SK257591A3 - Preparation method of p-benzoquinone - Google Patents

Preparation method of p-benzoquinone Download PDF

Info

Publication number
SK257591A3
SK257591A3 SK257591A SK257591A SK257591A3 SK 257591 A3 SK257591 A3 SK 257591A3 SK 257591 A SK257591 A SK 257591A SK 257591 A SK257591 A SK 257591A SK 257591 A3 SK257591 A3 SK 257591A3
Authority
SK
Slovakia
Prior art keywords
phenol
benzoquinone
oxygen
acetonitrile
preparation
Prior art date
Application number
SK257591A
Other languages
Slovak (sk)
Other versions
SK278582B6 (en
Inventor
Jan Sykora
Eva Brand-Steterova
Adriana Jabconova
Original Assignee
Univ Slovenska Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Slovenska Tech filed Critical Univ Slovenska Tech
Publication of SK257591A3 publication Critical patent/SK257591A3/en
Publication of SK278582B6 publication Critical patent/SK278582B6/en

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

This patent describes the procedure closed to the preparation of p-bezoquinone with the use of a homogeneous catalyst, while the catalytic effect is reached, when using 2, 2'- bipyridine copper complex compounds and it is based on this principle, that the solution closed to £Cu(bpy)2|+ -phenol- -acetonitrile with Cu(I) concentration value of 2.10exp(-2) mol.dm-3, phenol concentration value of 1.10exp(-1) up to 1 mol.dm-3 and molar ratio £Cu(I)| : £phenol| = 1 : 40 up to 1 : 60 is bubbled with di-oxygen, at the atmospheric pressure and at the temperature of 30 up to 50 Celsius degrees in the glass reactor, in the dark or in the radiation environment closed to the wave length value of 320 mm, for 100 minutes.

Description

Oblasť technikyTechnical field

Vynález sa týka spôsobu homogénne p-benzochinónu za katalytického účinku medi v prostredí acetonitrilu.The invention relates to a process for homogeneous p-benzoquinone under the catalytic action of copper in acetonitrile.

2,2’- bipyridín komplexov2,2´- bipyridine complexes

Súčasný stav technikyThe state of the art

Väčšina doteraz známych spôsobov prípravy p-benzochinónu je založená na oxidácii fenolu rôznymi oxidačnými činidlami ClOg (Wajon (1982)), Fremyho sol (Zimrner (1971)), dusičnan talitý (mcKillop (19?6)).Most of the previously known processes for the preparation of p-benzoquinone are based on the oxidation of phenol by various oxidizing agents ClOg (Wajon (1982)), Fremy's salt (Zimrner (1971)), tallow nitrate (mcKillop (19? 6)).

Tieto spôsoby prípravy sú energeticky náročné, selektivita vzniku p-benzochinónu a jeho výťažok sú veľmi nízke. K najčastejšie používaným oxidovadlám patrí dikyslík v prítomnosti katalyzátorov akými sú komplexy mangánu, kobaltu a medi. (U.S. Patent 4,208,339, U.S. Patent 3,796,732, U.S. Patent 3,859,317, U.S. Patent 4,360,469, U.S. Patent 4,442,036). Použitie jedných z najefektívnejších katalyzátorov-halogenidov medi- však vyžadujú vysoký parciálny tlak dikyslíka (až 100 atm), ktorý je podmienkou želatefných výťažkov p-benzochinónu (U.S. Patent 4,257,968, U.S. Patent 3,987,068). Najefektívnejšími boli chloridy meďné a meďnaté v prostredí acetonitrilu, zatial kým Cu(N03)2, Cu3r, Cu(DH)Cl, NaCuClj a CuOCl vykazovali podstatne nižšiu účinnosť. Ku vzniku p-benzochinónu dochádza i pri použití CuCl2 ako katalyzátoru v prostredí dimetylformamidu, dimetylsulfoxidu, 1,4-dioxánu a etylénglykolu pri teplote do 100’C a tlaku dikyslíka 35 kg/cm (Seltrame (1979). Ožarovanie roztokov chlorokomplexov medi v acetonitrile v prítomnosti fenolu,dusičnanov a dikyslíka viedlo k 100 V-nému zvýšeniu výťažku p-benzochinónu (Czech.Pat. 232 126) voči neožarovaným systémom (Czech.Pat.232 629) avšak výťažky p-benzochinónu boli veľmi nízke (okolo 6 H).K nevýhodám tohoto spôsobu oxidácie fenolu patrí i vznik toxických chlorofenolov ako vediajších produktov reakcie.These methods are energy intensive, the selectivity of p-benzoquinone formation and its yield are very low. The most commonly used oxidants include oxygen in the presence of catalysts such as manganese, cobalt and copper complexes. (US Patent 4,208,339, US Patent 3,796,732, US Patent 3,859,317, US Patent 4,360,469, US Patent 4,442,036). However, the use of one of the most effective copper halide catalysts requires high partial oxygen pressure (up to 100 atm), which is a prerequisite for the desired yields of p-benzoquinone (US Patent 4,257,968, US Patent 3,987,068). The most effective was of cuprous chloride and copper in acetonitrile medium, whereas Cu (N0 3) 2, Cu3r, Cu (DH) Cl, NaCuClj CuOCl and showed a substantially lower efficiency. The formation of p-benzoquinone also occurs with the use of CuCl 2 as a catalyst in dimethylformamide, dimethylsulfoxide, 1,4-dioxane and ethylene glycol at temperatures up to 100 ° C and oxygen oxygen pressure of 35 kg / cm (Seltrame (1979)). acetonitrile in the presence of phenol, nitrates, and oxygenate resulted in a 100 V increase in p-benzoquinone yield (Czech.Pat. 232 126) over non-irradiated systems (Czech.Pat.232 629) but p-benzoquinone yields were very low (about 6 H). One disadvantage of this phenol oxidation process is the formation of toxic chlorophenols as by-products of the reaction.

Podstata vynálezuSUMMARY OF THE INVENTION

Podstata spOsobu homogénne katalyzovanej prípravy p-benbzochinónu oxidáciou fenolu dikyslíkom v homogénnej fáze za katalytického účinku (2,2’-bipyridín) komplexov medi v prostredí acetonitrilu podlá vynálezu spočíva v tom, že roztok [Cu(bpy)2J*-fenol. -acetonitril o koncentrácii Cu(I) 2.1O“5 až 2.10'^mol.dm , fenolu 1.101 až 1 mol.dm·5 (mólový pomer (Cu(I)J : [fenolj» 1:40 až - 1:60) sa prebubláva dikyslíkom za atmosférického tlaku v sklenenom reaktore pri teplote 15 až 50’C v tme alebo počas ožarovania polychromatlckým svetlom o vlnovej dĺžke viac 8ko 320nm po dobu nad 100 minút.The principle of the homogeneously catalyzed preparation of p-benzoquinone by oxidation of phenol with oxygen in a homogeneous phase under the catalytic action of (2,2'-bipyridine) of the copper complexes in the acetonitrile medium according to the invention consists in the solution of [Cu (bpy) 2H] -phenol. acetonitrile of the concentration of Cu (I) 2.1O "5 to 2:10 ^ mol.dm, phenol 1.10 mol.dm 1 to 1 · 5 (molar ratio of (Cu (I) J: [fenolj» to 1:40 - 1: 60) is bubbled through oxygen at atmospheric pressure in a glass reactor at 15 to 50 ° C in the dark or during irradiation with polychromatic light having a wavelength of more than 8ko 320nm for over 100 minutes.

Podstatou tohoto spôsobu prípravy p-benzochinónu je (foto) oxidácia fenolu dikyslíkom, ktorá má charakter katalytických cyklov, zahrnujúcich fenoxidové raadlkály, komplexy medi a aktiváciu dikyslíka.The essence of this process for the preparation of p-benzoquinone is the (photo) oxidation of phenol with oxygen, which has the character of catalytic cycles, including phenoxide radicals, copper complexes and activation of oxygen.

Výhody uvedeného spôsobu prípravy p-benzochinónu v porovnaní s doteraz publikovanými postupmi spočívajú hlavne vo vyššom výťažku benzochinónu, v nižšej energetickej náročnosti, v jednoduchosti prevedenia reakcie (jednoduchý sklenený reaktor) a miernych exparimentálnychpodmienkach (atmosférický tlak a rozsah teplôt blízkych izbovej). Reakcia prebieha v tme, alebo za použitia ľubovoľného zdroja žiarenia (^O2>320nm) čo umožňuje využiť aj slnečné žiarenie, čím sa proces stáva atraktívnym aj z hľadiska premeny slnečnej energie na chemickú a jeho energetická náročnosť sa znižuje. Toxické chlorofenoly nevznikajú, čo má význam najmä z ekologického hľadiska.The advantages of the above process for the preparation of p-benzoquinone in comparison with previously published processes consist mainly in higher benzoquinone yield, lower energy intensity, simplicity of reaction (simple glass reactor) and mild exponential conditions (atmospheric pressure and near room temperature range). The reaction takes place in the dark, or using any source of radiation (^ O 2> 320nm) which allows you to use the sunlight makes the process more attractive and in terms of converting solar energy into chemical and energy consumption is reduced. Toxic chlorophenols are not produced, which is of particular importance from an ecological point of view.

Príklady realizácie vynálezuDETAILED DESCRIPTION OF THE INVENTION

Príklad 1Example 1

Reakčná zmes sa pripravila miešaním zásobného roztoku py),|(C10A)o v acetonitrile o koncentrácii medi 1.105mol.dm“3 s prídavkom nadbytku kovovej (práškovej) medi, po dobu 20 minút, doktorého sa po odfiltrovaní nezreagovanej medi pridal tuhý fenol r(C10 A ) o in acetonitrile with a copper concentration of 1.10 5 mol.dm < 3 > with the addition of an excess of metallic (powdered) copper, for 20 minutes, after filtering off the unreacted copper, solid was added phenol r

tak, aby molový pomer £cu(I)J s [fenol] bol L s 40 až 1 : 60.so that the molar ratio of cu (I) J with [phenol] is L with 40 to 1:60.

Po rozpustení fenolu sa 25 cnP takto pripravenej reakčnej zmesi prenoeslo do skleneného reaktora, v ktorom bola prebublávaná dikyslíkom v tme pri teplote 30 až 50*C po dobu nad 100 minút pri atmosférickom tlaku 0-(0,1 MPa) a konštantnom prietoku kyslíka e « ZAfter dissolution of phenol, 25 cnP of the thus prepared reaction mixture was transferred to a glass reactor in which it was bubbled with oxygen in the dark at 30 to 50 ° C for over 100 minutes at atmospheric pressure 0- (0.1 MPa) and a constant oxygen flow e " FROM

1,6 cm .s”1* Vznik p-benzochinónu v reakčnej zmesi bol stanovovaný spektrálne a metódou vysokoúčinnej kvapalinovej chromatografle (HPLC systém f y WATERSC 990, DAO detektor, kolóna S.EPARON C-13, mobilná fáza ACN-voda o prietoku 0,5 cm^.min“^·). Metóda kalibrácie na p-benzochinón (štandard) umožnila kvantitatívne stanoviť vznik p-benzochinónu, ktorý vznikal v množstvách až 9 násobne vyšších pripadajúcich na 1 mol použitého meóného katalyzátora, čo svedčí o katalytickom charaktere navrhovaného spôsobu prípravy p-benzochinónu.1.6 cm .s * 1 * The formation of p-benzoquinone in the reaction mixture was determined by spectral and high performance liquid chromatography (HPLC system from WATERSC 990, DAO detector, S.EPARON C-13 column, ACN-water mobile phase at 0). , 5 cm ^ .min “^ ·). The p-benzoquinone calibration standard (standard) made it possible to quantitate the formation of p-benzoquinone, which was produced in amounts up to 9 times higher per mole of the meonium catalyst used, indicating the catalytic nature of the proposed process for the preparation of p-benzoquinone.

Príklad 2Example 2

Pri príprave reakčnej zmesi sa postupovalo rovnako ako v prí• 3 klade 1 avšak daľäí postup bol rozdielny v tom, že 25 cm reakčnej zmesi sa ožarovalo v sklenenom reaktore za rovnakých experimentálnych podmienok svetlom o vlnovej dĺžke viac ako 323 nm (výbojka TESLA RVK 125 W) čím sa dosiahlo 62 %-né zvýšenie výťažku p-banzochinónu v porovnaní s neožarovanými roztokmi a až 15 násobok výťažku p-benzochinónu pripadajúci na 1 mol použitého katalyzátora.The preparation of the reaction mixture was the same as in Example 3, but the other procedure was different in that 25 cm of the reaction mixture was irradiated in a glass reactor under the same experimental conditions with light having a wavelength of more than 323 nm (TESLA RVK 125 W lamp). ) to achieve a 62% increase in p-banzoquinone yield compared to non-irradiated solutions and up to 15 times the yield of p-benzoquinone per mole of catalyst used.

Na fotokatalytický charakter navrhovaného spôsobu prípravy poukazuje i zistená hodnota kvantového výťažku vzniku p-benzochnónuf Bbch’ 25 ·In the photocatalytic nature of the proposed process for the preparation shows the observed value of the quantum yield to afford p-benzo methanone BBCH f '· 25

Priemyselná využiteľnosťIndustrial usability

Banzochinóny sú významnými priemyselne používanými chemikáliami (oxidačné činidlá,medziprodukty mnohých organických syntéz) a po redukcii na hydrochinóny sa využívajú v procese výroby polymérov., nachádzajú uplatnenia ako antioxldanty a redukčné činidlá.Banzoquinones are important industrial chemicals (oxidizing agents, intermediates of many organic syntheses) and, after reduction to hydroquinones, are used in the production process of polymers. They are used as antioxidants and reducing agents.

Claims (1)

PATENTOVÉ N Ä R O K YPATENT TOOLS Spôsob homogénne katalyzovanej prípravy p-benzochinónu za katalytického účinku 2,2'- bi ipyridín komplexov medi v prostredí acetonitrilu vyznačený tým, že roztok zloženia fcuíbpyljj^-fenol- acetonitrll o koncentrácii Cu(I) 2.10”^ až 2.10“^ mol.dm”\ fenolu 1.10“1 až mol.dm*'* a mólovom pomere [CuCI)J : |feno]J «1:40 až 1:60 sa prebubláva dikyslíkom za atmosférického tlaku pri teplote 30 až 50’C v sklenenom reaktore v čase nad 100 minút v tme alebo za ožarovania Žiarením o vlnovej dĺžke väčšej ako 320 nm.Process for the homogeneously catalyzed preparation of p-benzoquinone under the catalytic action of 2,2'-bipyridine copper complexes in acetonitrile medium, characterized in that a solution of the composition of tert-butyl-4-phenol-acetonitrile at a concentration of Cu (I) of 2.10? 1 : 1 to mol.dm @ -1 and a molar ratio of [CuCl3]: pheno] J of 1:40 to 1:60 are bubbled through oxygen at atmospheric pressure at 30 to 50 ° C in a glass reactor in a time exceeding 100 minutes in the dark or under irradiation with radiation at a wavelength exceeding 320 nm.
SK257591A 1991-08-21 1991-08-21 Preparation method of benzoquinone SK278582B6 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS912575A CZ257591A3 (en) 1991-08-21 1991-08-21 PROCESS FOR PREPARING p-BENZOQUINONE

Publications (2)

Publication Number Publication Date
SK257591A3 true SK257591A3 (en) 1995-07-11
SK278582B6 SK278582B6 (en) 1997-10-08

Family

ID=5363269

Family Applications (1)

Application Number Title Priority Date Filing Date
SK257591A SK278582B6 (en) 1991-08-21 1991-08-21 Preparation method of benzoquinone

Country Status (2)

Country Link
CZ (1) CZ257591A3 (en)
SK (1) SK278582B6 (en)

Also Published As

Publication number Publication date
CZ257591A3 (en) 1993-03-17
SK278582B6 (en) 1997-10-08

Similar Documents

Publication Publication Date Title
Pelaez et al. Use of selected scavengers for the determination of NF-TiO2 reactive oxygen species during the degradation of microcystin-LR under visible light irradiation
Yin et al. Photoreductive dehalogenation of halogenated benzene derivatives using ZnS or CdS nanocrystallites as photocatalysts
Rao et al. Influence of metallic species on TiO2 for the photocatalytic degradation of dyes and dye intermediates
Mills et al. Photocatalytic degradation of pentachlorophenol on titanium dioxide particles: identification of intermediates and mechanism of reaction
Fukuzumi et al. Organic synthetic transformations using organic dyes as photoredox catalysts
Ohno et al. Photocatalytic oxidation of water on TiO2-coated WO3 particles by visible light using Iron (III) ions as electron acceptor
Dai et al. Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles
Qourzal et al. Photodegradation of 2-naphthol in water by artificial light illumination using TiO2 photocatalyst: Identification of intermediates and the reaction pathway
Hameed et al. Sunlight assisted photocatalytic mineralization of nitrophenol isomers over W6+ impregnated ZnO
Porcar-Santos et al. Photocatalytic degradation of sulfamethoxazole using TiO2 in simulated seawater: Evidence for direct formation of reactive halogen species and halogenated by-products
Wada et al. Photoreductive dechlorination of chlorinated benzene derivatives catalyzed by ZnS nanocrystallites
JPS58500200A (en) Improved method for decomposing organohalogen compounds
Wang et al. Photocatalytic hydrodehalogenation for the removal of halogenated aromatic contaminants
Kluson et al. Sulphonated phthalocyanines as effective oxidation photocatalysts for visible and UV light regions
Wang et al. Iron (iii)-mediated photocatalytic selective substitution of aryl bromine by chlorine with high chloride utilization efficiency
Rafqah et al. Photocatalytic degradation of metsulfuron methyl in aqueous solution by decatungstate anions
Miller et al. Mechanistic analysis identifying reaction pathways for rapid reductive photodebromination of polybrominated diphenyl ethers using BiVO 4/BiOBr/Pd heterojunction nanocomposite photocatalyst
Kluson et al. Molecular structure effects in photodegradation of phenol and its chlorinated derivatives with phthalocyanines
FI65227C (en) FOERFARANDE FOER STEREOSELEKTIV HYDRERING AV ALFA-PINEN TILL CIS-PINAN MED EN NICKELHYDRERINGSKATALYSATOR
Yamazaki et al. Photocatalytic degradation of 4-tert-octylphenol in water and the effect of peroxydisulfate as additives
SK257591A3 (en) Preparation method of p-benzoquinone
Stahl et al. A survey of the iron ligand-to-metal charge transfer chemistry in water
RU2192414C2 (en) Method of introduction of substituted difluoromethyl group
Julliard et al. Oxidation of methyl aromatic compounds by redox photosensitization
Xu et al. Photo-oxidation of chlorophenols and methyl orange with visible light in the presence of copper phthalocyaninesulfonate