAR-a podľa vynálezu sú zjavné z jeho účinkov, ktorými sa prejavuje navonok. Účinky spočívajú v tom, že údaje namerané každým laserom jednotlivo sú síce podstatne menej presné, ako údaje získané podľa patentu SK 282 472, ale umožňujú odhaliť „chybné“ meranie, tzn. meranie znehodnotené poruchou vnútri systému DIAL alebo mimo neho. Použitie predloženého riešenia podľa tohto vynálezu umožňuje skrátiť čas detekcie minimálne na polovicu, pričom zostáva zachovanái vy sokápravdepodobnosť odhalenia „chybného“ merania.The advantages of the method for the rapid and reliable detection of gases by means of the differential absorption LIDAR according to the invention are evident from its external effects. The effects are that, although the data measured by each laser individually are significantly less accurate than the data obtained according to patent SK 282 472, they make it possible to detect "erroneous" measurements, ie. measurement degraded by a fault inside or outside the DIAL system. The use of the present solution according to the invention makes it possible to reduce the detection time by at least half, while maintaining a high probability of detecting an "erroneous" measurement.

Príklady uskutočnenia vynálezuExamples of embodiments of the invention

V systéme DIAL s dvomi lasermi sa laser „A“ naladí na vlnovú dĺžku Lon (silne pohlcovanú delegovanou látkou) a laser ..B sa naladí na vlnovú dĺžku Loff (málo pohlcovanú delegovanou látkou). Obidva lasery vyšlú po jednom laserovom impulze (druhý laser s malým oneskorením) a zmerajú sa návratové energie pre obidve vlnové dĺžky. Následne sa laser naladený pôvodne na vlnovú dĺžku Lon preladí na vlnovú dĺžku Loff a laser naladený pôvodne na vlnovú dĺžku Loff sapreladí na vlnovú dĺžku Lon. Opäť sa vyšlú laserové impulzy a znovu sa zmerajú návratové energie. Potom saurčia 3 koncentrácie:In the DIAL system with two lasers, the laser "A" is tuned to the wavelength Lon (strongly absorbed by the delegated substance) and the laser ..B is tuned to the wavelength Loff (slightly absorbed by the delegated substance). Both lasers emit one laser pulse (a second laser with a small delay) and the return energies for both wavelengths are measured. Subsequently, the laser originally tuned to the wavelength Lon is retuned to the wavelength Loff and the laser originally tuned to the wavelength Loff is retuned to the wavelength Lon. The laser pulses are emitted again and the return energies are measured again. Then 3 concentrations are determined:

- Koncentrácia určená ako polovica súčtu koncentrácie určenej z prvej dvojice impulzov a koncentrácie určenej z druhej dvojice impulzov;- The concentration determined as half of the sum of the concentration determined from the first pair of pulses and the concentration determined from the second pair of pulses;

- Koncentrácia získaná z údajov pre laser „A“, tzn. pre laser v prvej dvojici impulzov naladený na vlnovú dĺžku LoNav drahej dvojici impulzov naladený na vlnovú dĺžku Loff;- Concentration obtained from data for laser "A", ie. for a laser in the first pair of pulses tuned to the wavelength LoNav to an expensive pair of pulses tuned to the wavelength Loff;

- Koncentrácia získaná z údajov pre laser „B“, tzn. pre laser v prvej dvojici impulzov naladený na vlnovú dĺžku LoFFav druhej dvojici impulzov naladený na vlnovú dĺžku Lon.- Concentration obtained from data for laser "B", ie. for a laser in the first pair of pulses tuned to the wavelength LoFF and for the second pair of pulses tuned to the wavelength Lon.

Za výsledok merania sa pokladá prvá koncentrácia (z údajov z oboch laserov), ale detekcia sa považuje za pozitívnu iba ak i koncentrácie určené z oboch sérií pre každý z laserov jednotlivo sú pozitívne a prekročia stanovenú minimálnu hodnotu.The first concentration (from data from both lasers) is considered to be the result of the measurement, but detection is considered positive only if the concentrations determined from both series for each of the lasers individually are positive and exceed a specified minimum value.

Claims (1)

PATENTOVÉ NÁROKYPATENT CLAIMS Spôsob rýchlej a spoľahlivej detekcie plynov pomocou diferenciálneho absorpčného LIDAR-a s dvomi alebo viacerými lasermi, z ktorých je vždy aspoň jeden naladený na vlnovú dĺžku λ on silne pohlcovanú delegovaným plynom a najmenej jeden je naladený na vlnovú dĺžku λορρ slabo pohlcovanú delegovaným plynom, pričom všetky lasery postupne vyšlú po jednom laserovom impulze a z návratový ch energií sa určí prvá koncentrácia delegovanej látky; následne sa všetky lasery preladia z vlnových dĺžok λ on na vlnové dĺžky λορρ a naopak, potom sa vyšle druhá séria impulzov a z výsledkov sa obdobne určí druhá koncentrácia, pričom za výslednú sa považuje priemer prvej a druhej koncentrácie, vyznačujúci sa tým, že zo zmeraných návratových energií sa určia i koncentrácie delegovanej látky pre každý laser osobitne, pričom detekcia sa považuje za pozitívnu, iba ak i koncentrácie určené z oboch sérií pre každý z laserov jednotlivo sú pozitívne a prekročia stanovenú minimálnu hodnotu.Method for rapid and reliable detection of gases by means of differential absorption LIDAR with two or more lasers, of which at least one is always tuned to the wavelength λ on strongly absorbed by the delegated gas and at least one is tuned to the wavelength λορρ weakly absorbed by the delegated gas, all the lasers emit successively one laser pulse and the first concentration of the delegated substance is determined from the return energies; subsequently, all lasers are retuned from the wavelengths λ on to the wavelengths λορρ and vice versa, then a second series of pulses is sent and the results are similarly determined with a second concentration, the average of the first and second concentrations being taken as the result, The concentrations of the delegated substance for each laser separately shall also be determined, with detection being considered positive only if the concentrations determined from both series for each of the lasers individually are positive and exceed a specified minimum value.
SK3-2013A 2013-01-16 2013-01-16 Method of rapid and reliable detection of gases using differential absorption LIDAR SK288772B6 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SK3-2013A SK288772B6 (en) 2013-01-16 2013-01-16 Method of rapid and reliable detection of gases using differential absorption LIDAR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SK3-2013A SK288772B6 (en) 2013-01-16 2013-01-16 Method of rapid and reliable detection of gases using differential absorption LIDAR

Publications (2)

Publication Number Publication Date
SK32013A3 SK32013A3 (en) 2014-10-03
SK288772B6 true SK288772B6 (en) 2020-08-03

Family

ID=51656129

Family Applications (1)

Application Number Title Priority Date Filing Date
SK3-2013A SK288772B6 (en) 2013-01-16 2013-01-16 Method of rapid and reliable detection of gases using differential absorption LIDAR

Country Status (1)

Country Link
SK (1) SK288772B6 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4118415B1 (en) * 2020-04-07 2024-08-21 SEC Technologies, S.R.O. Method for remote detection of gaseous substances in the atmosphere by a dial system with two lasers and a remote detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4118415B1 (en) * 2020-04-07 2024-08-21 SEC Technologies, S.R.O. Method for remote detection of gaseous substances in the atmosphere by a dial system with two lasers and a remote detector

Also Published As

Publication number Publication date
SK32013A3 (en) 2014-10-03

Similar Documents

Publication Publication Date Title
US6583417B2 (en) Infrared optical gas-measuring device and gas-measuring process
CN107462900B (en) Gas component detection laser radar based on wavelength tunable laser source
CN106872404B (en) The multiple-beam interference suppressing method of TDLAS gas detection in a kind of glass container
CN103439232A (en) Obscuration type soot particle concentration measuring method and device thereof
US9096323B1 (en) Window contamination sensor for optical detection systems
EP3139152A1 (en) Optical methane detector using higher harmonic background functions for determining the methane concentration
Aditya et al. A Giant Metrewave Radio Telescope survey for associated H i 21 cm absorption in the Caltech–Jodrell flat-spectrum sample
US9500722B2 (en) Magnetic field measurement apparatus
US20160258808A1 (en) Distributed optical sensing devices and methods performing a measurement
Gelfusa et al. UMEL: A new regression tool to identify measurement peaks in LIDAR/DIAL systems for environmental physics applications
CN105067563A (en) Open space gas average concentration measuring device and measuring method
JP2019095413A (en) Particle counter
Prakash et al. Near-infrared incoherent broadband cavity enhanced absorption spectroscopy (NIR-IBBCEAS) for detection and quantification of natural gas components
JP2011099803A (en) Light absorption type gas detector
Migdall Absolute quantum efficiency measurements using: toward a measurement protocol
SK288772B6 (en) Method of rapid and reliable detection of gases using differential absorption LIDAR
Zhan et al. A high performance distributed sensor system with multi-intrusions simultaneous detection capability based on phase sensitive OTDR
Henriksson et al. Scintillation index measurement using time-correlated single-photon counting laser radar
KR101331239B1 (en) Method and system for measuring sensitivity of optical signal
Mackay et al. Measurement of Hydrogen Chloride in Coal-Fired Power Plant Emissions Using Tunable Diode Laser Spectrometry.
Abe et al. Dual-laser cavity ring-down spectroscopy for real-time, long-term measurement of trace moisture in gas
Xiao et al. Distance ranging based on quantum entanglement
KR101913216B1 (en) Apparatus and method for detecting gas
ES2426574T3 (en) Distortion detection procedure of a GNSS signal
CN107515389A (en) A kind of satellite-bone laser radar detector high-precision calibration system

Legal Events

Date Code Title Description
PC4A Assignment and transfer of rights

Owner name: SEC TECHNOLOGIES, S.R.O., LIPTOVSKY MIKULAS, SK

Free format text: FORMER OWNER: SECURITY EDUCATION AND CONSULTING, S.R.O., BRATISLAVA, SK

Effective date: 20160710