SK2294A3 - Method of biological destruction of molluses - Google Patents
Method of biological destruction of molluses Download PDFInfo
- Publication number
- SK2294A3 SK2294A3 SK22-94A SK2294A SK2294A3 SK 2294 A3 SK2294 A3 SK 2294A3 SK 2294 A SK2294 A SK 2294A SK 2294 A3 SK2294 A3 SK 2294A3
- Authority
- SK
- Slovakia
- Prior art keywords
- nematode
- nematodes
- growth
- slugs
- bacteria
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 230000006378 damage Effects 0.000 title claims description 14
- 241000244206 Nematoda Species 0.000 claims abstract description 182
- 241000237858 Gastropoda Species 0.000 claims abstract description 88
- 241000894006 Bacteria Species 0.000 claims abstract description 63
- 241001133384 Phasmarhabditis Species 0.000 claims abstract description 24
- 241000237852 Mollusca Species 0.000 claims abstract description 17
- 241000607479 Yersinia pestis Species 0.000 claims abstract description 14
- 241001300076 Deroceras reticulatum Species 0.000 claims abstract description 11
- 230000007918 pathogenicity Effects 0.000 claims abstract description 10
- 241001465754 Metazoa Species 0.000 claims abstract description 7
- 230000001939 inductive effect Effects 0.000 claims abstract 2
- 230000012010 growth Effects 0.000 claims description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 238000011282 treatment Methods 0.000 claims description 18
- 230000001580 bacterial effect Effects 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 17
- 241001148186 Psychrobacter phenylpyruvicus Species 0.000 claims description 13
- 241001133383 Phasmarhabditis hermaphrodita Species 0.000 claims description 10
- 239000002609 medium Substances 0.000 claims description 10
- 241000836459 Phasmarhabditis neopapillosa Species 0.000 claims description 9
- 241000692821 Arion intermedius Species 0.000 claims description 8
- 241000589540 Pseudomonas fluorescens Species 0.000 claims description 8
- 230000001737 promoting effect Effects 0.000 claims description 8
- 241001458849 Arion distinctus Species 0.000 claims description 6
- 241000482272 Deroceras panormitanum Species 0.000 claims description 6
- 239000004927 clay Substances 0.000 claims description 6
- 239000001963 growth medium Substances 0.000 claims description 6
- 241000588777 Providencia rettgeri Species 0.000 claims description 5
- 241001298365 Arion ater Species 0.000 claims description 4
- 241000638111 Tandonia sowerbyi Species 0.000 claims description 4
- 230000036541 health Effects 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 241000193755 Bacillus cereus Species 0.000 claims description 3
- 241000589586 Empedobacter brevis Species 0.000 claims description 3
- 241000089862 Monacha cantiana Species 0.000 claims description 3
- 241000589588 Myroides odoratus Species 0.000 claims description 3
- 241000589516 Pseudomonas Species 0.000 claims description 3
- 241000607720 Serratia Species 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 102000004169 proteins and genes Human genes 0.000 claims description 3
- 108090000623 proteins and genes Proteins 0.000 claims description 3
- 241000607525 Aeromonas salmonicida Species 0.000 claims description 2
- 241000237526 Arionidae Species 0.000 claims description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- 241000237365 Helicidae Species 0.000 claims description 2
- 241001523586 Limacidae Species 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 239000002285 corn oil Substances 0.000 claims description 2
- 235000005687 corn oil Nutrition 0.000 claims description 2
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 235000015170 shellfish Nutrition 0.000 claims description 2
- 241001599626 Milacidae Species 0.000 claims 1
- 239000008393 encapsulating agent Substances 0.000 claims 1
- 238000003898 horticulture Methods 0.000 claims 1
- 229910052500 inorganic mineral Inorganic materials 0.000 claims 1
- 239000011707 mineral Substances 0.000 claims 1
- 150000003626 triacylglycerols Chemical class 0.000 claims 1
- 239000011782 vitamin Substances 0.000 claims 1
- 229940088594 vitamin Drugs 0.000 claims 1
- 229930003231 vitamin Natural products 0.000 claims 1
- 235000013343 vitamin Nutrition 0.000 claims 1
- 244000045947 parasite Species 0.000 abstract description 3
- 230000000443 biocontrol Effects 0.000 abstract 4
- 241000073866 Edolisoma monacha Species 0.000 abstract 1
- 241000894007 species Species 0.000 description 29
- 238000002474 experimental method Methods 0.000 description 15
- 241000196324 Embryophyta Species 0.000 description 13
- 239000006260 foam Substances 0.000 description 13
- 239000005951 Methiocarb Substances 0.000 description 11
- YFBPRJGDJKVWAH-UHFFFAOYSA-N methiocarb Chemical compound CNC(=O)OC1=CC(C)=C(SC)C(C)=C1 YFBPRJGDJKVWAH-UHFFFAOYSA-N 0.000 description 11
- 239000008399 tap water Substances 0.000 description 8
- 235000020679 tap water Nutrition 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 229920001817 Agar Polymers 0.000 description 7
- 239000008272 agar Substances 0.000 description 7
- 208000015181 infectious disease Diseases 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 238000011534 incubation Methods 0.000 description 6
- 238000002955 isolation Methods 0.000 description 6
- 238000009630 liquid culture Methods 0.000 description 6
- 239000002689 soil Substances 0.000 description 6
- 235000010149 Brassica rapa subsp chinensis Nutrition 0.000 description 5
- 235000000536 Brassica rapa subsp pekinensis Nutrition 0.000 description 5
- 241000499436 Brassica rapa subsp. pekinensis Species 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 230000002458 infectious effect Effects 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 241000209140 Triticum Species 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 4
- 239000006916 nutrient agar Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 239000007900 aqueous suspension Substances 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 230000001717 pathogenic effect Effects 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000009331 sowing Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 102000016938 Catalase Human genes 0.000 description 2
- 108010053835 Catalase Proteins 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 241000244173 Rhabditis Species 0.000 description 2
- 241000482273 Tandonia Species 0.000 description 2
- 235000021307 Triticum Nutrition 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000000721 bacterilogical effect Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 230000010196 hermaphroditism Effects 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000003973 irrigation Methods 0.000 description 2
- 230000002262 irrigation Effects 0.000 description 2
- 231100000518 lethal Toxicity 0.000 description 2
- 230000001665 lethal effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 239000003415 peat Substances 0.000 description 2
- 230000008654 plant damage Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 238000013207 serial dilution Methods 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 2
- 229940033663 thimerosal Drugs 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- WTLKTXIHIHFSGU-UHFFFAOYSA-N 2-nitrosoguanidine Chemical compound NC(N)=NN=O WTLKTXIHIHFSGU-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- 241000238876 Acari Species 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000272517 Anseriformes Species 0.000 description 1
- 108010082340 Arginine deiminase Proteins 0.000 description 1
- 241001488154 Arion silvaticus Species 0.000 description 1
- 241001458848 Arion subfuscus Species 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000041029 Bulinus Species 0.000 description 1
- 241001260012 Bursa Species 0.000 description 1
- NPQBEKVGXQQPPM-UHFFFAOYSA-N C1(=CC=CC=C1)CC(=O)O.C(CC(O)(C(=O)O)CC(=O)O)(=O)O Chemical compound C1(=CC=CC=C1)CC(=O)O.C(CC(O)(C(=O)O)CC(=O)O)(=O)O NPQBEKVGXQQPPM-UHFFFAOYSA-N 0.000 description 1
- 101100457849 Caenorhabditis elegans mon-2 gene Proteins 0.000 description 1
- 241001454694 Clupeiformes Species 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 241001300085 Deroceras Species 0.000 description 1
- 241000242711 Fasciola hepatica Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241000584390 Limax cinereoniger Species 0.000 description 1
- 241000237357 Lymnaea stagnalis Species 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241001300083 Milax Species 0.000 description 1
- 241001364998 Milax gagates Species 0.000 description 1
- 241000588621 Moraxella Species 0.000 description 1
- 208000000291 Nematode infections Diseases 0.000 description 1
- 206010035148 Plague Diseases 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 241000243142 Porifera Species 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 241000237361 Stylommatophora Species 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 244000250129 Trigonella foenum graecum Species 0.000 description 1
- 235000001484 Trigonella foenum graecum Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 235000019513 anchovy Nutrition 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000003816 axenic effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 210000003477 cochlea Anatomy 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000027326 copulation Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002498 deadly effect Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- QLASVTRFYNMTEX-UHFFFAOYSA-N decanoic acid;hexanedioic acid Chemical compound OC(=O)CCCCC(O)=O.CCCCCCCCCC(O)=O QLASVTRFYNMTEX-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 208000006275 fascioliasis Diseases 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 210000005002 female reproductive tract Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000019688 fish Nutrition 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 231100000640 hair analysis Toxicity 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 210000001624 hip Anatomy 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000006799 invasive growth in response to glucose limitation Effects 0.000 description 1
- 238000001155 isoelectric focusing Methods 0.000 description 1
- 230000000366 juvenile effect Effects 0.000 description 1
- 230000001418 larval effect Effects 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 230000008774 maternal effect Effects 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229940056360 penicillin g Drugs 0.000 description 1
- 230000000361 pesticidal effect Effects 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 235000015277 pork Nutrition 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/033—Rearing or breeding invertebrates; New breeds of invertebrates
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N63/00—Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
- A01N63/10—Animals; Substances produced thereby or obtained therefrom
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S435/00—Chemistry: molecular biology and microbiology
- Y10S435/8215—Microorganisms
- Y10S435/822—Microorganisms using bacteria or actinomycetales
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Pest Control & Pesticides (AREA)
- Dentistry (AREA)
- Agronomy & Crop Science (AREA)
- Biotechnology (AREA)
- Animal Behavior & Ethology (AREA)
- Microbiology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Plant Pathology (AREA)
- Virology (AREA)
- Animal Husbandry (AREA)
- Wood Science & Technology (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Farming Of Fish And Shellfish (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Catching Or Destruction (AREA)
Abstract
Description
Ktorý je nositeíom. motolice pečeňovej (ľasciola hepaticaj a druh Bulinus (čelaď Eulir.idae) , ktorý je nositeľom Cpisthorchis sinensis. Čeiade Limacidae, Arionidae, MiIacidae a Helicidae patria do radu Stylommatophora. Čeľade Bulinidae a Lymnae.idae. patria do radu Basommatophora.Who is the bearer. liver flukes (lasciola hepaticaj and Bulinus species (family Eulir.idae) carrying Cpisthorchis sinensis. Ceiade Limacidae, Arionidae, MiIacidae and Helicidae belong to the order Stylommatophora. Family Bulinidae and Lymnae.idae belong to the Basommatophora order.
Súčasné spôsoby hubenia týchto škodcov sú ien sčasti účinné a dostupné chemikálie sú vysoko toxické pre vtáky a cicavce. Z toho dôvodu jasne existuje potreba nájst účinnejšie, trvalejšie a menej toxické spôsoby potlačovania mäkkýšov.Current methods of controlling these pests are only partially effective and the available chemicals are highly toxic to birds and mammals. Therefore, there is a clear need to find more effective, lasting and less toxic methods of controlling shellfish.
Podstata vynálezuSUMMARY OF THE INVENTION
Teraz sa s prekvapením zistilo, že Nematoda roau Phasmarhabditis predstavujú účinný prostriedok pre hubenie širokej palety druhov mäkkýšov. Z druhov, ktoré patria do rodu Phasmarhabditis sú obzvlášť účinné príbuzné organizmy P. neopapillosa a P. hermaphrodita, ktoré budú podrobnejšie popísané ďalej. Tieto druhy sú známe mnoho rokov a sú popísané v literatúre a charakterizované hlavne v publikácii Andrassy., ’’ A Taxonomic Reviev/ of the Sub-'Jrder Rhabditina (Nematoda : Secernentina) fl98j, Orstom, Paríž, Francúzsko) . Biologická účinnosí týchto organizmov proti škodcom zo skupiny slimákov však dosiai známa nebola.It has now surprisingly been found that Nematoda roau Phasmarhabditis is an effective means of controlling a wide variety of molluscs. Among the species belonging to the genus Phasmarhabditis, the related organisms P. neopapillosa and P. hermaphrodita, which will be described in more detail below, are particularly effective. These species have been known for many years and are described in the literature and characterized mainly in Andrassy., 'A Taxonomic Reviev / of the Sub-'Jrder Rhabditina (Nematoda: Secernentina) fl98j, Orstom, Paris, France). However, the biological activity of these organisms against snail pests has not been known.
Predmetom vynálezu je teda použitie druhu Phasmarhabditis pre hubenie poľnohospodárskych a záhradníckych škodcov, poškodzujúcich zdravie človeka a zvierat, predovšetkým škodcov zo skupiny mäkkýšov. Tieto organizmy je možne zísxat zo slimákov na poli a pestovat ďalej popísanými spôsobmi tak, aby sme ich získali v dostatočnom množstve pre spracovanie na vhodné prostriedky, ktoré by bolo možné aplikoval na poli alebo v skleníku, ž typických prostriedkov pre praktické použitie sa používajú vhodné nosičové materiály, ako je rašelina, íl a iné pevne” alebo polopevne” nosiče, ako sú gélovite materiály. Vonkajšie testy vykonávané v malom merítku i v poinom merítku ukázali, že nematoda m5žu usmrcovať slimáky a chrániť semenáČky Čínskej kapusty a osivo alebo semenáčky pšenice pred poškodením slimákmi prinajmenšom rovnako dobre alebo lepšie ako to zabezpečuje methiocarb, čo je najlepšia chemikália, ktorá je pre tento účel v súčasnej dobe k dispozícii.Accordingly, it is an object of the present invention to use the Phasmarhabditis species for controlling agricultural and horticultural pests harmful to human and animal health, in particular molluscs. These organisms can be harvested from slugs in the field and grown by the methods described below to obtain them in sufficient quantities for processing into suitable formulations that can be applied in the field or in a greenhouse. materials such as peat, clay and other solid or semi-solid carriers such as gelled materials. External tests, both on a small scale and on a small scale, have shown that nematodes can kill slugs and protect Chinese cabbage seeds and seeds or wheat seedlings from slugs at least as good or better than methiocarb, which is the best chemical for this purpose. currently available.
Biológia organizmuBiology of the organism
Nematoda boli izolované zo slimákov, nazbieraných vo výskumnej stanici Long Ashton Research Station vo Veíkej Británii. Bolo zistené, že ťato nematods spôsobujú smrtelnú chorobu slimákov, ktorá sa prejavuje určitými charakteristickými symptómami, z ktorých je. najnápadnejší opuch plášťa slimáka. Bolo zistené, že tieto nenatočia patria do podradu fíhabditina a pre ich aalšiu identifikáciu bol použitý kíúč (Andrassy, 1983 ^. Dve hlavné taxonomicke charakteristiky tejto skupiny stí časí ústna a samčie reprodukčné Štruktúry. Nematoda izolované na stanici Long Ashton majú charakteristické krátke ústa (storna} s izomorfným metastomom a samci, pokiaí sú prítomní, majú peladeranové bursy, čo sú charakteristické znaky rodu Phasmarhabditis. Andrassy (1983) zaznamenal dva druhy, ktoré sú morfologicky totožné s týmito nematodami, ale vzájomne sa od seba líšia počtom samcov, prítomných v týchto populáciách. U druhu Phasmarhabditis neopapillosa sú samci a samice rovnako početní,zatiaí .čo u phasmarha'oiditis hermaphrodita sú samci extrémne vzácni. Doteraz nie je známe, či P. hermaphrodita predstavuje zvláštny druh aiebo len biologický variant P. neopapillosa (Andrassy 1983 ) . P. hermaphrodita bol prvýkrát popísaný Maupasom v Archives de Žoologie (1900?·, zv. 8,m str. 46'4 až 624, ktorý tohto nematoda nazval Rhabditis caussaneli.Maupas našiel v črevách slimáka Arion ater, ktorého nazbieral v Normandii,rezistentné larválne formy tohto nematoda. Choval kultúry tohoto nematoda na zhnitom mäse po dobu dvoch rokov. Zistil, že dospelí červi sú prevažne protandrickí autogamní hermafroditi. Ďalej zistil, že samci sú prítomní len vo veími malých počtoch (L samec na 1300 samíc ) a že počet samcov v kultúrach nie je ovplyvňovaný nutriifnými podmienkami. Maupas nikdy nezaznamenal kopuláciu samcov so samicami, z čoho bolo zrejmé, že za prítomnosti samcov nedošlo κ žiadnej zmene fexundity nematod ani sexuálneho pomeru v potomstve. Maupas nepovažoval tohoto nematoda za parazita slimáka.Nematodes were isolated from slugs collected at Long Ashton Research Station in the UK. It has been found that these nematodes cause a deadly disease of slugs, manifested by certain characteristic symptoms of which it is. the most noticeable swelling of the slug shell. These non-rotations have been found to be subordinate to fehabditin and a key has been used to further identify them (Andrassy, 1983). The two main taxonomic characteristics of this group of oral and male reproductive structures have been characterized by a nematode isolated at Long Ashton. } with isomorphic metastoma, and males, if present, have peladeran bursa, characteristic of the genus Phasmarhabditis.Andrassy (1983) noted two species that are morphologically identical to these nematodes, but differ from each other in the number of males present in these In Phasmarhabditis neopapillosa, males and females are equally numerous, while in Phasmarha'oiditis hermaphrodita males are extremely rare, it is not yet known whether P. hermaphrodita is a special species or only a biological variant of P. neopapillosa (Andrassy 1983). P. hermaphrodita was first described by Maupas in Archives de Žoologie (1900? · Vol. 8, pp. 46'4-624), which this nematode called Rhabditis caussaneli. He kept the cultures of this nematode on rotten meat for two years. He found that adult worms were predominantly protandric autogamous hermaphrodites. He further found that males are present only in very small numbers (L male per 1300 females) and that the number of males in cultures is not influenced by nutrient conditions. Maupas never recorded male-female copulation, which showed that there was no change in nematode fexundity or sexual offspring in the presence of males. Maupas did not regard this nematode as a slug parasite.
Phasmarnabditis neopapillosa boí popísaný Mengertom, ktorý nazval tohoto nematoda Rhabditis neopapillosa, v ča sopise Zeitschriťt ťur Morphoiogie und Oekologie 'ľiere (1953), zv. 41, str. 311 až 349, júcej sa vzťahu medzi nematodami vo svojej štúdii, týkaa zemnými mäkkýšami. Našiel tohoto nematoda vo forme, rezistentných larválnych štádií.( ktoré označil názvom dauer larvae‘9 v zadnej časti tráviaceho ústrojenstva slimáka Limax cinereoniger.Phasmarnabditis neopapillosa boí described by Mengert, who called this nematode Rhabditis neopapillosa, in which the journal Zeitschriťt jur Morphoiogie und Oekologie 'líere (1953), Vol. 41, p. 311 to 349, concerning the relationship between nematodes in its study, concerns molluscs. He found this nematode in the form of resistant larval stages (called dauer larvae‘9 in the back of the digestive tract of the slug Limax cinereoniger).
Mengert považoval nematoda P. neopapillosa za saprofyta, ktorý prosperuje na hnijúcom matexiále po mnoho generácií, ale kec nastanú nepriaznivé podmienky, mladí jedinci nedospejú a vytvoria rezistentné formy dauer larvae, ktoré neprijímajú potravu. Mengert sa domnieval, že ?. neopapillosa žije rovnakým sposobom ako dva iné druhy Phasmarhaoditis papiliosa a P. hermaphrodita. Domnieval sa aalej, že dauer larvae týchto troch druhov vstúpi, kec nastane príležitosť, do tela slimákov, kde zostanú v podobe dauer larvae tak dlho·, dokial slimák neuhynie. Až potom pokračujú vo vývoji. λ reprodukujú sa, pričom sa živia mŕtvym telom slimáka. Mengert sa domnieval, že pobyt v slimákovi nie je nutnou súčasťou životného cyklu nematoda, aie predpokladal že dauer larvae týchto druhov skutočne vykazujú určitý stu5 v t pen adaptacie na život v slimákovi. Tvrdil, však, že tieto nematoda na slimákoch neparazitujú.Mengert considered the nematode P. neopapillosa to be a saprophyte that has been prospering on rotting matexia for many generations, but in spite of adverse conditions, young individuals do not mature and create resistant forms of dauer larvae that do not receive food. Mengert thought that? neopapillosa lives in the same way as two other species of Phasmarhaoditis papiliosa and P. hermaphrodita. He further believed that the dauer larvae of these three species would enter the body of the snails, if there was an opportunity, where they would remain in the form of dauer larvae until the slug died. Only then do they continue to develop. λ reproduce while feeding on the dead body of the snail. Mengert considered that the stay in the slug was not a necessary part of the nematode life cycle AIE assumed that the dauer larvae of these species actually have a certain stu5 in t pen adaptation to life in the cochlea. He said, however, that these nematodes do not parasitize on slugs.
Nematoda je možné izoloval zo slimákov zobraných na poli za použitia pascí s návnadou z drvených otrúb, ktoré sa rozmetú na . trávnatej ploche. ?o rozrezaní slimákov je možné nematoda izoloval z tráviaceho ústrojenstva slimáka alebo dutiny plášta. V slimákoch žije mnoho druhov nematód (Mengert, 1953} a identifikáciu P. hermaphrodita a P. neopapillosa je treba potvrdil za použitia taxonomickeho kíúča (Andrassy, 1933?. Pokiaí sa v slimákovi nájdu iba infekčné..štádia nematód fdauer larvae) je potrebné nematoda pestoval, aby ich bolo-možné identifikoval.The nematode can be isolated from slugs harvested in the field using bait traps from crushed bran which are spread on. grassy area. By cutting the slugs, the nematode can be isolated from the digestive tract of the slug or mantle cavity. Many species of nematodes live in slugs (Mengert, 1953} and the identification of P. hermaphrodita and P. neopapillosa must be confirmed using a taxonomic key (Andrassy, 1933?). If only an infectious disease is found in the snail. Nematode stages fdauer larvae need nematode cultivated to identify them.
Nematoda Phasmarhabditis boli izolované vo výskumnej stanici Long Asht'on pri mnohých príležitostiach. V niektorých prípadoch sa populácia nematód skladala zo samcov a samíc, zatiaí čo v iných prípadoch sa populácie skladali len z hermafroditov. Nematoda z populácií oboch typov boli vyšetrovanú svetelnou mikroskcpiou a elektrónovou mikroskopiou -(SEM) . Tiež boli zisťované proteínové profily v rôznych populáciách po separácii proteínov izoelektrickou fokuzáciou. Neboli zistené žiadne rozdiely medzi populáciami za použitia ktorejkoľvek z hore uvedených metód. Izolovane nematoda zodpovedajú dostupnému popisu P. neopapillosa a P. hermaphrodita.Nematoda Phasmarhabditis have been isolated at the Long Asht'on Research Station on many occasions. In some cases, the nematode population consisted of males and females, while in other cases the populations consisted only of hermaphrodites. Nematodes from populations of both types were examined by light microscopy and electron microscopy (SEM). Protein profiles in different populations were also determined after protein separation by isoelectric focusing. No differences between populations were found using any of the above methods. The isolated nematodes correspond to the available description of P. neopapillosa and P. hermaphrodita.
Nematoda Phasmarhabditis je možné pestoval spôsobmi, ktoré sú uvedené v tomto popise. V tomto odbore je už známe, že nematoda, ktoré parazitujú na hmyze je možné pestoval vo velkom merítku pre obchodné využitie v kvapalných kultúrach za použitia miešaných nádrží alebo tzv. airlift podnosoch s kúskami peny. Podobné techniky sa môžu používal pri produkcii P. hermaphrodita alebo P. neopapillosa vo. v.eikom merítku. Nematoda, ktoré sa pouzívajú podlá tohto vynálezu, je teda možné iahko pestovať na ľadvinovom médiu vo forme kúskov peny alebo vo forme kvapalnej kultúry, za použitia podobných techník, aké sa používajú pri produkcii nematód, ktoré parazitujú na hmyze. ?re účely tohto vynálezu sa doporučuje, aby bola kultúra nematód zbieraná v stave dauer larvae.Nematoda Phasmarhabditis can be grown by the methods described in this description. It is already known in the art that nematodes that parasitize insects can be grown on a large scale for commercial use in liquid cultures using stirred tanks or so-called shells. Airlift trays with pieces of foam. Similar techniques can be used to produce P. hermaphrodita or P. neopapillosa in. v.eikom scale. Thus, the nematodes used in the present invention can be easily grown on kidney medium in the form of foam pieces or liquid culture, using techniques similar to those used to produce nematodes that parasitize insects. For the purposes of the present invention, it is recommended that the nematode culture be harvested in the dauer larvae state.
Požiadavky na pripojené baktérieRequirements for attached bacteria
Nematoda Phasmarhabditis sa živia baktériami. Po izolácii z uhynulých slimákov bolo zistené, že nematoda phasmarhabditis sú spojené, s mnoa/mi bakteriálnymi izolátmi.Nematoda Phasmarhabditis feed on bacteria. After isolation from dead slugs, it was found that the phasmarhabditis nematode is associated with many bacterial isolates.
baktérie sú schopné podporovať dobrý rast nematód a pre porovnanie patogenity nematód chovaných na rôznych druhoch baktérií.the bacteria are able to promote good nematode growth and to compare the pathogenicity of nematodes reared on different types of bacteria.
kom, sa nematoda prednostne pestujú v kultúrach s jeanou známou pripojenou baktériou (monoxenické kultury} a zthe nematodes are preferably grown in cultures with a known attached bacterium (monoxenic cultures) and
vých druhov baktérií, ktoré sú schopné podporovať rast ne-bacterial species that are able to support the growth of
na zmesnej mikrobiálnej populácii, zo slimákov infiicovaných baktériami z mŕtvych tiel slimákov, zamorených nematódami.on a mixed microbial population, from slugs infected with slug-dead bacteria infected with nematodes.
Nematoda je možné potom zbavit všetkých kontaminujúcich baktérií a previesť do kultúr s odlišným jediným druhom baktérie. Inkubácia týchto kultúr umožňuje selekciu bakteriálnych izolátov, ktoré sú schopné podporovať rast nematód.The nematode can then be removed from all contaminating bacteria and transferred to cultures with a different single bacterial species. Incubation of these cultures allows the selection of bacterial isolates that are capable of promoting nematode growth.
Z nematód, slimákov infikovaných nematodami s mŕtvych slimákov zamorených nematoaami bolo získané približne 1ΌΟ bakteriálnych izolátov, z ktorých 15 bolo skúšané na schopnosť podporoval rast nematód. Bolo zistené, že z týchto 15 izolátov, celkove 9 izolátov, ktorá predstavujú 8 druhov, podporuje dobrý rast na agare. S druhov baktérií, o ktorých sa zistilo, že podporujú dobrý rast nematód je uvedených cíalej:Approximately 1ΌΟ of bacterial isolates were obtained from nematodes, slugs infected with nematodes infected with nematode-infected slugs, of which 15 were tested for their ability to promote nematode growth. Of these 15 isolates, a total of 9 isolates representing 8 species were found to promote good growth on agar. With the bacterial species that have been found to promote good nematode growth, the following are stated:
Pseudomonas fluórescensPseudomonas fluórescens
Providencia rettgeri Serratia· proteomaculans Aeromonas salmonicida Moraxella phenylpyruvica Bacillus cereusProvidencia rettgeri Serratia · Proteomaculans Aeromonas salmonicida Moraxella phenylpyruvica Bacillus cereus
Flavobacterium odoratumFlavobacterium odoratum
Flavobacterium breviFlavobacterium brevi
Schopnoat nematód, pestovaných na rôznych druhoch baktérií, usmrcoval slimáky, je možne, zistil biologickým pokusom. Pri takomto biologickom pokuse sú slimáky exponovaní rôznemu počtu nematód a zaznamenáva sa výsledná mortalita slimákov. Pomocou tejto metódy je možné kvantitatívne vyhodnotil patogenitu (napríklad hodnotu LDCcJ nematód proti slimákom a použit tuto nie patogenity nematód pestovaných na té^ií. Je dôležité, aby boli nematoda sa špecifickými baktériami, nielen pre rast nematód (ako in vitro, tiež pre ich schopnosť usmrcoval si' pripojené baktérie pri vstupe do slimáka, Le zabývanie sa a rýchlu reprodukciu nematód, k smrti slimáka.Capable of nematodes, grown on different types of bacteria, killed slugs, is possible, found by biological experiment. In such a biological experiment, slugs are exposed to a different number of nematodes and the resulting slug mortality is recorded. Using this method it is possible to quantitatively evaluate the pathogenicity (eg LD C cJ nematodes against slugs and used this not the pathogenicity of nematodes grown in the ^ ii. It is important that the nematodes are specific bacteria, not only for the growth of the nematode (both in vitro and also for their ability to kill 'attached bacteria on entering the snail, Le deal with and rapidly reproduce nematodes, to the death of the snail.
Hodnotu pre porovnarôznych. druhoch bakdodávané v spojení pretože baktérie sú dôležité tak in vivo ) , ale limáky. Nematóda si nesú čo ' umožňuje rých ktorá vedie ✓ . /Value for comparison. species supplied in conjunction because bacteria are important both in vivo) but mites. The nematode carries what it 's quick to do. /
Ako príklady vhodných bakteriálnych kmeňov je možne uviest Moraxella phenylpyruvica kmeň 48 a Pseudomonas fluorescens kmeň 141, vzorky ktorých boli uložene v stílade s Budapeštianskou dohodou v národnej zbierke priemyslových a morských baktérií (National Collection of Industrial and Marine Bacteria, 23 St. Machar Drive, Aberdeen, AB2 IRY, Velká Británia) pod prírastkovými číslami NCIMB 40508 a NCIMB 40509 dňa 9. júna L992. Kmeň rseudomonas fluorescens 141 je gram negatívny, oxidáza pozitívna, kataláza pozitívna baktéria, ktorá je nemotilná a vykazuje negatívny výsledok pri skúške O/F (Hugh and Leifson) pri aerobnom alebo anaeróbnom štiepení glukózy. Kmeň Moraxella phenylpyruvica 48 je gram negatívna, oxidáza pozitívna, kataláza pozitívna baktéria, ktorá je. nemotilná·a Vykazuje negatívny výsledok pri skúške 0/? (Hugh. and-Leifson ) . Biochemické profily oboch týchto kmeňov na Štandardných substrátoch (skúšobný prúžok API ZONe) sú uvedené ďalej.Examples of suitable bacterial strains include Moraxella phenylpyruvica strain 48 and Pseudomonas fluorescens strain 141, samples of which were deposited in accordance with the Budapest Agreement in the National Collection of Industrial and Marine Bacteria, 23 St. Machar Drive, Aberdeen , AB2 IRY, UK) under accession numbers NCIMB 40508 and NCIMB 40509 on June 9, L992. The rseudomonas fluorescens 141 strain is a gram negative, oxidase positive, catalase positive bacterium that is immobile and shows a negative result in the O / F assay (Hugh and Leifson) in aerobic or anaerobic glucose cleavage. Moraxella phenylpyruvica 48 strain is a gram negative, oxidase positive, catalase positive bacterium that is. immobile · a Has a negative result in test 0 /? (Hugh and Leifson). The biochemical profiles of both strains on Standard substrates (API ZON test strip) are shown below.
Reakcia Moraxella Pseudomonaš phenylpyruvica 48 fluorescens 141Reaction of Moraxella Pseudomonas phenylpyruvica 48 fluorescens 141
NO3-NO2 no3-n2 indol kyselina z glukózy arginín dihydroláza ureaza hydrolýza eskulínu hydrolýza želatíny β-galaktozidázaNO 3 -NO 2 no 3 -n 2 indole glucose acid arginine dihydrolase ureaza esulin hydrolysis gelatin hydrolysis β-galactosidase
Asimilácia glukózy arabinózy manrozy N-acetylgluko ZamínuAssimilation of glucose arabinose mannose N-acetylgluko Zamine
maltózy glukonátu kaprátu adipátu malátu citrátu fenylacetátumaltose gluconate caprate adipate malate citrate phenylacetate
* = neskúšané / v* = not tested / v
Užitočne varianty kmeňa M. phenyplpyruvica 4.8 a kmeňa P. fluorescens 141 je. možné získat opakovaným prenášaním čistých kultúr týchto kmeňov do subkultúr. Varianty je možné tiež získal reizoláciou baktérií z nematód Phasmarhabditis, ktoré boii predtým pestované v spojení s ktorýmkoívek z týchto Kmeňov, alebo reizoláciou baktérií zo slimákov, infikovaných nematodami. Takéto varianty môžu mal. zakotvené genotypické alebo fenotypické zmeny v dôsledku vplyvu okolia alebo selektívneho tlaku. Užitočné deriváty kmeňa M. phenylp.yruvica 4S a Kmeňa r. fluorescens 141 je možné skonštruovať zavedením DNA z iného organizmu, ktorá kóduje požadované atribúty. Spôsoby zavádzania cudzej DNA do baktérií sú odborníkom v tomto odbore dobre známe a zahŕňajú také techniky, ako je prenos piazmidu, transdukcia a trsnsfekcia. Užitočné mutanty kmeňa M. phenylpyruvica 48 a kmeňa P. fluorescens 141 je možné získat mutagenézou za použitia metód, ktoré sú odborníkom v tomto odbore dobre známe, ako sú chemické techniky (napríklad za použitia nitrosoguanidínu) , fyzikálne techniky (napríklad za použitia ultrafialového svetla) a genetické metódy (napríklad mutagenéza transposónu). Takéto varianty, deriváty a mutanty týchto kmeňov je možné menil, pokial sa týka takých vlastností, ako ^e rýchlosť rastu alebo schopnosť rast na určitých zdrojoch potravy, ale zachovávajú si hlavne vlastnosti, ktoré sú dôležité pre tento vynález, t.j,, schopnosť podpo-Usefully, variants of M. phenyplpyruvica 4.8 and P. fluorescens 141 are. can be obtained by repeatedly transferring pure cultures of these strains to subcultures. Variants can also be obtained by re-isolating Phasmarhabditis nematode bacteria that were previously grown in conjunction with any of these Tribes, or by re-isolating nematode-infected snail bacteria. Such variants may have. grounded genotypic or phenotypic changes due to environmental or selective pressure. Useful derivatives of M. phenylp.yruvica 4S and Kenya r. fluorescens 141 can be constructed by introducing DNA from another organism that encodes the desired attributes. Methods for introducing foreign DNA into bacteria are well known to those skilled in the art, and include techniques such as plasmid transfer, transduction, and transfection. Useful mutants of M. phenylpyruvica 48 and P. fluorescens 141 can be obtained by mutagenesis using methods well known to those skilled in the art, such as chemical techniques (e.g., using nitrosoguanidine), physical techniques (e.g., using ultraviolet light). and genetic methods (e.g., transposon mutagenesis). Such variants, derivatives, and mutants of these strains may be varied as regards properties such as growth rate or the ability to grow on certain food sources, but retain in particular the properties that are important to the present invention, i.e. the ability to promote
Pre použitie na ničenie polnohospoiúrskych škodcov sa nematoda zbierajú, z fermentorov odstreďovaním,filtráciou alebo odstránením zložiek vyčerpaného média a buď sa priamo spracujú na pesticídny prostriedok alebo sa skladujú vo forme chladených prevzdušňovaných vodných suspenzií pred tým, ako sa spracujú na tento prostriedok. Pre polr.ohospodárske použitie je možné nematoda spracoval na vodné suspenzie na tuhých nosičoch, ako je aktívne uhlie, íl, rašelina, vermikulit alebo pnlyéter-polyuretánová huba alebo je možné ich zapuzdril do gélov, napríklad do alginátového alebo polyakrylamidového gélu. Mimoriadne vhodným prostriedkom je prostriedok, obsahujúci vysušené, alebo sčasti vysušené nematoda. Nematodový prostriedok sa môže aplikoval pri ničení škodcov vo forme vodnej suspenzie, ktorá '-a z neho vyrobí a ktorá sa aplikuje na ošetrovanú plochu napríklad postrekom, zavodnením alebo morením.For use in controlling agricultural pests, nematodes are collected from the fermenters by centrifugation, filtration or removal of the components of the spent medium and either processed directly into a pesticidal composition or stored in the form of chilled aerated aqueous suspensions before being processed into that composition. For semi-agricultural use, the nematode may be formulated into aqueous suspensions on solid carriers such as activated carbon, clay, peat, vermiculite or polyether-polyurethane sponge, or encapsulated in gels such as an alginate or polyacrylamide gel. A particularly suitable composition is a composition comprising dried or partially dried nematode. The nematode composition can be applied in pest control in the form of an aqueous suspension which is made from it and which is applied to the area to be treated, for example by spraying, irrigation or pickling.
Vynález je bližšie objasnený v nasledujúcich príkladoch re-ilizácie. Tieto príklady majú výhradne ilustratívny charak· ter a rozsah vynálezu v žiadnom ohíade neobmedzujú.The invention is illustrated by the following Examples. These examples are illustrative only and do not limit the scope of the invention in any way.
Príklady realizácie vynálezuDETAILED DESCRIPTION OF THE INVENTION
Príklad 1 ílnosExample 1
izolácie neniatod Phasmarhabditisisolation from Phasmarhabditis
Živé nematoda získané zo slimákov, pozbieraných na poli použitím pascí s drtenými otrubami, ako-návnadou, sa umiestni na Iadvinove agarové médium,vyrobené zmiešaním 10 % homogenizovaných bravčových Íadvín, 3,5 % kukuričného aleja, 2 % agaru a 84,5 % vody hmotnosti) , ktoré bolo sterilizované v autokláve a naliate do Petriho misiek. Toto médium povzbudzuje rast baktérií, spojených s nematodami. Nematoda sa týmito baktériami živia a na miskách rasté a reprodukujú sa.Live nematodes obtained from slugs in the field harvested using traps with crushed bran, such as - bait is placed on Iadvinove agar medium made by mixing 10% homogenised pig Íadvín, 3.5% corn alley, 2% agar and 84.5% water weight) which was autoclaved and poured into petri dishes. This medium stimulates the growth of bacteria associated with nematodes. The nematode feeds on these bacteria and grows and reproduces on the dishes.
P r í k 1 a d 2Example 1 a d 2
Izolácia baktérií spojených s nematodami aiebo· so slimákmi infikovanými nematodamiIsolation of nematode-associated bacteria or nematode-infected snails
Baktérie spojene' s nematodami alebo so slimákmi, infikovanými nematodami sa môžu izolovať ktorýmkolvek z nasledujúcich spôsobov :Bacteria associated with nematodes or slugs infected with nematodes can be isolated by any of the following methods:
i Izolácia baktérií z nematódIsolation of bacteria from nematodes
Nematoda sa povrchové sterilizujú ponorením do roztercu etylmerkuritiosalicylátu sodného (Thimerosal) s Koncentráciou i g/ 1 na dobu L hodiny a potom sa prenesú do čerstvého roztoku Thimercsalu na nalšie 3 hodiny. Baktérie je možné uvoíniť z nematód nasledujúcimi 2 sterilnými mikrobiologickými technikami :The nematodes are surface sterilized by immersion in a sputter of ethylmercuritiosalicylate sodium (Thimerosal) at a concentration of 1 g / L for 1 hour and then transferred to fresh Thimercsal solution for a further 3 hours. Bacteria can be released from nematodes by the following 2 sterile microbiological techniques:
a/ Jednotlivé larvy nematód sa prenesú do kvapky sterilného roztoku chloridu sodného, ktorá je umiestnená na mikroskopickom sklíčku, ktoré bolo sterilizované plameňom. Nematoda sa potom rozrežú na mekolkýcn miestach po dĺžke svojho teia. Kvapka roztoku Kuchynskej soli obsahujúca mŕtve telá nematód sa potom pomocou sterilnej Pasteurovej pipety prenesie do Petriho misky so živnou agarovou pôdou s priemerom 9 cm a rozprestrie sa na povrchu pomocou stierky, ktorá coxa sterilizovaná v plameni alkoholového horáku.a) The individual nematode larvae are transferred to a drop of sterile sodium chloride solution, which is placed on a flame-sterilized microscope slide. The nematodes are then cut at the mecolecular sites along the length of their body. A drop of sodium chloride solution containing nematode dead bodies is then transferred to a 9 cm diameter petri dish with a sterile Pasteur pipette and spread on the surface with a spatula that is coxa sterilized in an alcohol burner flame.
b/b /
Velxé množstvo povrchové sterilizovaných nematód sa suspenduje v 1 mi sterilného Hingerovno roztoku a vzniknutá suspenzia sa prenesie do 5 ml homogenizátora tkanív z teflonu. Suspenzia nematód sa rozdrví, a potom sa prenesie do 9 ml sterilnej živnej pôdy. Živná pôda sa intenzívne pretrepáva a urobí sa'sériové riedenie. 0,1 ml alikvotné j. vzorky každej zriedenej pôdy sa umiestni na misku so živným agarom, rozprestrie sa po povrchu pomocou sklenenej stierky a inkubuje sa. Po 48 hodinách inkubácie pri 25° C je možné na základe morfológie kolónií vybral rôzne bakteriálne izoláty a preniest tupmi·A large amount of surface sterilized nematodes is suspended in 1 ml of sterile Hinger's solution and the resulting suspension is transferred to 5 ml of a Teflon tissue homogenizer. The nematode suspension is crushed and then transferred to 9 ml of sterile broth. The broth is shaken vigorously and serial dilution is performed. 0.1 ml aliquots j. samples of each diluted soil are placed on a nutrient agar plate, spread over the surface with a glass spatula and incubated. After 48 hours incubation at 25 ° C, different bacterial isolates and blunt transfer can be selected based on colony morphology ·
Izoláciainsulation
pomocou onemie alkoholov prosperujúcich xénických kultúr sa klieští, ktorú boli sterilizovaná v plameň ráka odoberú kúsky peny, obsahujúcej nemát Každý kúsok sa umiestni do skúmavky obsahu Ιπαί žŤvnpS nínv a n'nsah skúninvkv ηροΊ· u,l ml alikvotné·j vzorky rôzne zriedenej pôdy sa rozprestrie na miske so živným agarom, potom sa inkubuje.with the onemic alcohol of prosperous xenic cultures, pieces of foam containing nymphs are removed with pliers which have been sterilized in the flame of the ratchet. Each piece is placed in a test tube containing 2 ml aliquots of different sample samples. spread on nutrient agar plate, then incubate.
iii Izolácia baktérií zo živých slimákov infikovaných nemátódamiiii Isolation of bacteria from live snails infected with nematodes
p. hermaphrodita/p. neopapillosa infikuje pláštovú oblast slimáka, kde dochádza tiež k jeho reprodukcii. Právep. hermaphrodita / P. neopapillosis infects the mantle area of the slug, where it also reproduces. just
z tejto oblasti .je možne izoloval baktérie. Plást sa najprv utrie suchým chumáčikom vaty, aby sa v čo najväčšej miere odstránil sliz. Potom sa povrch plásta utrie 70 % (objemovo) etanolom, z dôvodu povrchovej sterilizácie plááta. V plameni sterilizovanou ihlou sa prepichne plášl a potom sa Kvapky tekutiny na Konci ihly priamo prenesú na misky so živným agarom, kde sa rozprestrú pomocou sklenenej stierky a inkubujú.bacteria may have been isolated from this area. The comb is first wiped with a dry wad of cotton wool to remove the slime as much as possible. Thereafter, the surface of the comb is wiped with 70% (v / v) ethanol for surface sterilization of the comb. The flame-sterilized needle is punctured by the sheath, and then droplets of liquid at the end of the needle are transferred directly to nutrient agar plates, spread with a glass spatula and incubated.
iv Izolácia baktérií z mŕtvych slimákoviv Isolation of bacteria from dead slugs
Tkanivové stéry z mŕtveho tela slimáka, ktorý uhynul po infekcii nematodami a je nematodami pokrytý, sa suspendujú v živnej pôde za použitia bakteriologického ocsa. Urobí sa se'riové riedenie vzniknutej suspenzie a 0,1 ml alikvotnej vzorky sa rozprestrie na miskách so živným agarom a inkubuj,e sa.The tissue smears from the carcass of a slug that has died after nematode infection and are coated with nematodes are suspended in the broth using a bacteriological tail. Serial dilutions of the resulting suspension are made and a 0.1 ml aliquot is spread on nutrient agar plates and incubated.
Príklad 'JExample 'J
Spôsob seiekcie baktérií, ktoré, podporujú rast nematód.A method of securing bacteria that promote the growth of nematodes.
Samičí reprodukčný trakt nematód je obvykle sterilný (Poinar a Hansen, Helminthological Abstracts, Šerie S, (l?86j sv. 55, č. j, str. 61 až 81) , a preto sú juvenily(Jl) ihned po vyliahnutí sterilní. Jednotliví gravidní dospelí nematodi,vybratí z kultúr nematód alebo slimákov sa prenesú na sterilné hodinové sklíčko obsahujúce roztok Thimerosalu koncentrácie 0,2 g/1, kde sa ponechajú cez noc. pri 10° C. V priebehu tejto doby sa z vajíčok dospelých vyliahnu a uvoľnia juvenily (Jl). Nasledujúci deň sa juvenily prenesú pipetou do cenirifugačnýchThe female reproductive tract of nematodes is usually sterile (Poinar and Hansen, Helminthological Abstracts, Serie S, (1886j vol. 55, no. J, pp. 61-81)) and therefore juveniles (Jl) are sterile immediately after hatching. pregnant maternal nematodes, taken from nematode or snail cultures, are transferred to a sterile watch glass containing 0.2 g / l Thimerosal solution and kept overnight at 10 ° C. During this time, adult eggs are hatched and juveniles are released (Jl) The next day juveniles are transferred by pipette to centrifugation
novou silou, ktorý obsahuje 500 U/ml penicilínu G a streptomycínsuifátu. Juveníiia sa v tomto roztoku ponechajú ňaiÔích 24 hodín pri lú° C. rocom sa skoncentrujú jemným odstredením (5ϋ x g, po dobu 10 minút), zoberú sa zo dna skúmavky a resuspendujú v čestvom sterilnom Ringerovom roztoku so štvrtinovou koncentráciou a znovu sa odstredia. Resuspendovanie a centrifugácia sa ešte jedenkrát opakuje, aby sa odstránili všetky stopy antibiotika. Potom sa larvy umiestnia na sterilné hodinové sklíčko. Potom je možné s nematodami manipulovať jednotlivo pomocou mikropipety, ktorá je zhotovená natiahnutím kvapk3cej pipety v Sunsenovom horáku, až do Šírky približne 0,1 mm. Nematodové kultúry sa pestujú na Ľadvinovom agare (popísanom v príklade L) v Petriho miskách s priemerom J cm. Dávka jedného bakteriologicke'ho očka 1S hodín starej kultúry živnej pôdy so skiíšanými baktériami sa nanesie čiarovito cez polovicu JO mm misiek s Ľadvinovým agarom. Na kraj retriho misky v tej jej polovici, ktorá neobsahuje baktérie sa umiestni 10 scénických j.uvenilných nematod, získaných spôsobom popísaným v príklade ô tak, aby nematoda museli prekonal aspoň 15 mm vzdialenosť cez povrch bez baxzérií predtým, ako sa dostanú xu skúšanej baktérii. Misky sa inxubuju pri i5° C.new strength containing 500 U / ml penicillin G and streptomycin suifate. The juveniles are left in this solution for 24 hours at 10 ° C. Concentrate each year by gentle centrifugation (5 x g, for 10 minutes), collect from the bottom of the tube and resuspend in a sterile quarter-sterile Ringer's solution and centrifuge again. Resuspension and centrifugation is repeated one more time to remove all traces of antibiotic. The larvae are then placed on a sterile watch glass. The nematodes can then be handled individually using a micropipette which is made by stretching a dropping pipette in a Sunsen burner up to a width of approximately 0.1 mm. The nematode cultures are grown on Glacial agar (described in Example L) in J cm petri dishes. A batch of one bacteriological seed of a 1 hour old culture medium with cultured bacteria is plated line-wise across half of the JO mm agar plates. 10 scenic juvenile nematodes, obtained as described in Example 8, are placed on the edge of the non-bacterial half of the retri dish so that the nematode has to cover at least 15 mm distance across the non-bacterial surface before it reaches the xu of the test bacterium. Plates are incubated at i5 ° C.
Akákoivek baktéria, ktorá je prítomná na namaxodach a xtorá nebola usmrtená v priebehu axenizačného procesu, vytvára viditeľné kolonie v tejto polovici misky a takéto misxy je možne potom vyradil.Any bacterium that is present on the namaxodas and that has not been killed during the axenization process creates visible colonies in this half of the dish, and such misxies may then be discarded.
Po 1 týždni sa misky vykazujúce bakteriálnu kontamináciu v čistej polovici zlikvidujú. Po 2 týždňoch sa môže spočítať počet nematód, prítomných na miske priamym .mikroskopickým pozorovaním ; vĺčko Petriho misky sa odstráni a nahradí iným vĺčkom, na Ktorom bola vopred vyznačená počítacia mriežka. Po J týždňoch je možné nematoda spočítať znova tak, že sa nematoda spláchnu z agaru do známeho objemu vody a nematoda sa vo výslednej suspenzii spočítajú v Petrovej jednomilimetrovej počítacej komorke.After 1 week, dishes showing bacterial contamination are discarded in the clean half. After 2 weeks, the number of nematodes present on the dish can be counted by direct microscopic observation; the lid of the petri dish is removed and replaced with another one on which the counting grid has been pre-marked. After J weeks, the nematode can be counted again by flushing the nematode from the agar to a known volume of water and counting the nematode in the resulting slurry in Peter's 1 mm counting chamber.
Deväť rôznych druhov baktérií, ktorá boli izolované •iore popísanými spôsobmi, sa podrobia skúšaniu na schopnosť podporoval rast nematód. výsledky sú zhrnuté v tabuťke L.Nine different types of bacteria that have been isolated by the methods described above are tested for their ability to promote nematode growth. the results are summarized in Table L.
TabuíkaiTabuíkai
Počet nematód phasmarhabditis v Petriho miske po 2 a 3 týždňoch rastu v monoxénickej kuitúre s rôznymi baktériami. rx-e štatistickú analýzu sú úda^e prevedené na LogaritmyThe number of phasmarhabditis nematodes in the Petri dish after 2 and 3 weeks of growth in a monoxenic kit with different bacteria. In the statistical analysis, the data are converted to Logarithms
Smerodajná odchýlka pre porovnávanie logaritmov počtu nematód je 0,204, 12S Ľ.F.The standard deviation for comparing the logarithms of the number of nematodes is 0.204, 12S L.F.
Po 3 týždňoch vznikli vysoko signifikantné (P<0,001) rozdiely v schopnosti baktérií podporovať rast nematód.After 3 weeks, highly significant (P <0.001) differences in the ability of bacteria to promote nematode growth occurred.
Spôsob masovej kultivácie nematód Äiasmarhabditis v kultúre s kúskami penyMethod of mass cultivation of Äiasmarhabditis nematodes in a culture with pieces of foam
Nematoda je možné masovo pestovat na kúskoch polyéter-polyuratanovej peny za použitia podobných techník, ake boli vyvinuté pre masovú produkciu nematód parazitujúcich ne hmyze ( Bedding, v Nematologica (1981), sv. 27, str·. 109 až 114 a Annals od Applied Biolcgy (1984), sv. 104, str. 117 až 120? . Toto médium sa skladá zo 65 % bravčovej ladvinky, 15 fí hovädzieho vypečeného tuku a 25· % vody (% hmotnostne). Ľadvina sa rozseká na malé kúsky, pridá sa voda a zmes sa rozdrví v miešači Waring. Hovädzí vypečený tuk sa roztaví v širokej pánvi nad kruhovým plynovým horákom, potom sa k nemu pridá ľadvino vý homogenát, ktorý sa dôklaune zmieša s tukom a varí tak dlho, dosiaľ nezhnedne. Zmes sa potom vráti do miešača Waring, kde sa ša s kúskami znova rozomelie. Vzniknntá zmes sa potom zmiepeny, pričom k jednému hmotnostnému dielu kús-f ks peny sa pridá 12 dielov hmotnostných menia. Vzniknuté médium sa môže uložít do kónických baniek alebo autoklávovacích vriec, popísaných Seddingom (1984). Kultúry s kúskami peny sa súčasne zaočkujú ako namatodsmi, tak baktéria mi. V každom vreci sa v hornej časti prereže Štrbina a pri dá sa 75 ml cez noc narastanej baktérie. Kultúra baktérií môže byt v podobe zmesnej mikrobiálnej kultúry, získanej spôsobom popísaným v príklade 2, alebo vo forme čistej kultúry bakteriálneho kmeňa, vybraného na základe schopnosti podporoval rast nematód, ako je to popísané v príklade 3.Nematodes can be mass grown on pieces of polyether-polyurethane foam using similar techniques to those developed for the mass production of insect-parasitic nematodes (Bedding, in Nematologica (1981), vol. 27, pp. 109-114 and Annals by Applied Biolcgy) (1984), vol 104, pp. 117-120. This medium consists of 65% pork laden, 15 phi of bovine fat and 25 ·% water (% by weight). The baking fat is melted in a wide pan above a circular gas burner, then added to the kidney homogenate, which is thoroughly mixed with the fat and cooked until brown until it is brown. Waring, where the pieces are grinded again, and the resulting mixture is then blended with 12 parts by weight added to one part by weight of the foam pieces. Anchovies or autoclave bags described by Sedding (1984) Cultures with pieces of foam are simultaneously inoculated with both namatods and bacteria mi. In each bag, slit at the top and cut 75 ml of overnight bacteria. The bacterial culture may be in the form of a mixed microbial culture obtained as described in Example 2, or in the form of a pure bacterial strain selected on the basis of its ability to promote nematode growth as described in Example 3.
pridajú sa nematoda na agare z Petriho misiek alebo na koch peny z predchádzajúcich vrecových kultúr. Vrecové túry sa inkubujú pri 15” C ρο dobu 3 týždňov, ŕo tejto kúskuidobe je možné vo vnútri vriec vidiet mnoho infekčných juve niiov, ktoré vo vreciach zanechajú upotrebené médium. Nematoda sa zbierajú z Kúskov peny modifikovaným postupom extrakcie v náievke, ktorý sa podobá postupu používanému pre izoláciu nematód zo zemných vzoriek. Medené sito na zeminu s priemerom 17,5 cm sa obloží 17,5 cm filtrom na mlieko a umiestni sa na 50 cm misku pod kvetináč. Kúsky peny z vriec sa umiestnia v sitách do hĺbky približne 2 cm a potom sa kvetináčové misky naplnia vodou tak, že sa;vodná hladina práve, dotýka spodnej vrstvy kúskov peny. Sitá sa potom v tomto stave uchovávajú cez noc. V priebehu tejto doby živé nematoda preplávu filtrom na mlieko a zhromaždia sa vo vode pod filtrom. Suspenzia nematód sa prečistí od vypotrebovanezho média a baktérií niekoľkonásobnou výmenou vody 3 potom sa nematoda skladujú v prevzdušňovanej vode pri 10° C až do doby použitia';'Add nematodes on agar from Petri dishes or foam kicks from previous bag cultures. The bag tours are incubated at 15 ° C ρο for 3 weeks, as many infectious juices can be seen inside the bags, leaving the spent media in the bags. Nematodes are collected from the Pieces of Foam by a modified funnel extraction procedure similar to that used to isolate nematodes from ground samples. A 17.5 cm diameter copper sieve is covered with a 17.5 cm milk filter and placed on a 50 cm dish under a flower pot. The pieces of bag foam are placed in sieves to a depth of approximately 2 cm and then the pots are filled with water so that the water level just touches the bottom layer of the pieces of foam. The sieves are then kept in this state overnight. During this time, the living nematode is passed through the milk filter and collected in the water under the filter. Cleaning the nematode suspension of the spent medium, and the bacteria it with several changes of water 3 then the nematodes are stored in aerated water at 10 DEG C. until the time of use ';'
sa nematoda prenesú do kvapalnej kultúry.the nematode is transferred to a liquid culture.
Nematoda sa pes tuju v kultúre, umiestnenej v mečanej fíasi, pri nasledujúcich podmienkach :The nematode is cultivated in a culture placed in the sword fossa under the following conditions:
Médium ~c ľadvín 1 % kvasinkového 'extraktu, kukuričného olejaKidney medium 1% yeast extract, corn oil
Nádoba : 2 50 ml kónická banka s 50 ml médiaContainer: 2 50 ml conical flask with 50 ml medium
Teplota: L5° 0Temperature: L5 ° 0
Frekvencia otáčania trepačky : 200 minShaker rotating frequency: 200 min
Nádoby sa zaočkujú 1 mu druhu bektsrie pestovaného v živnej pôde. ?o 24 hodinách ss nematoda spláchnu do baniek pomocou sterilnej vodovodnej vody a nasleduje trojtýždenná inkubácia.The flasks are inoculated with 1 mu of bektsria grown in culture medium. After 24 hours, the nematode is flushed into the flasks with sterile tap water followed by a three week incubation.
Nematoda sa 2 x opláchnu sterilnou vodou a spočítajú, ťotom sa tieto nematoda použijú akoiaokulum pre· experimentálne kultúry. Nematoda sa pridajú do baniek vopred inosculovaných baktériami v množstve 3000 nemátón na l· mi obsahu banky.The nematodes are rinsed twice with sterile water and counted to use the nematodes as an inoculum for experimental cultures. The nematodes are added to flasks pre-inoculated with bacteria at 3000 nematons per liter of flask contents.
Nematoda sa'pestujú v spojení so 4 rôznymi druhmi baktérií. V priebehu kultivácie sa v rôznu dobu zistuju poÓty nematód. Dauer larvae fštádium, ktoré je rovnako známe pod označením infekčné juvenília^ sa považujú za nematoda so zachovaným druhým stupňom cuticula.Nematodes are grown in conjunction with 4 different types of bacteria. During the cultivation, nematode numbers are detected at different times. Dauer larvae stage, also known as infectious juvenia, is considered to be a nematode with a second degree of cuticula preserved.
Nematoda sa spočítajú po 20 dňoch inkubácie a zistené výsledky sú uvedené v tabuíke 2.The nematode is counted after 20 days of incubation and the results are shown in Table 2.
T a b u í k a 2T a b u k a 2
Kvapalná kultura monoxénlckých nematódLiquid culture of monoxenic nematodes
Baktérie ročet Stredný počet nematód v 1 m± repiikácií Dauer narvae ľ.ne štádiaBacteria year Mean number of nematodes in 1 m ± replication Dauer narvae left stage
Odborníci v tomto odbore. môžu na záxlade podmienox popísaných v tomto príklade íahko vyriesit masovú produkcia nematód v kvapalnej kultúre vo veíkopriestorových fermentoroch.Those skilled in the art. based on the conditions described in this example, they can easily solve mass production of nematodes in liquid culture in large-scale fermenters.
- 19 príklad. 6- 19 example. 6
Spôsob selekcie baktérií udeľujúcim patogenitu proti slimákomMethod for selecting bacteria conferring pathogenicity against slugs
Nematoda pestované v monoxénickej kultúre s 2 druhmi baktérií, Providencia rettgeri a Moraxella phenylpyruvica (viď príklad 5 ) sa skúšajú na patogenitu proti slimáčkovi poľnému Deroceras reticulatum. Škatuľa z plastu, ŕ rozmery 135 x 75 x 50 mm) sa naplní 440 g na vzduchu sušených zemných agregátov s priemerom 12,5 až 25 mu, ktoré boli získané spracovaním na sitách. Semné agregáty z každej škatule sa vyberú a namočia SO mi vody.Nematodes grown in a monoxenic culture with 2 species of bacteria, Providencia rettgeri and Moraxella phenylpyruvica (see Example 5), were tested for pathogenicity against Deroceras reticulatum. A plastic box (dimensions 135 x 75 x 50 mm) is filled with 440 g of air-dried earth aggregates with a diameter of 12.5 to 25 mu, obtained by sieving. The seed aggregates from each box are removed and soaked in water.
Používajú sa jednak neošetrená Škatule, do ktorých sa nepridajú nematoda a Šxatuie, do ktorých sa pridajú nesatoda v 5 rôznych dávkach 15000, 2J000, .35000, 55000 a 75000 nematód na škatuľu z plastu . Pre všetkých 5 pokusov s oboma várkami scnoxénických nematód sa použijú vždy 2 škatule (dvojnásooná replikácia).First, untreated boxes are used in which no nematode is added, and Shatsui to which are added a non-soda in 5 different doses of 15000, 2J000, .35000, 55000, and 75000 nematodes per plastic box. For all 5 experiments with both batches of scnoxic nematodes, 2 boxes (biaxial replication) were used.
Nematoda sa spočítajú a ich príslušný počet . sa suspenduje v 50 ml vodovodnej vody. Agregáty sa znovu umiestnia do skatuie a suspenzia nematód sa rovnomerne rozdelí na povrch agregátov,vrstva po vrstve, iledzi prostredné vrstvy v každej škatuli sa umiestni 10 jedincov D. reticulatum. Na agregátoch v každej krabie! sa rovnomerne rozdelí. 50 mL vodovodnej vody, bez toho, aby sa prilávali ďalšie nematoda tak, aby výsledný obsah vlhkostí v každej škatuli bol približne 30 % hmotnostných.The nematodes are counted and their respective number. is suspended in 50 ml of tap water. The aggregates are repositioned and the nematode suspension is evenly distributed over the aggregate surface, layer by layer, 10 individuals of D. reticulatum are placed in the middle layer in each box. On aggregates in each crab! is evenly distributed. 50 mL tap water without adding any other nematode so that the resulting moisture content in each box is approximately 30% by weight.
Slimáky sa pestujú v pôde v priebehu infekčnej periódy v dĺžke 5 dní pri 10° C 3 potom sa vyberú e prenesú do Petriho misiek, kde sa pestujú jednotlivo a kŕmia kotúč ikami, odobratými z Listov čínskej kapusty. Po ďalších 9 dňoch pri 10° C (po 14 dňoch od začiatočnej expozície nematodám) sa zaznamenaný kov. Údaje mortality sa o zadia, ktorá je zrejmá z údaje mortality sa vynesú ke nematód t.j. nematód, / túre s oboma . baktériami počet mŕtvych a živých slimápravia vzhladom k mortalite poneošetrených ^katúi. Opravené.Slugs are grown in soil for an infection period of 5 days at 10 ° C 3, then removed and transferred to Petri dishes, where they are grown individually and fed with discs taken from Chinese cabbage leaves. After another 9 days at 10 ° C (14 days after the initial nematode exposure), the metal was recorded. The mortality data is entered, which is evident from the mortality data, plotted to nematodes i.e. nematodes, / hikes with both. bacterial count of dead and live slugs due to mortality of untreated cathodes. Corrected.
do grafu, ako závislosť, na dávpestovaných v monoxénickej kulPri tomto experimente sií nematoda pestované c M. phenylpyruvica a Pr. rettgeri patogenné voči D. reticulatum. Túto metódu je možne použit pre sexekciu iných kmeňov baktérií, napríklad kmeňa o. fluorescenc 141, ktorý udexuje patogenitu proti slimákom.In the experiment, the nematode cultured c. rettgeri pathogenic to D. reticulatum. This method can be used to sexify other strains of bacteria, such as o. fluorescence 141, which induces pathogenicity to slugs.
Príklad 7Example 7
Spracovanie nematód Phasmarhabditis na pesticídny pros“ triedokProcessing of Phasmarhabditis nematodes into pesticide pros' grades
Monoxénické nematoda Phasmarhabditis, ktoré boli pes tované v lad ô) sa spojení s kmeňom 4S II.The monoxenic nematode (Phasmarhabditis), which has been found in the ice, is associated with the strain 4S II.
phenylpyruvica ( viň príkvode, ktorý sa robí tak dlho, pokieí sa nematoda nezbavia reziduálneho rastového média. Premyte* nematoda sa skoncentrujú odstreďovaním na vodnú rastu tvorenú nematodami, «·* ξ » v ktorej je obsiahnuté 0,1 x 10- až 2,0 x 10 nematód v jednom grame. Nematodová pasta sa zmieša s ílom na bázi montmorillonitu vápenatého, za vzniku vo vode dispergovatexnej práskovitej zmesi, obsahujúcej 0,05 x 1C6 až L,S x 10^ nematód v jednom grame (hmotnosť za vlhka).phenylpyruvica (see example, which is carried out for as long as the nematode does not get rid of residual growth medium. Wash the nematode * by centrifugation to a water growth formed by nematodes, which contains 0.1 x 10 - to 2.0 The nematode paste is mixed with a clay based on calcium montmorillonite to form a water dispersible powder mixture containing 0.05 x 10 6 to 1. S x 10 6 nematodes per gram (wet weight).
Schopnosť nematód Phasmsrhabditis, produkovaných v kultúre z kúskov peny, usmrcovať rôzne druhy slimákovThe ability of Phasmsrhabditis nematodes, produced in culture from pieces of foam, to kill various species of slugs
Namatoda Phasmarhabditis, ktoré boxi pestovane7 na zmesnej bakteriálnej flóre spôsobmi popísanými v príklade. 4 boli skúšané v biologickom poxuse proti, šiestim škodlivým druhom slimákov. Týmito druhmi sú Derocereas recitulatum, D. caruanae, Arion ater, A. intermedius, A. distinc tus a Tandonia (Milax) soweroyi. Slimáky boli nazbierané do pascí s návnadou z rozomletých otrúb vo výskumnej stanici Long Ashton Research Station v novembriNamatoda Phasmarhabditis, which boxed 7 on a mixed bacterial flora by the methods described in the example. 4 were tested in biological poison against six harmful slug species. These species are Derocereas recitulatum, D. caruanae, Arion ater, A. intermedius, A. distinc tus and Tandonia (Milax) soweroyi. Snails were collected into traps with ground bran bait at Long Ashton Research Station in November
1990. Všetky slimáky boli dospelé., s výnimkou A. ne formy (stredná hmotnosť 770 mg')o ater, čo boli juvenilNematoda boli pestovaná v xénických vrecových kultúrach s kúskami peny spôsobom popísaným v príklade 4. Do plastových Škatúľ s rozmermi 1J5 x 75 x 50 mm bolo umiestnených 440 g na vzduchu sušených zemných iirubozrnných agregátov s priemerom 12,5 až mm, ktoré boli získané spracovaním na sitách. Do každej Škatúľ, ošetrovaných nematodami, bolo pridaných orioliž5All snails were grown, except A. form (770 mg mean weight) of the juvenil nematoda were grown in xenic bag cultures with pieces of foam as described in Example 4. In plastic boxes with dimensions of 1J5 x 75 x 50 mm was placed 440 g of air-dried, ground-to-grain aggregates with a diameter of 12.5 to mm, which were obtained by sieving. Orioliz 5 was added to each nematode-treated box
1,9 x 1.0 infekčných lariev Phasmarhabditis, suspendovaných v 130 ml vodovodnej vody. Do neošetrených škatúľ bolo zo ne1.9 x 1.0 Phasmarhabditis infectious larvae, suspended in 130 ml tap water. The untreated boxes were made of them
r.ematôd. Do každej zo s výnimkou vacsicn crupridaných 130 ml. vodovodnej vody bez z s škatul bolo vložených 10 slimákov, hov T. sowerbyi a A. ater , ktorých coio pridaných vždy 5.r.ematôd. Into each of the except 130 ml cruprided. tap water free of the skate was charged with 10 slugs, hov T. sowerbyi and A. ater which were added coio each fifth
slimákov A. distinctus bolo ošetrené nematodami a x8 sli mákov b o no chovaných bez ošetrenia, ako kontrolné zvxeratá. U všetkých ostatných druhov bolo, vždy 20 slimákov ošetrených a 20 slimákov bolo ponechaných bez ošetrenia, ako kontrolné zvieratá. Slimáky boli ponechané v pôde na patdennú infekčnú periódu, po ktcrej boxi Škatule so zeminou rozobraté a bol zaznamenaný počet mŕtvych slimákov. Slimáky, ktoré prežili, boli prenesené do 9 cm petriho misiek, obložených zvnútra fix.trvčným papierom, kde boli uchovávané je.dnotxivo a kŕmené listovými kotúčikmi čínskej kapusty. Škatule so zeminou a Petriho misky toii po.celú dobu trvania biologického pokusu uchovávané pri ±0° 0. Počet mŕtvych slimásov boí zaznamenaný ešte 2 x v trojdenných intervaloch.A. distinctus snails were treated with nematodes and x8 salivated but untreated populations as control animals. In all other species, 20 snails were treated and 20 snails were left untreated as control animals. The snails were left in the soil for a pathogenic infectious period, after which the soil boxes were disassembled and the number of dead snails was recorded. The surviving snails were transferred to 9 cm petri dishes, lined inside with fixed tissue paper, where they were kept neat and fed with leaf rolls of Chinese cabbage. Soil boxes and petri dishes were kept at ± 0 ° 0 throughout the duration of the biological experiment. The number of dead slugs was recorded twice more at three-day intervals.
ta jednotlivých druhov slimákov v ošetrených a neošetrených Škatuliach v každom momente, kel bolo robené zaznamenávanie, bola porovnávaná pomocou chĺ“ testu. Výsledky sú'uvedené v tabuľke J.that of the individual snail species in the treated and untreated boxes at each moment, when the recording was made, was compared using a hair test. The results are shown in Table J.
ľ a b u í k a 3¾ a b u k a 3
Percentuálna mortalita rôznych druhov slimákov po 5, 3 a 11 dňoch od ošetrenia nematodami alebo bez ošetreniaPercent mortality of different slug species at 5, 3 and 11 days after nematode treatment or untreated
ro patmennej infekčnej perióde bo±i rozdiely v mortalite medzi slimákmi ošetrenými nematôdami a neošetrenými slimákmi vysoko signifikantné (?<QtQOi)9 v prípade 2. reticuiatum, D. caruanae a A. intermedius. Rozdiely v mortalite medzi ošetrenými a neošetrenými slimákmi u ostatných troch druhov neboli v tomto štádiu signifikantné. Po ôsmich dňoch boli rozdiely v mortalite medzi ošetrenými a neošetrenými slimákmi signifikantné. u všetkých skúšaných druhov (p<U.D01)pre D. reticuiatum, D. caruanae, T. soweberyi a A. distinctus s Ρ<ΰ.ϋ1 pre A. ater a A. intermedius . Do jedenásteho dňa všetky slimáky, na ktorých boli aplikované nematoda, uhynuli. Rozdieiy v mortalite meczi ošetrenými a neošetrenými slimákmi boli signifikantné pre všetky druhy (?<0.01)pre A. intermedius a F<U.CQ1, pre všetky ostatné druhy). Rozdiel v prípade A. intermedius nebol tak velký, pretože mnoho neošetrených ä*·For a pathogenic infectious period, the mortality differences between nematode-treated slugs and untreated slugs were highly significant (<< Q t QOi) 9 for the 2nd reticuiatum, D. caruanae and A. intermedius. Mortality differences between treated and untreated snails in the other three species were not significant at this stage. After eight days, the mortality differences between treated and untreated snails were significant. for all species tested (p <U.D01) for D. reticuiatum, D. caruanae, T. soweberyi and A. distinctus with Ρ <ΰ.ϋ1 for A. atter and A. intermedius. By day 11, all slugs on which nematode had been applied had died. Mortality differences between treated and untreated snails were significant for all species (? <0.01) for A. intermedius and F <U.CQ1, for all other species). The difference in A. intermedius was not so great because many untreated ä * ·
Ä, .kov uhynuloÄ, .kov has died
Z týchto výsledkov je zrejmé, sú schopné že nemátoča phasmarhaskasané druhy slimákov.From these results it is obvious that they are capable of nematode phasmarhaskasané species of slugs.
Schopnosť nematódCapability of nematodes
Phasmarhabditis, pestovaných v kuxtúrach s kúskami peny, znižovat poškodenie rastlín, spôsobené slimáokom poíným Deroceras reticuiatum za poiných podmienokPhasmarhabditis, grown in kuxtures with pieces of foam, reduce plant damage caused by the snail Deroceras reticuiatum under different conditions
Bol urobený pokus na minipolíčkach, ktorého účelom bolo porovnať poškodenie sesenačkov čínskej kapusty slimákmi na neošetrených políčkach , políčkach ošetrenýchAn attempt was made on mini-fields to compare damage to Chinese cabbage seedlings by slugs on untreated, treated areas.
aathiocarou ( táto látka je považovaná za najlepšiu dostupnú slimáky) a políc kach ošetrených jedinou vysokou dávkou nematód, produkovaných v kuitúre s kúskami peny, na zmesnej bakteriálnej flóre, spôsobom popísaným v príklade J. Pri pokuse sa používa séria 40 mikropoiíčok obsahujúcich hiinitú zem na podloží z hrubého átrku. Rozmery políčok boli 70 χ 70 a ich hĺbka boxa 30 cm. Políčka boxi od seba oddelené. drevenými alebo betónovými obru’oníkami, na ktorých box upevnený 13 cm vysoký plot z meaeného drôteného pletiva s priemerom 0,S mm, ktorý predstavoval zábranu pre pohyb slimáka medzi jednotlivými políčkami.aathiocarou (considered to be the best available slugs) and shelves of ducks treated with a single high dose of nematodes produced in a foamed piece kit on a mixed bacterial flora as described in Example J. A series of 40 micro-fields containing hiine earth on the substrate were used. of the rough grain. The dimensions of the boxes were 70 χ 70 and their box depth was 30 cm. Boxes separated from each other. wooden or concrete hoops, on which the box was mounted a 13 cm high fence of wire mesh with a diameter of 0, S mm, which represented a barrier to the slug's movement between the boxes.
V rozmeazí marec až jún 1989 bolo 36 týchto políčok osídlené slimákmi. Do zostávajúcich Štyroch políčok neboli pridané. ' žiaane slimáky a tieto políčka slúžili ako meritko rezidentnej slimačej populácie. Do každého ídiených políčok bolo vložených 5 ha poli zobraných elých D. reticuxatum. Tieto slimáky boli držané asdv.a týždne v karanténnych škatuliach, aby sa zaručiže nenesú žiadne parazity. Ma každé* políčko bolo v behu trojmesačnej periódy vložených 34 v laboratóriu chovaných novo vyliahnutých jedincov D. reticulatum, takže na začiatku pokusu boli na políčkach prítomné slimáky v mnohých štádiách vývoja.Between March and June 1989, 36 of these fields were populated with slugs. Not added to the remaining four fields. 'slug slugs and these boxes served as a measure of the resident slug population. 5 ha of harvested el. D. reticuxatum were placed in each of the controlled fields. These snails were kept for at least two weeks in quarantine boxes to ensure that they did not carry any parasites. Each field was inserted during the three-month period, 34 in the laboratory kept newly hatched D. reticulatum, so that at the beginning of the experiment, slugs were present in the fields at many stages of development.
Experiment bol Koncipovaný tcácií -i randomizovaných blokov, 2 neoSetrene políčka, 1 políčko tax, že sa robilo 9 replipričom každý blok zahŕňal ošetrené* nematodami a 1 políčko ošetrené paletami methiocarbu..The experiment was conceived by a dot-i randomized block, 2 untreated boxes, 1 tax box that 9 replicates were made each block including * nematode-treated and 1 box treated with methiocarb palettes.
V 300 ml vodovodnej vody bolo susoendovaných 1,05 x nematod 3 vzniknutá suscer.zia bola ooucita na zalivku ďalších 100 ml vodovodnej vody bolo použité na vypláchnutie konvieky a i tá to voda bola naliata na políčka, Na neoŠetrene políčka a na poxíčka ošetrená ncthiocarbom bol tiež naiiaty 1 1 vodovodnej vody, relety methiocarbu boli priaane v doporučenej dávke pre poíné ošetrenie (5,5 kg/ha=0,275g/políčko ) · Pelety boli navážené a ručne rovnomerne rozde lené po políčkach. V priebehu celého pokusu boli políčkaIn 300 ml of tap water 1.05 x nematodes 3 were suscered. Another 100 ml of tap water was used to flush the water and was used to rinse the kettle and the water was poured into the boxes, the untreated boxes and the poxies treated with ncthiocarb. 1 l of tap water, methiocarb relays were wished at the recommended dose for field treatment (5.5 kg / ha = 0.275g / field). The pellets were weighed and hand-spaced evenly across the fields. There were plots throughout the experiment
- 25 zavlažované zvrchu pomocou zavlažovacieho potrubia tak, aby sa zaistili priaznivé podmienky pre aktivitu slimákov.- 25 irrigated from above by means of irrigation pipes to ensure favorable conditions for the activity of snails.
Na začiatku pokusu bolo na každé políčko vysadených semenáčkov {štvorec 3 x 3 ) čínskej kapusty, pestovsných v skleníku. Rastliny boli kontrolovaneZ 2 x týždenne a odhadom (s presnosťou 5 %) bolo zisťované poškodenie rastlín slimákmi.At the beginning of the experiment, there were planted seedlings (square 3 x 3) of Chinese cabbage grown in a greenhouse for each field. The plants were controlled from the 2 times a week and an estimate (with an accuracy 5%) were detected damage to plants slugs.
boli anewere ane
Á.Oh.
Dva týždne po vysedení boli semenáčky na niektorých neošetrených políčkach úplne, zničené , takže zvyšky starých semenáčkov boli zo všetkých. týchto políčok odst né a boli vysadené nové. To sa opakovalo po aalJ'ích 2 týžňoch. Po calších 2 týždňoch bol pokus ukončený ( celková doba trvania pokusu bola o týždňov). Poškodenie semenáčkov v priebehu pokusu bolo zaznamenávané 2 x týždenne. Plotixy z medeneho crôteneno pletive medzi poxíckami sa v jednom z blokov (blok č. ?) uvol.tili po prvých 4 týždňoch, čo umožnilo slimákom pohyb medzi týmito políčkami. Tieto políčka boli preto ignorovane e zaznamenane výsledky po- 5 3 6 týždňoch sa vzťahujú xen .ts ô bloxov.Two weeks after planting, the seedlings were completely, destroyed in some untreated fields, leaving the remnants of the old seedlings of them all. these boxes are removed and new ones have been planted. This was repeated after an additional 2 weeks. After another 2 weeks, the experiment was terminated (total duration of the experiment was about weeks). Seedling damage during the experiment was recorded twice a week. Copper-braided plotixes between poxies were released in one of the blocks (block #?) After the first 4 weeks, allowing slugs to move between these fields. These fields were therefore ignored and the results recorded after 5 3 6 weeks relate to xen .ts δ blox.
Na -ccnci kažueho poxusu boxi z Kazcšho pOiíÚks zo zostávajúcich S blokov odobratá 2 vzorky zeminy(25 x 25 x 10 cm), pričom 1 vzorka boxo odobratá z prostriedka a 1 z juhovýchodného rohu Každého políčka, vzorky boli postupne zavodňované po dobu $ dní v extrakčnej .e-notke pre slimáky LäRS ( Glen XWiltshire, Proceedings 1986 British Trop Rrotection Conference(198c), sV· 1, str. 139 až 144] a z povrchu boli každý deň odstraňované slimáky.On each poxus box from the box, 2 soil samples (25 x 25 x 10 cm) were taken from the remaining S blocks, with 1 box taken from the middle and 1 from the southeast corner of each box, samples were sequentially irrigated for $ days in LäRS Snail Extraction Unit (Glen XWiltshire, Proceedings 1986 British Tropicrotection Conference (198c), SV · 1, pp. 139-144) and snails were removed from the surface every day.
Rozsah poškodenia semenáčkov slimákmi pri každom ošetrení v priebehu poxusu je zrejmý z obr. ,1.The extent of slug seedlings damage at each treatment during poxus is apparent from FIG. '1.
Analýza variancie. po uhlovej transformácii, za účelom stabilizácie variancie ukazuje, že ako pelety methio •čarou, tak nemstoaa si^nifikontne (?<C , ?O1,) znížili rozsah ^kody sp^soben^ semenáčkom. rri prvom odčítaní (4 týždne po ošetrení) bola zistená si^niz'iiontne (?<(.·,i-5) rozsiahlejšia škoda na políčkach ošetrených. nemstodemi, v porovnaní s políčkami ošetrenými methiocarbom, ale keď semenáčky rastom, prekonali začiatočné poskočenie, rozdiel medzi. políčkami ošetrenými nematoaami a poiíčxami ošetrenými methiocarbom sa znížil. Koncom prvého týždňa vykazovali políčka ošetrené nematodami menšie poškodenie ako políčka oŠetrene methiocarbom , ale tento rozdiel nebol sliniťikantný. Po 17 dňoch(prvé vyšetrenie druhej dávky semenáčkov ) vykazovali políčka ošetrene nematodami si^nifikantne (p<0,.05) nižšie poškodenie, v porovnaní s-políčkami ošetrenými methiocarbom a tento stav O,C1) zostal zacnovsný až do konca rokusu.Variation analysis. after angular transformation, in order to stabilize the variation, it shows that both the pellets by the methio line and the non-stably (<C, OO1) pellets decreased by the seedlings. In the first subtraction (4 weeks after treatment), more extensive damage was found to the nematode-treated patches compared to the methiocarb-treated patches, but when the seedlings were growing, they overcame the initial hop. At the end of the first week, nematode-treated fields showed less damage than methiocarb-treated fields, but this difference was not sintering. significantly (p < .05) lower damage, compared to methiocarb-treated fields and this status of 0, C1) remained recurrent until the end of the year.
:t r» boli ov,: t r »were ov,
Deroceres ' Q +11 TIDeroceres' Q +11 TI
-“‘-J λ ··* .·*% ä *» «m r u z-n- “‘ - J λ ·· *. · *% Ä * «« m r u z-n
Hoet—'erid lôr ma· líčka oravcepadobne zavlečené niekedy pre ν' h-m osi.Hoet — 'erid lôr' has a key oravcepadobically introduced sometimes for ν 'h-m axis.
med ‘J /3, kmed ‘J / 3, b
Λ z* ny behu nutý precr.ost, nie 3 troqtýždennej expozície žiacny alter podobné, že' by list;/ ktoré e oro borazórnazus ná tivny zcro.j ootrsvy.Exercise is required, not for 3 weeks of exposure to corn alteration, similar to a leaf that is borazornazus naive.
neoravde ;v kov pri popisovanom pokusemetal in the described experiment
V zemných vzorkách zo 4 poxic?;< usne ziaane slimáky ,J. _eticuiatum, to slimáky na.jdene. To neznaču’e, že ns xtore neboli prineboíi sni íiac/ne tieňa rozdiel ca 3. paxlens neboli pred zač iatkom pokusu na políčkach žiadne slimáky D. reticuiatum alebo ich tam bolo iba málo· nej hÚIn earth samples from 4 poxic? _eticuiatum, slugs on the other. This does not mean that ns xtore were not diminishing or shading the difference of ca. 3. paxlens there were no slugs of D. reticuiatum on the patches or there was little play
Celkove ✓Celkove ✓
:5L :: ov xtrsnova dr>.: 5L :: ov xtrsnov dr>.
odmocninu, n dovod sú zrejmé z obr. 2 •J υ u.The square root, n leading, are apparent from FIG. 2 • J υ u.
ic>cej sne j.;.·.;;ic> cej sne j.;. ·. ;;
Tieto výsledSignifikantne menej slimákov líčok ošetrených nematoaami ako z (p<0,01)pre všetky druhy slimákov extrahovaných *' · - — ÚV V ---/ - t. ..These results were significantly less nematode treated slugs than z (p <0.01) for all species of snails extracted. ..
neošetrených políčok a pre samotný druh nemej'.slimákov : oých methiocsrbom ako z nešetrených pop.?e všetky druhy slimákov a pre samotný reticmatusV, ľ napriek tomu, že bolo extrahova slimákov z políčok ošetrených nematód ošetrených methiocarbcm, tento rozdiel reticuiatumý e tiež bomo políčok cšetren xÍcok (P C,05 t druh ľ)untreated patches and for the species of non-muslims as well as those of untreated pops, and for all the slugs and reticmatus V, although the slugs were extracted from the methiocarb-treated nematode patches, this reticuloid difference is also bomo treated xÍcok (PC, 05 t type ¾)
00“00. "
D.D.
ne ooi sxg c r.ne ooi sxg c r.
oaller.s carbom, mi bolo neboli podši napriek tomu, že rn.eth.io r* · ’ *> · ί -s ϋ a * • -V **·· W . - - JJ lens oko m ' ' č bach, ktor-oaller with carb, I was not podsi despite the fact that rn.eth.io r * · ´ *> · ί -s * and * • -V ** ·· W. - - JJ lens eye has a smell that-
usmrcovst rôzne, druhy Škodcov zokilling various, pest species from
iáonoxénic ke nemá tona ?hs smsrha odi ti s, pestované v spojení s kmeňom m-S M· spôsobom popísaným v príkiaae 5, boxi použité pri biologickom pokuse proti rôznym druhom škodcov zo skupiny mäkkýšov, vrátane. Monacha cantiana, spôsobom popísaným v oríklade Výsledky sú uvedené v tabuíke 4.In contrast to the m-S M · strain as described in Example 5, the boxes used in the biological experiment against various species of molluscs, including. Monacha cantiana, as described in the Example. The results are shown in Table 4.
8.8th
+· a rozdiely v moi bditis sp., monoxenizovaným. pomocou kmene 48 M+ And differences in moi bditis sp., Monoxenized. with 48 M strain
Spektrum aktivity nonoxeniokých nemátód nebolo -zmene t eni py rú*T * y-* C, —The spectrum of activity of the non-oxenal nematodes was not changed by the elimination of pyru * T * y - * C, -
ne v porovnaní s xénickými r.ematoaa:not in comparison to xenic ema:
j-onoxenické nematoda Phasmarhabditis boli pestované v spojení s M. phenylpyruvica alebo P. rettg-ery spôsobom, cocíseným v príklade 5 a boíi použité v rôznej dávke pri bi-logickom potcuse proti slimäiom aruhu Q. reticu._atum.Phasmarhabditis β-onoxenic nematodes were grown in conjunction with M. phenylpyruvica or P. rettg-ery in the manner described in Example 5 and used at various doses in a biological rat against the slugs of Q. reticu.atum.
spôsobom, popísaným v príklade 8. Výsledky sú zhrnuté na obr. J. Oba typy monoxémckých nematcd boli účinné protiin the manner described in Example 8. The results are summarized in FIG. J. Both types of monoxemic nematodes were active against
D. reticulatum.D. reticulatum.
Príklad 11Example 11
Schopnosť monoxénických nematcd Phasmarhabditis potlačoval poškodenie rastlín spôsobené slimáčkom poíným Deroceras reticulatum za poíných podmienokThe ability of monoxenic nematodes Phasmarhabditis suppressed plant damage caused by the snail Deroceras reticulatum under field conditions
Bol urobený poxný pokus za účelom porovnať škody na ozimnej pšenici (odroda Líercia) , spôsobenej slimákmi, na neošetrených poxíčkach, na políčkach ošetrených peletami methiocarbu a políčkach ošetrených rôznymi dávkami nematód. Monoxénicke nematoda boxi vypestované v spojení s kmeňom 48 M. phenylpyruvica, spôsobom popísaným v príklade 5 a spôsobom popísaným v príklade 7 spracované za použitia ílu na vo vode dispergovatexný prášok, obsahujúci 0,26 x 10^ nematód v grame výsledného prostriedku- (vlhká hmotnosť). Nematoda boli aplikované ihneď po osiatí políčok vo forme vodného postreku s objemom ekvivalentným 1100 1/ha. Methiocarbové pelety boli aplikované ručne v doporučenej poínej dávke 5,5 kg/ha .A poxic attempt was made to compare the damage to winter wheat (Lercia variety) caused by slugs, untreated poxies, fields treated with methiocarb pellets and fields treated with different doses of nematodes. Monoxenic nematode boxi grown in conjunction with strain 48 of M. phenylpyruvica, as described in Example 5 and as described in Example 7, treated with clay to disperse a water-dispersible powder containing 0.26 x 10 6 nematodes in the gram of the resulting composition (wet weight) ). The nematodes were applied immediately after sowing the fields in the form of a water spray with a volume equivalent to 1100 l / ha. Methiocarb pellets were applied by hand at the recommended starting dose of 5.5 kg / ha.
PTe monitorovanie slimačej populácie na pokusných políčkach boli použité povrchové pasce a zemné vzorky. Na políčkach bclo nájdených mnoho rôznych druhov slimákov, vrátane Ľeroceras reticulatum, Arion silvaticus, Arion subfuscus, Arion ater, Tandonia soweberyi a Milax gagates, ale D. reticulatum jasne prevažoval.Surface traps and ground samples were used to monitor the slug population in the test fields. Many different slug species have been found in the bclo plots, including Leroceras reticulatum, Arion silvaticus, Arion subfuscus, Arion ater, Tandonia soweberyi and Milax gagates, but D. reticulatum clearly prevailed.
Šesť týždňov po siatí boli políčka skontrolované na vzídené, semenáčky. Táto kontrola predstavuje odhad letálneho poškodenia slimákmi (t.j. zníženie počtu vzídených rastlín). Zároveň bol urobený odhad sub-letálneho poško30 denia slimákmi (t.j. ožerú rastlín slimákmi) , na základe vizuálneho odhadu u náhodne zvolených rastlín. Stredný počet vzídených pšeničných rastlín, vztiahnutý na 0,5 m dĺžky brázdy pri rôznych ošetreniach je uvedený v tabuíke 5 ·Six weeks after seeding, the fields were checked for seedlings, seedlings. This control represents an estimate of lethal damage to slugs (i.e., a reduction in the number of emerging plants). At the same time, an estimation of sub-lethal worms of snails (i.e., eat plants by snails) was made, based on a visual estimate of randomly selected plants. The mean number of emerging wheat plants, based on 0.5 m of furrow length in various treatments, is shown in Table 5.
Stredný počet vzídených rastlín pšenice, vztiahnutý na dĺžku brázdy, pri rôznom ošetrení pri poínom pokuse ^hodnotenie robené 6 týždňov po siatí)Mean number of emerging wheat plants, based on furrow length, at various treatments in the poin test (evaluation done 6 weeks after sowing)
Ošetrenie Stredný počet vzídených rastlín bez ošetrenia 12,93 dávka nematod 1 x 108/ha 12,78 dávka nematod 3 x 108/ha 13,95 dávka nematod· 1 x 109/ha 13,25 dávka nematod 3 x 109/ha 14,88 dávka nematod 1 x 1010/ha 16,50 methiocarb 14,57 smerodajná odchýlka = 1,314 (399 d.f.)Treatment Mean number of emerging plants without treatment 12.93 dose nematodes 1 x 10 8 / ha 12.78 dose nematodes 3 x 10 8 / ha 13.95 dose nematodes · 1 x 10 9 / ha 13.25 dose nematodes 3 x 10 9 / ha 14.88 nematod dose 1 x 10 10 / ha 16.50 methiocarb 14.57 standard deviation = 1.314 (399 df)
So zvyšujúcou sa dávkou nematod jasne stúpa počet vzídených rastlín, čo je dôkaz, že ošetrenie nematodami znížilo letálne poškodenie slimákmi.As the dose of nematodes increases, the number of emerging plants is clearly increasing, indicating that nematode treatment has reduced lethal damage to slugs.
Údaje, vzťahujúce sa k strednej pecentuálnej ploche listu, poškodenej slimákmi, bola pred analýzou prevedená na un^y. Výsledky su uvedsne v Tabui^e 6.Data relating to the mean pecental area of the leaf damaged by the snails was converted to un prior to analysis. The results are shown in Table 6.
- 31 T a b u í k a 6- 31 T a b u k a 6
Stredná uhlová percentuálna plocha listov poškodená slimákmi, vztiahnutá na rastlinu pri rôznych ošetreniach pri poínom pokuse (hodnotenie sa robí 6 týždňov po siatí)Mean angular percentage area of leaf damaged by slugs, based on the plant at various treatments in the poin test (evaluation is 6 weeks after sowing)
Ošetrenietreatment
Stredná uhlová percentuálna plocha listov poškodená u jednej rastlinyMean angular percentage area of leaves damaged per plant
smerodajná odchýlka = 3,395» (24 « f.)standard deviation = 3,395 »(24« f.)
Boli zistené podstatné rozdiely v ploche listu poškodenej slimákmi medzi jednotlivými ošetreniami (P<ŕO,OOl·), pričom rastliny ošetrené troma najvyššími dávkami nematód vykazovali signifikantne (P<O.U1) nižšie poškodenie slimákmi ako rastliny z neošetrených políčok. Rastliny z políčok ošetrených najvyššou dávkou nematód vykazovali podstatne (P^0,05 ) nižšie poškodenie slimákmi, v porovnaní s rastlinami z políčok ošetrených methi očar bom. Je teda zrejmé, že nematoda sú schopne poskytnúť dobrú úroveň potlačenia sub-letálnycn škôd spôsobených slimákmi.Substantial differences in the slug-damaged leaf area between treatments were found (P < 10 < 0 > O1 < -1 >), with plants treated with the three highest doses of nematodes showing significantly (P < Plants from the highest dose of nematodes treated showed significantly (P ^ 0.05) less slug damage compared to methi line treated plants. Thus, it is clear that nematodes are able to provide a good level of suppression of sub-lethal damage caused by slugs.
-12p r í κ i a d 1212
Schopnosť monoxénických nematód Phasmarhabditis usmrcovat vodné slimáky Lymnaea stagnalisThe ability of the monoxic nematodes Phasmarhabditis to kill water slugs of Lymnaea stagnalis
Monpxénicke nematoda boli napestcvané v spojení s kmeňom 48 M. phenylpyruvica, spôsobom popísaným v príklade 5 θ spôsobom popísaným v príklade 7 spracované za použitia ílu na vo voae dispergovateíný prášok, obsahujúci 0,36 x 10° nematód v grame výsledného prostriedka (vlhká hmotnosť). 10 exemplárov vodného slimáka l^ymnaéa stagnalis bolo pridané do každej z piatich Čistých nádrží ne.ryby, ktoré boli z polovice naplnené rybničnou vodou, obsahujúcou niektoré vodné rastliny, ako zdroj potravy pre slimáky. Nádrže boli prevzdušňované malým vzduchovým čerpadlom a udržované pri teplote 15° C.Monpxenic nematodes were grown in conjunction with 48 M. phenylpyruvica strain, as described in Example 5, as described in Example 7, using clay to form a highly dispersible powder containing 0.36 x 10 ° nematodes in the gram composition (wet weight) . Ten specimens of llaminous stagnalis were added to each of the five clean tanks of fish, which were half-filled with pond water containing some aquatic plants as a food source for the snails. The tanks were aerated with a small air pump and kept at 15 ° C.
Do každej zo Štyroch nádrží bolo pridaných približne 6 x 10° nematód vo forme vo vode dispergovatelného prostriedka. Do piatej nádrže, ktorá slúžila ako kontrolná, neboli pridané žiadne nematoda. Fo 3 dňoch inkubácie bola priemerná hodnota mortality slimákov v nádržiach ošetrených nematódami 45 a po 6 dňoch vzrástla na 100 %. Fo 6 dňoch inkubácie nebola zaznamenaná žiadna mortalita v neošetrenej kontrolnej nádrži.Approximately 6 x 10 ° nematodes were added to each of the four tanks in the form of a water dispersible composition. No nematode was added to the fifth tank, which served as a control. After 3 days of incubation, the mean mortality of snails in nematode-treated tanks was 45 and increased to 100% after 6 days. For 6 days of incubation, no mortality was recorded in the untreated control tank.
?!/?! /
Claims (27)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB919115011A GB9115011D0 (en) | 1991-07-11 | 1991-07-11 | Biological control of slugs |
PCT/GB1992/001248 WO1993000816A1 (en) | 1991-07-11 | 1992-07-09 | Biological control of molluscs |
Publications (2)
Publication Number | Publication Date |
---|---|
SK2294A3 true SK2294A3 (en) | 1994-09-07 |
SK279691B6 SK279691B6 (en) | 1999-02-11 |
Family
ID=10698220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SK22-94A SK279691B6 (en) | 1991-07-11 | 1992-07-09 | Use of phasmorhabditis nematodes for the control of molluscs, nematodes growth-supporting bacteria, process for said nematodes production, and nematodes-containing agent |
Country Status (21)
Country | Link |
---|---|
US (2) | US5527525A (en) |
EP (1) | EP0598746B1 (en) |
JP (1) | JP2927960B2 (en) |
AT (1) | ATE142845T1 (en) |
AU (1) | AU659199B2 (en) |
CA (1) | CA2113173C (en) |
CZ (1) | CZ285283B6 (en) |
DE (1) | DE69213947T2 (en) |
DK (1) | DK0598746T3 (en) |
ES (1) | ES2094362T3 (en) |
GB (1) | GB9115011D0 (en) |
GR (1) | GR3021953T3 (en) |
HU (1) | HU219857B (en) |
IE (1) | IE922218A1 (en) |
IL (1) | IL102451A (en) |
NZ (1) | NZ243533A (en) |
PL (1) | PL168777B1 (en) |
PT (1) | PT100669B (en) |
SK (1) | SK279691B6 (en) |
TR (1) | TR26297A (en) |
WO (1) | WO1993000816A1 (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994019940A1 (en) * | 1993-03-04 | 1994-09-15 | Commonwealth Scientific And Industrial Research Organisation | Method for packaging entomopathogenic nematodes for storage and transport |
US5965149A (en) * | 1993-08-13 | 1999-10-12 | Thermo Trilogy Corporation | Granular formulation of biological entities with improved storage stability |
GB9400271D0 (en) * | 1994-01-07 | 1994-03-02 | Agricultural Genetics Co | Novel feeds for use in aquaculture |
CA2450241A1 (en) | 2001-06-15 | 2002-12-27 | Grain Processing Corporation | Biodegradable sorbents |
US6691454B1 (en) * | 2002-08-09 | 2004-02-17 | John E. Conroy | System for repelling garden slugs |
US7566461B2 (en) | 2004-06-18 | 2009-07-28 | Sci Protek, Inc. | Methods for controlling molluscs |
US7846463B2 (en) | 2005-05-11 | 2010-12-07 | Grain Processing Corporation | Pest control composition and method |
NL1033726C2 (en) * | 2007-04-20 | 2008-10-21 | Cooeperatie Horticoop U A | Plant protection system for e.g. Cymbidium flowers, uses Phasmarhabditis hermaphrodita nematodes loaded onto cooked potato carrier to protect against slugs |
US8313828B2 (en) | 2008-08-20 | 2012-11-20 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lens precursor and lens |
US8317505B2 (en) | 2007-08-21 | 2012-11-27 | Johnson & Johnson Vision Care, Inc. | Apparatus for formation of an ophthalmic lens precursor and lens |
US9417464B2 (en) | 2008-08-20 | 2016-08-16 | Johnson & Johnson Vision Care, Inc. | Method and apparatus of forming a translating multifocal contact lens having a lower-lid contact surface |
GB2463501A (en) * | 2008-09-16 | 2010-03-17 | Anthony Barker | The application of the slug parasitic nematode Phasmarhabditis hermaphrodita through rain-gun irrigation systems for the control of slugs |
US9414590B2 (en) | 2009-03-16 | 2016-08-16 | Marrone Bio Innovations, Inc. | Chemical and biological agents for the control of molluscs |
MX2011010984A (en) | 2009-04-20 | 2011-11-18 | Marrone Bio Innovations Inc | Chemical and biological agents for the control of molluscs. |
DE102009053902B4 (en) * | 2009-11-20 | 2013-11-07 | E-Nema Gesellschaft für Biotechnologie und biologischen Pflanzenschutz mbH | Apparatus for controlling beetles with entomopathogenic nematodes |
GB201008877D0 (en) | 2010-05-27 | 2010-07-14 | Becker Underwood Ltd | Biolgical control of molluscs |
AR083811A1 (en) * | 2010-11-13 | 2013-03-27 | Marrone Bio Innovations Inc | AGENTS FOR THE CONTROL OF LIMNOPERNA SP. |
EP2820140B1 (en) | 2012-02-28 | 2018-01-10 | Marrone Bio Innovations, Inc. | Control of phytopathogenic microorganisms with pseudomonas sp. and substances and compositions derived therefrom |
US8728754B1 (en) | 2013-01-23 | 2014-05-20 | Marrone Bio Innovations, Inc. | Use of proteins isolated from Pseudomonas to control molluscs |
US9645412B2 (en) | 2014-11-05 | 2017-05-09 | Johnson & Johnson Vision Care Inc. | Customized lens device and method |
CA2982374A1 (en) | 2015-05-28 | 2016-12-01 | Marrone Bio Innovations, Inc. | Use of proteins to control molluscs |
CA3000836C (en) | 2015-10-02 | 2022-11-29 | The Regents Of The University Of California | Mollusk-killing biopesticide |
US10359643B2 (en) | 2015-12-18 | 2019-07-23 | Johnson & Johnson Vision Care, Inc. | Methods for incorporating lens features and lenses having such features |
US11364696B2 (en) | 2020-09-18 | 2022-06-21 | Johnson & Johnson Vision Care, Inc | Apparatus for forming an ophthalmic lens |
CN113475529B (en) * | 2021-06-15 | 2022-04-19 | 四川省农业科学院植物保护研究所 | Nematode preparation for preventing and treating flower slugs and preparation method and application thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991000012A1 (en) * | 1989-06-28 | 1991-01-10 | Imperial Chemical Industries Plc | Microbes for controlling pests |
-
1991
- 1991-07-11 GB GB919115011A patent/GB9115011D0/en active Pending
-
1992
- 1992-07-07 IE IE221892A patent/IE922218A1/en not_active IP Right Cessation
- 1992-07-09 CZ CS9410A patent/CZ285283B6/en not_active IP Right Cessation
- 1992-07-09 WO PCT/GB1992/001248 patent/WO1993000816A1/en active IP Right Grant
- 1992-07-09 SK SK22-94A patent/SK279691B6/en not_active IP Right Cessation
- 1992-07-09 PT PT100669A patent/PT100669B/en not_active IP Right Cessation
- 1992-07-09 ES ES92915023T patent/ES2094362T3/en not_active Expired - Lifetime
- 1992-07-09 HU HU9400060A patent/HU219857B/en not_active IP Right Cessation
- 1992-07-09 IL IL102451A patent/IL102451A/en not_active IP Right Cessation
- 1992-07-09 AU AU22556/92A patent/AU659199B2/en not_active Ceased
- 1992-07-09 EP EP92915023A patent/EP0598746B1/en not_active Expired - Lifetime
- 1992-07-09 CA CA002113173A patent/CA2113173C/en not_active Expired - Lifetime
- 1992-07-09 DK DK92915023.3T patent/DK0598746T3/da active
- 1992-07-09 PL PL92302033A patent/PL168777B1/en unknown
- 1992-07-09 JP JP5502109A patent/JP2927960B2/en not_active Expired - Fee Related
- 1992-07-09 DE DE69213947T patent/DE69213947T2/en not_active Expired - Lifetime
- 1992-07-09 AT AT92915023T patent/ATE142845T1/en active
- 1992-07-09 US US08/178,294 patent/US5527525A/en not_active Expired - Lifetime
- 1992-07-13 TR TR92/0643A patent/TR26297A/en unknown
- 1992-07-13 NZ NZ243533A patent/NZ243533A/en not_active IP Right Cessation
-
1996
- 1996-03-29 US US08/625,018 patent/US5849284A/en not_active Expired - Lifetime
- 1996-12-10 GR GR960403370T patent/GR3021953T3/en unknown
Also Published As
Publication number | Publication date |
---|---|
HU219857B (en) | 2001-08-28 |
JPH06509091A (en) | 1994-10-13 |
EP0598746A1 (en) | 1994-06-01 |
AU659199B2 (en) | 1995-05-11 |
ES2094362T3 (en) | 1997-01-16 |
EP0598746B1 (en) | 1996-09-18 |
DE69213947T2 (en) | 1997-02-20 |
PT100669B (en) | 1999-06-30 |
IE922218A1 (en) | 1993-01-13 |
IL102451A (en) | 1998-01-04 |
JP2927960B2 (en) | 1999-07-28 |
IL102451A0 (en) | 1993-01-14 |
DK0598746T3 (en) | 1997-03-24 |
HU9400060D0 (en) | 1994-05-30 |
AU2255692A (en) | 1993-02-11 |
NZ243533A (en) | 1993-10-26 |
ATE142845T1 (en) | 1996-10-15 |
GB9115011D0 (en) | 1991-08-28 |
US5527525A (en) | 1996-06-18 |
PL168777B1 (en) | 1996-04-30 |
HUT69629A (en) | 1995-09-28 |
CZ1094A3 (en) | 1994-07-13 |
SK279691B6 (en) | 1999-02-11 |
CA2113173A1 (en) | 1993-01-21 |
CA2113173C (en) | 1999-12-21 |
US5849284A (en) | 1998-12-15 |
TR26297A (en) | 1995-03-15 |
CZ285283B6 (en) | 1999-06-16 |
PT100669A (en) | 1994-01-31 |
WO1993000816A1 (en) | 1993-01-21 |
GR3021953T3 (en) | 1997-03-31 |
DE69213947D1 (en) | 1996-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SK2294A3 (en) | Method of biological destruction of molluses | |
Wilson et al. | The rhabditid nematode Phasmarhabditis hermaphrodita as a potential biological control agent for slugs | |
Murai et al. | Evaluation of an improved method for mass‐rearing of thrips and a thrips parasitoid | |
Carney et al. | The potential of Atheta coriaria Kraatz (Coleoptera: Staphylinidae), as a biological control agent for use in greenhouse crops | |
Wilson et al. | Mass cultivation and storage of the rhabditid nematode Phasmarhabditis hermaphrodita, a biocontrol agent for slugs | |
Holm et al. | Studies on trapping, nesting, and rearing of some Magachile species (hymenoptera, Megachilidae) and on their parasites in Denmark | |
Leemon | In-hive fungal biocontrol of small hive beetle | |
Wilson | Terrestrial mollusc pests | |
Butool et al. | Management of root-knot nematode, Meloidogyne incognita, infesting Egyptian henbane, Hyoscyamus muticus L., by the use of nematicides and oilcakes | |
KR101089318B1 (en) | Formulation for plant parasitic nematodes and method for preparing the same | |
EP0482017A1 (en) | Acaricidal compositions and process for preparing same | |
Muthiah et al. | Pests and predators of oysters | |
Wilson | A nematode parasite for biological control of slugs | |
Rajeshwari et al. | Isolation, Culturing, Mass Production and Formulation of Entomopathogenic Nematodes | |
French | Biological interrelationships between the ambrosia beetle Xyleborus dispar with its symbiotic fungus Ambrosiella hartigii | |
Ortmayer | Selection of bacterium for mass production of Phasmarhabditis spp. and its effect on the mortality of slugs | |
Ghayeb | Aspects of the Biology and Ecology of Aphelinus abdominalis Dalman (Hymenoptera: Aphelinidae), a Chalcid Parasite of Aphids | |
Bonner | Ecology and physiology of the aphid pathogenic fungus erynia neoaphidis | |
Gauvin | Reproductive and developmental biology of Aleochara bilineata Gyllenhal (Coleoptera: Staphylinidae) | |
Francati | New associations between native parasitoids and exotic insects introduced in Italy and in Europe | |
JPH11266769A (en) | Prevention of soil pest by fungivorous nematode, aphelenchus avenae | |
Taylor | Bioassay systems for evaluating effectiveness of pesticides and biological control agents against Bradysia impatiens (Johan.)(Diptera: Sciaridae) larvae with emphasis on age, sex, and generation effects | |
Machado | Culture of glochidia of the freshwater pearl mussel Hyriopsis myersiana Lea, 1856) in artificial media | |
Wouts | —Nematodes in insect control | |
De Waele et al. | Recent developments in Musa nematology research: Establishment of aseptic culture systems of Radopholus similis for in vitro host-pathogen studies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Patent lapsed due to non-payment of maintenance fees |
Effective date: 20110709 |