SI9520112A - Amino acid nucleic acids - Google Patents

Amino acid nucleic acids Download PDF

Info

Publication number
SI9520112A
SI9520112A SI9520112A SI9520112A SI9520112A SI 9520112 A SI9520112 A SI 9520112A SI 9520112 A SI9520112 A SI 9520112A SI 9520112 A SI9520112 A SI 9520112A SI 9520112 A SI9520112 A SI 9520112A
Authority
SI
Slovenia
Prior art keywords
lower alkyl
oligomers
mmol
bonds
evaporated
Prior art date
Application number
SI9520112A
Other languages
Slovenian (sl)
Inventor
Kandasamy Ramasamy
Guangyi Wang
Wilfried Seifert
Original Assignee
Icn Pharmaceuticals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Icn Pharmaceuticals filed Critical Icn Pharmaceuticals
Publication of SI9520112A publication Critical patent/SI9520112A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/52Two oxygen atoms
    • C07D239/54Two oxygen atoms as doubly bound oxygen atoms or as unsubstituted hydroxy radicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids

Abstract

The present invention provides various novel oligonucleotide analogs having one or more properties that make the subject compounds superior to conventional oligonucleotides for use in procedures employing oligonucleotides. The compounds of the invention are oligonucleotide analogs in which the furanose ring of a naturally occurring nucleic acid is replaced with an amino acid or a modified amino alcohol residue. Some embodiments of the novel compounds of the invention are particularly useful for the antisense control of gene expression. The compounds of the invention may also be used as nucleic acid hybridization probes or as primers. Another aspect of the invention is to provide monomeric precursors of the oligonucleotide analogs of the invention. These monomeric precursors may be used to synthesize the subject polynucleotide analogs. Another aspect of the invention is to provide formulations of the subject polynucleotide analogs that are designed for the treatment or prevention of disease conditions. Yet another aspect of the invention is to provide methods for treating or preventing diseases, particularly viral infections and cell growth disorders. The subject disease treatment methods comprise the step of administering an effective amount of the subject polynucleotide analogs for use as antisense inhibitors.

Description

Oligonukleotidi, ki se sekvenčno specifično vežejo na komplementarne nukleinske kisline (npr. sense veriga) z vezanjem vodika, tako da inhibirajo ekspresijo genov, so splošno navedeni kot antisense oligonukleotidi. Ti sintetični oligonukleotidi se vežejo na tarčno (mRNA) in s tem inhibirajo translacijo sporočilne RNA. Ta antisense princip (Uhlmann, E. s sod., Chem. Revievvs, 1990, 90. 543-584; in Stein, C. A. s sod., Cancer Res., 1988, 48. 2659-2688) se v naravi uporablja za reguliranje ekspresije genov. Ta antisense princip je bil v laboratoriju uporabljen ne samo za inhibiranje, ampak tudi za aktiviranje ekspresije genov. Zamecnik in Stephenson sta bila prva, ki sta v letu 1978 predlagala uporabo sintetičnih oligonukleotidov za terapevtske namene (Stephenson, M. L.; in Zamecnik, P. C., Proč. Natl. Acad. Sci. USA, 1978, 75, 280 in 285). Specifična inhibicija antisense poiinukieotidov je osnovana na specifičnem Watson-Crickovem parjenju baz med heterocikličnimi bazami antisense oligonukleotida in virusne nukleinske kisline. Proces vezanja oligonukleotidov na komplementarno nukleinsko kislino se imenuje hibridizacija. Oligomer, ki ima sekvenco baz, komplementarno tisti sekvenci baz na mRNA, ki ima nakodiran protein, potreben za napredovanje bolezni je še posebno zanimiv. S hibridiziranjem specifično na mRNA je sinteza proteinov, nakodiranih z mRNA, lahko motena.Oligonucleotides that specifically bind to complementary nucleic acids (e.g. sense chain) by binding hydrogen to inhibit gene expression are generally referred to as antisense oligonucleotides. These synthetic oligonucleotides bind to the target (mRNA) and thus inhibit translation of messenger RNA. This antisense principle (Uhlmann, E. et al., Chem. Revievvs, 1990, 90. 543-584; and Stein, CA et al., Cancer Res., 1988, 48. 2659-2688) is used in nature to regulate gene expression. This antisense principle has been used in the laboratory not only to inhibit but also to activate gene expression. Zamecnik and Stephenson were the first to propose the use of synthetic oligonucleotides for therapeutic purposes in 1978 (Stephenson, M. L.; and Zamecnik, P. C., Proc. Natl. Acad. Sci. USA, 1978, 75, 280, and 285). The specific inhibition of antisense poinucleotides is based on the specific Watson-Crick base pairing between heterocyclic antisense oligonucleotide and viral nucleic acid bases. The process of binding an oligonucleotide to a complementary nucleic acid is called hybridization. An oligomer having a base sequence complementary to that of a base on an mRNA that has an encoded protein required for disease progression is particularly interesting. By mRNA-specific hybridization, the synthesis of mRNA-encoded proteins may be impaired.

-2Priprava nemodificiranih oligonukleotidov, npr. oligonukleotidov, ki imajo DNA strukturo je bila v preteklem desetletju v ospredju zanimanja številnih raziskovalnih skupin. Sinteza preko fosforamiditov po Caruthersu (McBride, L. J.; in Caruthers, M. H., Tetrahedron Letts., 1983, 24, 245), ki jo je prvotno vpeljal Letsinger (Letsinger, R. L.; in Lunsford, W. B., J. Amer. Chem. Soc., 1976, 98. 3655) kot fosfitno triestersko metodo je trenutno najbolj učinkovita metoda za pripravo fosfodiesterskih oligonukleotidov. Kadar so običajni, npr. nemodificirani oligonukleotidi uporabljeni kot antisense oligonukleotidi se pojavita problema, kot sta nestabilnost do nukleaz in nezadostna penetracija membrane. Da so antisense oligonukleotidi zmožni inhibirati translacijo, morajo doseči notranjost celice nespremenjeni. Koristne lastnosti oligonukleotidov, da se jih uporablja za antisense inhibicijo vključujejo: (i) stabilnost oligonukleotidov proti ekstra- in intracelularnim encimom; (ii) sposobnost penetrirati skozi celično membrano; in (iii) sposobnost hibridizirati tarčno DNA ali RNA (Agarwal, K. L. s sod., Nucleic Acids Res., 1979, 6, 3009; Agawal, S. s sod., Proč Nati Acad Sci. USA. 1988, 85, 7079). Tako je v interesu zagotoviti polinukleotidne analoge, ki imajo pri uporabi kot antisense ali pri uporabi kot primerji (začetni oligonukleotidi) ali hibridizacijske probe, boljše lastnosti.-2Preparation of unmodified oligonucleotides, e.g. Oligonucleotides having a DNA structure have been at the forefront of interest in many research groups over the past decade. Synthesis via phosphoramidites after Caruthers (McBride, LJ; and Caruthers, MH, Tetrahedron Letts., 1983, 24, 245), originally introduced by Letsinger (Letsinger, RL; and Lunsford, WB, J. Amer. Chem. Soc. , 1976, 98. 3655) as the phosphite triester method is currently the most efficient method for the preparation of phosphodiester oligonucleotides. When they are common, e.g. unmodified oligonucleotides used as antisense oligonucleotides have problems such as instability to nucleases and insufficient membrane penetration. In order for the antisense oligonucleotides to be able to inhibit translation, they must reach the interior of the cell unchanged. Useful properties of oligonucleotides for use in antisense inhibition include: (i) stability of oligonucleotides against extra- and intracellular enzymes; (ii) the ability to penetrate the cell membrane; and (iii) the ability to hybridize the target DNA or RNA (Agarwal, KL et al., Nucleic Acids Res., 1979, 6, 3009; Agawal, S. et al., Away from Nati Acad Sci. USA. 1988, 85, 7079) . Thus, it is of interest to provide polynucleotide analogues having better properties when used as antisense or when used as primers (initial oligonucleotides) or hybridization probes.

Modificirani poiinukleotidi so že bili sintetizirani v preteklosti in te polinukleotidne modifikacije vključujejo metilfosfonate, fosforotioate, različne amidate in sladkorne delce nukleinsko kislinskih vrst. Te substitucije hrbtenice do neke stopnje dajejo povečano stabilnost, toda imajo to slabo stran, da v vezi pride do kiralnega fosforja, kar pa vodi do nastanka 2n diastereomer, kjer je n število modificiranih diesterskih vezi v oligomeru. Prisotnost teh mnogokratnih diastereomer znatno oslabi sposobnost modificiranih oligonukleotidov, da se hibridizirajo na tarčne sekvence.The modified polynucleotides have already been synthesized in the past and these polynucleotide modifications include methylphosphonates, phosphorothioates, various amidates and sugar particles of nucleic acid species. These substitutions of the spine give increased stability to some degree, but they have the downside of having chiral phosphorus in the bond, which in turn leads to the formation of 2 n diastereomers, where n is the number of modified diester bonds in the oligomer. The presence of these multiple diastereomers significantly impairs the ability of the modified oligonucleotides to hybridize to the target sequences.

-3Nekatere od teh substitucij tudi zadržijo sposobnost vzdrževanja negativnega naboja in prisotnost nabitih skupin zmanjšuje sposobnost spojin, da penetrirajo celične membrane. Tu so še številne druge pomanjkljivosti, povezane s temi modificiranimi vezmi, odvisno od določene narave vezi.-3Some of these substitutions also retain the ability to maintain a negative charge and the presence of charged groups impairs the ability of the compounds to penetrate cell membranes. There are many other disadvantages associated with these modified bonds, depending on the particular nature of the bond.

Sintetizirani so bili nekateri oligonukleotidni analogi, ki imajo modifikacije sladkorjev. Prej uporabljene sladkorne modifikacije (deoksi)riboze nukleinskih kislin vključujejo α-DNA, homo DNA, morfolino in tio nukleozide in peptidne nukleinske kisline (PNA), da bi zagotovili kar razumemo kot izboljšane strukture, posebno tiste strukture, ki imajo izboljšano sprejemanje snovi v celice. Splošna shema sinteze, da se pride do takšnih analogov je v tem, da se vključi primarna hidroksilna skupina nukleozida ali njegovega nukleotida, bodisi vezanega na polimerni nosilec ali na sekvenčno specifičen 3’-nukleotid z atomom fosforja bodisi v petvalentnem ali pa v trivalentnem oksidacijskem stanju. Specifični postopki povezovanja so bili navedeni kot fosfit triesterski (fosforamiditni), fosfor diesterski in vodik fosfonatni postopki. Za take metode, ki imajo zaščitene baze (G, A, C, T, U in druge heterocikle) skupaj z zaščitenimi atomi fosforja, so primerni komercialno razpoložljivi monomeri in na polimerne nosilce vezani monomeri, da omogočajo shranjevanje in preprečujejo nespecifične reakcije med procesom povezovanja.Some oligonucleotide analogues having sugar modifications have been synthesized. Previously used sugar modifications (deoxy) of nucleic acid ribose include α-DNA, homo DNA, morpholino and thio nucleosides and peptide nucleic acids (PNA) to provide what is understood as improved structures, especially those structures that have improved cellular uptake . A general scheme for the synthesis of such analogs is to include a primary hydroxyl group of a nucleoside or its nucleotide, either attached to a polymeric carrier or to a sequentially specific 3'-nucleotide with a phosphorus atom, or in a five-valent or trivalent oxidation state . Specific coupling procedures were referred to as phosphite triester (phosphoramidite), phosphorus diester and hydrogen phosphonate processes. For such methods having protected bases (G, A, C, T, U and other heterocycles) together with protected phosphorus atoms, commercially available monomers and polymer-bonded monomers are suitable to allow storage and prevent non-specific reactions during the coupling process .

Vrste nukleinskih kislin, ki vsebujejo modificirane sladkorje, neionske hrbtenice ali aciklične poliamide (PNA), imajo do neke stopnje eno ali več sledečih lastnosti, uporabnih za modulacijo genov: povečujejo stabilnost dupleksov (hibridizacijska učinkovitost), imajo povečano tarčno specifičnost, stabilnost proti nukleazam, izboljšan sprejem v celice in sodelovanje v pomembnih terminatorskih dogodkih nukleinskih kislin (npr. aktivnost RNazeNucleic acids containing modified sugars, non-ionic backbones or acyclic polyamides (PNA) have to one degree one or more of the following properties useful for gene modulation: they increase duplex stability (hybridization efficiency), have increased target specificity, nuclease stability, enhanced cellular uptake and involvement in important nucleic acid terminator events (e.g., RNase activity

-4H, katalitična cepitev, ustavitev hibridizacije in drugi). Predlagano je bilo tudi uporabljanje karbonatnih diestrov. Vendar so te spojine zelo nestabilne in karbonatna diesterska vez ne vzdržuje tetrahedralne konfiguracije, pokazane s fosforjem v fosfodiestru. Podobno karbamatne vezi, ki so sicer akiralne, dajejo trigonalno simetrijo in bilo je pokazano, da se poli dT, ki ima te vezi, ne hibridizira močno s poli dA (Coull, J. M. s sod., Tetrahedron Letts., 1987, 28, 745; Stirchak, E. P. s sod., J. Org. Chem., 1987, 52, 4202).-4H, catalytic cleavage, stopping hybridization, and others). The use of carbonate diesters has also been suggested. However, these compounds are highly unstable and the carbonate diester bond does not maintain the tetrahedral configuration shown by phosphorus in the phosphodiester. Similarly, carbamate bonds, which are otherwise achiral, give trigonal symmetry and it has been shown that poly dT having these bonds does not strongly hybridize with poly dA (Coull, JM et al., Tetrahedron Letts., 1987, 28, 745 Stirchak, EP et al., J. Org. Chem., 1987, 52, 4202).

Pred kratkim so se v literaturi pojavila poročila o acikličnih sladkornih analogih (Augustyns, K. A. s sod., Nucleic Acids Res., 1991, IS, 25872593). Vključitev teh acikličnih nukleozidov v oligonukleotide je povzročila padec v Tm, odvisno od števila v oligomere vgrajenih linkerjev. Za te oligonukleotide so odkrili, da so encimatsko stabilni in se bazno parijo s komplementarno sekvenco. S tem, da so podane pomanjkljivosti polinukleotidov in poznanih polinukleotidnih analogov je v interesu zagotoviti nove polinukleotidne analoge za uporabo pri antisense inhibiciji in drugih tehnikah pri katerih se uporabljajo oligomeri.Recently, reports of acyclic sugar analogues have appeared in the literature (Augustyns, K. A. et al., Nucleic Acids Res. 1991, IS, 25872593). The incorporation of these acyclic nucleosides into oligonucleotides caused a decrease in Tm, depending on the number of linker-embedded linkers in the oligomers. These oligonucleotides have been found to be enzymatically stable and mate base with a complementary sequence. Given the disadvantages of polynucleotides and known polynucleotide analogues, it is of interest to provide novel polynucleotide analogues for use in antisense inhibition and other techniques using oligomers.

Taka prizadevanja pri modificiranju obojih, sladkornih in komponent hrbtenice, imajo nekatere pomanjkljivosti za uporabo kot terapevtikov in v drugih metodah. Zato se zahteva še večje izboljšave v teh lastnostih, preden učinkoviti terapevtiki, diagnostiki in raziskovalna orodja postanejo razpoložljivi. Skladno s tem je tu dolgo časa občutena potreba po izboljšanih oligomernih analogih oligonukleotidov, kot farmacevtskih spojin.Such efforts in modifying both the sugars and the components of the spine have some disadvantages for use as therapists and in other methods. Therefore, further improvements in these properties are required before effective therapists, diagnostics and research tools become available. Accordingly, there has long been a need for improved oligomer analogues of oligonucleotides, such as pharmaceutical compounds.

Pričujoči izum zagotavlja nove oligonukleotide in njihove strukturne prekurzorje, ki imajo izboljšano rezistenco na nukleazno digestijo, in ki imajo pod fiziološkimi pogoji povečano stabilnost, in ki so lahko nevtralniThe present invention provides novel oligonucleotides and their structural precursors, which have improved resistance to nuclease digestion and which, under physiological conditions, have increased stability and which may be neutral

-5ali pozitivno nabiti, da lahko povečajo celično permeacijo. Nadalje, novi oligonukleotidi pričujočega izuma izboljšujejo hibridizacijske lastnosti z ozirom na nukleinsko kislinske hibridizacijske tarče.-5 or positively charged to increase cell permeation. Furthermore, the novel oligonucleotides of the present invention improve the hybridization properties with respect to nucleic acid hybridization targets.

Oligomeri pričujočega izuma so splošno označeni kot oligomeri, ki obsegajo serijo omejenih linkerjev ali monomerov, ki je primerna za vezanje heterocikličnih baz na tarčno nukleinsko kislino na sekvenčno specifičen način. Tu notri opisani omejeni linkerji imajo lahko, kadar so vključeni v oligomere, moč, ki je večja kot enojna vodikova vez in s tem favorizirajo formiranje vezavno kompetentne konformacije.The oligomers of the present invention are generally referred to as oligomers comprising a series of restricted linkers or monomers that are suitable for binding heterocyclic bases to the target nucleic acid in a sequence-specific manner. The limited linkers described herein may, when incorporated into oligomers, have a power greater than a single hydrogen bond, thereby favoring the formation of a bond-competent conformation.

Nukleomonomeri pričujočega izuma so splošno označeni kot delci ali ostanki, ki nadomestijo furanozni obroč, ki ga najdemo pri naravno obstoječih nukleotidih, z aminokislino ali modificiranim amino alkoholnim ostankom. Ponazorilni monomeri in oligomeri izuma so prikazani v formulah 1 do 41. Vključitev teh tu notri opisanih monomerov v oligonukleotide dopušča sinteze spojin z izboljšanimi lastnostmi in te izboljšane lastnosti vključujejo (i) povečano lipofilnost, ki izhaja iz odstranitve naboja, povezanega s fosfodiesterskimi vezmi (Dalge, J. M. s sod., Nucleic Acids Res., 1991, 19, 1805) in (ii) rezistenco na razgradnjo z encimi, kot so nukleaze. Oligomeri, ki vsebujejo take monomere, so lahko popolnoma stabilni za hibridizacijo na tarčne sekvence in boljši od nemodificiranih nukleozidnih ostankov pri eni ali večih uporabah.Nucleomonomers of the present invention are generally referred to as particles or residues that replace the furanose ring found in naturally occurring nucleotides with an amino acid or a modified amino alcohol residue. Illustrative monomers and oligomers of the invention are shown in formulas 1 to 41. The incorporation of these monomers described herein into oligonucleotides allows for the synthesis of compounds with improved properties and these improved properties include (i) increased lipophilicity resulting from the removal of charge associated with phosphodiester bonds (Dalge , JM et al., Nucleic Acids Res., 1991, 19, 1805) and (ii) resistance to degradation by enzymes such as nucleases. Oligomers containing such monomers can be completely stable for hybridization to target sequences and better than unmodified nucleoside residues for one or more uses.

Povzetek Izuma:Summary of Invention:

Pričujoči izum zagotavlja različne nove oligonukleotidne analoge, ki imajo eno ali več lastnosti, ki delajo predmetne spojine boljše od konvencionalnih oligonukleotidov, za uporabo v postopkih pri katerih seThe present invention provides various novel oligonucleotide analogues having one or more properties that make the subject compounds better than conventional oligonucleotides for use in processes in which

-6oligonukleotidi uporabljajo. Spojine izuma so oligonukleotidni analogi, v katerih je furanozni obroč naravno obstoječe nukleinske kisline nadomeščen z aminokislino ali modificiranim amino alkoholnim ostankom. Nekatere izvedbe novih spojin izuma so posebno uporabne za antisense kontrolo ekspresije genov. Spojine izuma se lahko uporabljajo tudi kot nukleinsko kislinske hibridizacijske probe ali kot primerji.-6oligonucleotides used. The compounds of the invention are oligonucleotide analogues in which the furanose ring of a naturally occurring nucleic acid is replaced by an amino acid or a modified amino alcohol residue. Some embodiments of the novel compounds of the invention are particularly useful for antisense control of gene expression. The compounds of the invention may also be used as nucleic acid hybridization assays or as primers.

Drug vidik izuma je zagotoviti monomerne prekurzorje oligonukleotidnih analogov izuma. Ti monomerni prekurzorji so lahko uporabljeni za sintetiziranje predmetnih poiinukleotidnih analogov.Another aspect of the invention is to provide monomeric precursors to the oligonucleotide analogues of the invention. These monomeric precursors can be used to synthesize the subject poinucleotide analogues.

Spet drug vidik izuma je zagotoviti formulacije predmetnih poiinukleotidnih analogov, ki so namenjene za zdravljenje ali preprečevanje bolezenskih stanj. Še drug vidik izuma je zagotoviti metode za zdravljenje ali preprečevanje bolezni, posebno virusnih infekcij in motenj v celični rasti. Predmetne metode zdravljenja bolezni obsegajo stopnjo dajanja učinkovite količine predmetnih poiinukleotidnih analogov, za uporabo kot antisense inhibitorjev.Another aspect of the invention is to provide formulations of the subject polynucleotide analogues intended to treat or prevent disease states. Another aspect of the invention is to provide methods for treating or preventing diseases, especially viral infections and cell growth disorders. The subject methods of treating the disease include the step of administering an effective amount of the subject poinucleotide analogues for use as antisense inhibitors.

Kratek ools slik:Short ools of pictures:

Slike 1 do 25 so prikazi kemijskih reakcijskih sekvenc, uporabnih za sintetiziranje monomerov in oligonukleotidov pričujočega izuma. Bolj specifično,1 to 25 are illustrations of chemical reaction sequences useful for synthesizing the monomers and oligonucleotides of the present invention. More specifically,

Slika 1 kaže sintezo z L-serinolom povezanega timinskega monomernega fosforamidita s -CH2-CO- vezjo med timinom in serinolom.Figure 1 shows the synthesis of the L-serinol-linked thymine monomer phosphoramidite with the -CH 2 -CO- bond between thymine and serinol.

-7Slika 2 kaže sintezo z L-serinolom povezanega timinskega monomemega fosforamidita s -CH2-CH2- vezjo med timinom in serinolom.-7Figure 2 shows the synthesis of the L-serinol-linked thymine monomemic phosphoramidite with the -CH 2 -CH 2 - bond between thymine and serinol.

Sliki 3 in 4 prikazujeta sintezo s substituiranim L-serinolom povezanih timinskih monomernih fosforamiditov s -CH2-CO- vezjo med timinom in serinolom.Figures 3 and 4 show the synthesis of the L-serinol-substituted thymine monomer phosphoramidites with the -CH 2 -CO- bond between thymine and serinol.

Slika 5 kaže sintezo T-T dimera s petimi atomi dolgo internukleotidno vezjo, ki ima hidroksilamin v sredini internukleotidne vezi, s -CH2-CO- vezjo med timinom in serinolom.Figure 5 shows the synthesis of a five-atom TT dimer long internucleotide bond having a hydroxylamine in the middle of the internucleotide bond, with a -CH 2 -CO- bond between thymine and serinol.

Slika 6 prikazuje sintezo timinskega monomemega fosforamidita v katerem je timin povezan na N-etilhidroksilamin s pomočjo -CH2-CO- vezi.Figure 6 shows the synthesis of thymine monomemic phosphoramidite in which thymine is linked to N-ethylhydroxylamine by the -CH 2 -CO- bond.

Slika 7 kaže sintezo z L-serinolom povezanega timinskega monomemega fosforamidita v katerem je NH2 skupina L-serina povezana na 2hidroksiacetilno skupino in je hidroksilna skupina blokirana z DMT skupino. Ta gradbeni blok je uporabljen za 2’-5’ povezavo. Ta slika tudi prikazuje sintezo timinskega monomera v katerem je NH2 skupina L-serina povezana na 2’-hidroksieti1no skupino.Figure 7 shows the synthesis of the L-serinol-linked thymine monomemic phosphoramidite in which the NH 2 group of the L-serine is linked to the 2 hydroxyacetyl group and the hydroxyl group is blocked by the DMT group. This building block is used for the 2'-5 'connection. This figure also shows the synthesis of a thymine monomer in which the NH 2 group of the L-serine is linked to the 2'-hydroxyethyl group.

Slika 8 kaže sintezo T-T dimera, ki ima hidroksamatno hrbtenico z 2’-5’ vezjo. V tem dimeru je en gradbeni blok narejen iz L-aspartinske kisline in timina in drugi blok je narejen iz L-serina in timina. Ta dimer ima v hrbtenici dve dodatni amidni vezi.Figure 8 shows the synthesis of a T-T dimer having a hydroxamate backbone with a 2′-5 ′ bond. In this dimer, one building block is made of L-aspartic acid and thymine and the other block is made of L-serine and thymine. This dimer has two additional amide bonds in the spine.

Slika 9 kaže sintezo T-T dimera, ki ima hidroksamatno hrbtenico z 2’-5’ vezjo. V tem dimeru je en gradbeni blok narejen iz L-aspartinske kisline inFigure 9 shows the synthesis of a T-T dimer having a hydroxamate backbone with a 2′-5 ′ bond. In this dimer, one building block is made of L-aspartic acid and

-8timina in drugi blok je narejen iz L-serina in timina. Temu dimeru v hrbtenici med monomeroma manjka amidna vez.-8thymine and the second block is made of L-serine and thymine. This dimer in the spine between the monomers lacks an amide bond.

Slika 10 kaže sintezo z L-serinol-p-alaninom povezanega timinskega monomemega fosforamidita v katerem β-alanin veže timin in serinol.Figure 10 shows the synthesis of L-serinol-β-alanine-linked thymine monomemic phosphoramidite in which β-alanine binds thymine and serinol.

Slika 11 kaže sintezo z L-serinol-alkilaminom povezanega timinskega monomemega fosforamidita z alkilaminom, ki povezuje timin in serinol.Figure 11 shows the synthesis of L-serinol-alkylamine-linked thymine monomemic phosphoramidite with alkylamine linking thymine and serinol.

Slika 12 kaže sintezo T-T dimera, ki ima hidroksamatno hrbtenico s 4’-5’ vezjo. Dimer je tu narejen iz dveh L-aspartinsko kislinskih enot in dveh timinskih enot z acetilnim linkerjem med timinom in aspartinsko kislino.Figure 12 shows the synthesis of a T-T dimer having a hydroxamate backbone with a 4′-5 ′ bond. The dimer here is made of two L-aspartic acid units and two thymine units with an acetyl linker between thymine and aspartic acid.

Slika 13 kaže sintezo T-T-dimera, ki ima hidroksamatno hrbtenico s 4’-5’ vezjo. Dimer je tu narejen iz dveh L-aspartinsko kislinskih enot in dveh timinskih enot z etilnim linkerjem med timinom in aspartinsko kislino.Figure 13 shows the synthesis of a T-T dimer having a hydroxamate backbone with a 4′-5 ′ bond. The dimer here is made of two L-aspartic acid units and two thymine units with an ethyl linker between thymine and aspartic acid.

Slika 14 kaže sintezo z N-hidroksiaminokislino povezanega timinskega gradbenega bloka.Figure 14 shows the synthesis of the N-hydroxyamino acid-linked thymine building block.

Slika 15 kaže sintezo z L-aspartinsko kislino povezanega timinskega gradbenega bloka z N-hidroksilaminskim linkerjem med timinom in aspartinsko kislino.Figure 15 shows the synthesis of an L-aspartic acid-linked thymine building block with an N-hydroxylamine linker between thymine and aspartic acid.

Slika 16 kaže sintezo T-T dimera, ki ima hidroksamatno hrbtenico s 4’-5’ vezjo. Skupina karboksilne kisline je pri tem povezana na timinski gradbeni blok s pomočjo N-hidroksilaminskega linkerja.Figure 16 shows the synthesis of a T-T dimer having a hydroxamate backbone with a 4′-5 ′ bond. The carboxylic acid group is then linked to the thymine building block by an N-hydroxylamine linker.

-9Slika 17 kaže sintezo s timidinocetno kislino substituiranega N-hidroksiaminokislinskega gradbenega bloka 150 in njegovega analoga 149. Ta monomerna gradbena bloka sta uporabna za tvorjenje nukleinske kisline s hidroksamatno hrbtenico.-9Figure 17 shows the synthesis with thymidinacetic acid of a substituted N-hydroxyamino acid building block 150 and its analogue 149. These monomeric building blocks are useful for nucleic acid formation with a hydroxamate backbone.

Slika 18 kaže sintezo aminokislinskih gradbenih blokov 157 in 158, ki vsebujeta s timidinocetno kislino substituiran hidroksilamin. Ta monomera sta uporabna za tvorjenje nukleinske kisline, ki ima amidno hrbtenico s hidroksilaminsko funkcionalno skupino.Figure 18 shows the synthesis of amino acid building blocks 157 and 158 containing thymidinacetic acid substituted hydroxylamine. These monomers are useful for forming a nucleic acid having an amide backbone with a hydroxylamine functional group.

Slika 19 kaže sintezo z L-serinolom povezanega timidinskega gradbenega bloka 166, ki ima med timinom in serinolom hidrohsilaminski delec. Ta gradbeni blok je uporaben za pripravljanje nukleinske kisline s 4’-5’ vezmi.Figure 19 shows the synthesis of the L-serinol-linked thymidine building block 166, which has a hydroxylamine moiety between thymine and serinol. This building block is useful for preparing nucleic acid with 4′-5 ′ bonds.

Slika 20 kaže sintezo z glutaminska kislina-glicinom povezanega timidinskega monomera 174. Ta monomerni gradbeni blok je uporaben za proizvajanje nukleinske kisline z amidno hrbtenico in 2’-5’ vezmi.Figure 20 shows the synthesis of glutamic acid-glycine-linked thymidine monomer 174. This monomeric building block is useful for producing nucleic acid with an amide backbone and 2′-5 ′ bonds.

Slika 21 kaže sintezo timidinskih gradbenih blokov 181 in 182, povezanih z glicinol-glicinom, ki imata hidroksilaminski delec med timinom in glicinolom. Ta dva gradbena bloka sta uporabna za pripravljanje nukleinske kisline z 2’-5’ vezmi.Figure 21 shows the synthesis of glycine-glycine-linked thymidine building blocks 181 and 182, which have a hydroxylamine moiety between thymine and glycinol. These two building blocks are useful for preparing nucleic acid with 2′-5 ′ bonds.

Slike 22 do 24 kažejo sinteze z riboza-aminokislina povezanih timidinskih gradbenih blokov 191, 199 in 207. Ti gradbeni bloki so uporabni za pripravljanje oligonukleotidov, ki imajo riboza-amidno hrbtenico.Figures 22 to 24 show syntheses of ribose-amino acid-linked thymidine building blocks 191, 199 and 207. These building blocks are useful for the preparation of oligonucleotides having a ribose-amide backbone.

Slika 25 kaže sintezo oligonukleotida 211 na trdni fazi, ki ima ribozaamidno hrbtenico.Figure 25 shows the synthesis of oligonucleotide 211 on a solid phase having a ribozamide backbone.

-10Slika 26 kaže sintezo 1 -O-(4,4’-dimetoksitritil)-2-[amino(timinilacetil)]-L-propan3-O-(N,N-diizopropil)-p-cianoetilfosforamidita.-10Figure 26 shows the synthesis of 1 -O- (4,4'-dimethoxytrityl) -2- [amino (thyminylacetyl)] - L-propane3-O- (N, N-diisopropyl) -p-cyanoethylphosphoramidite.

Slika 27 kaže sintezo 1-0-(4,4’-dimetoksitritil)-2-[amino(timinilacetil)]-D-propan3-O-(N,N-diizopropil)-p-cianoetilfosforamidita.Figure 27 shows the synthesis of 1-0- (4,4'-dimethoxytrityl) -2- [amino (thyminylacetyl)] - D-propan3-O- (N, N-diisopropyl) -p-cyanoethylphosphoramidite.

Slika 28 kaže sintezo 2-[(p-(4,4’-dimetoksitritil)-O-acetil)amino]-3-timinil-Lpropan-1-O-(N,N-diizopropil)-p-cianoetilfosforamidita.Figure 28 shows the synthesis of 2 - [(p- (4,4'-dimethoxytrityl) -O-acetyl) amino] -3-thymynyl-Lpropan-1-O- (N, N-diisopropyl) -p-cyanoethylphosphoramidite.

Slika 29 kaže sintezo N-(timinilacetil)-N-[[(2-izobutiril)oksi]etil]-Obenzilhidroksilamina.Figure 29 shows the synthesis of N- (thyminylacetyl) -N - [[(2-isobutyryl) oxy] ethyl] -obenzylhydroxylamine.

Slika 30 kaže sintezo (2R,4S)-1-(terc-butiloksikarbonil)-2-[N3-benzoil(timin-1il)]metil-4-ftalimido-pirolidina.Figure 30 shows the synthesis of (2R, 4S) -1- (tert-butyloxycarbonyl) -2- [N 3 -benzoyl (thymin-1yl)] methyl-4-phthalimido-pyrrolidine.

Podroben opis specifičnih izvedb:Detailed description of specific designs:

A. Definicije in okrajšave:A. Definitions and abbreviations:

Pri opisovanju pričujočega izuma bodo uporabljeni sledeči izrazi, ki bodo definirani, kot je pokazano spodaj.In describing the present invention, the following terms will be used, which will be defined as shown below.

Kot je uporabljeno tu notri se “antisense” terapija nanaša na dajanje ali in situ proizvajanje DNA ali RNA oligomerov ali njihovih analogov, ki se specifično vežejo na komplementarno tarčno nukleinsko kislinsko sekvenco. Vezanje je lahko komplementarno s konvencionalnim baznim parjenjem ali pa je vezanje lahko s pomočjo drugih mehanizmov, npr. v primeru vezanja na DNA duplekse, s specifičnimi interakcijami v večjem kanalu dvojnegaAs used herein, "antisense" therapy refers to the administration or in situ production of DNA or RNA oligomers or their analogs that bind specifically to a complementary target nucleic acid sequence. The binding may be complementary to conventional base mating, or the binding may be by other mechanisms, e.g. in the case of DNA duplexing, with specific interactions in the major double-strand

-11heliksa. V glavnem se “antisense nanaša na vrsto tehnik, ki so pri tem delu splošno uporabljene pod tem opisom in vključuje vsako terapijo, ki se opira na specifično vezanje na oligonukleotidne sekvence. Tehnike antisense regulacije genov, so osebi z običajno izkušenostjo pri delu na področju molekularne biologije dobro poznane. Opise antisense regulacije genov se lahko najde npr., v U.S. patentu 5,107,065, U.S. patentu 5,166,195, U.S. patentu 5,087,617 in Crooke, Annual Revievv Pharmacology Toxicology 1992, 32, 329-376.-11helix. Mainly, “antisense refers to a range of techniques commonly used in this work under this description and includes any therapy that relies on specific binding to oligonucleotide sequences. Techniques for antisense gene regulation are well known to a person with ordinary experience in molecular biology. Descriptions of antisense gene regulation can be found, e.g., in U.S. Pat. U.S. Patent 5,107,065, U.S. Pat. U.S. Patent 5,166,195 5,087,617 and Crooke, Annual Revievv Pharmacology Toxicology 1992, 32, 329-376.

Izraza “oligomer” ali “oligonukleotid” sta uporabljena izmenjaje in vključujeta naravno obstoječe spojine, take kot sta DNA in RNA, kakor tudi njihove sintetične analoge, vključno s spojinami izuma. Razen, če ni pokazano drugače se izraza “oligomer” in “oligonukleotid” nanašata na obe DNA/RNA in na njune sintetične analoge. Izraz “oligomer” se nanaša na spojine, ki obsegajo dva ali več nukleomonomerov, ki so drug na drugega vezani kovalentno s fosfodiestersko vezjo ali vsakimi drugimi nadomestnimi vezmi. Razen, če ni pokazano drugače se v izrazu “oligomer” ne bi smelo razumeti omejitve dolžine. Tako ima določen oligomer lahko tako malo, kot sta dva kovalentno povezana nukleomonomera (dimer) ali pa je lahko znatno daljši. Oligomeri so lahko vezavno kompetentni in tako se lahko bazno parijo z enojnoverižnimi ali dvojnoverižnimi nukleinsko kislinskimi sekvencami. Oligomeri (npr. dimeri-heksameri) so tudi uporabni kot sintoni za daljše oligomere, kot je opisano tu notri. Oligomeri lahko vsebujejo bazična mesta in psevdonukleozide.The terms "oligomer" or "oligonucleotide" are used interchangeably to include naturally occurring compounds such as DNA and RNA, as well as their synthetic analogs, including the compounds of the invention. Unless otherwise indicated, the terms "oligomer" and "oligonucleotide" refer to both DNA / RNA and their synthetic analogues. The term "oligomer" refers to compounds comprising two or more nucleomonomers which are linked covalently to each other by a phosphodiester bond or by any other alternative bonds. Unless otherwise stated, the term "oligomer" should not be understood to mean a length limit. Thus, a given oligomer may have as little as two covalently linked nucleomonomers (dimers) or may be significantly longer. The oligomers can be binding competent and thus can be base-mated to single-stranded or double-stranded nucleic acid sequences. Oligomers (eg, dimer-hexamers) are also useful as synthons for longer oligomers, as described herein. Oligomers may contain basic sites and pseudonucleosides.

Oligomeri vključujejo oligonukieotide, oligonukleozide, polideoksiribonukleotide (ki vsebujejo 2’-deoksi-D-ribozo ali njene modificirane oblike), npr. DNA, poliribonukleotide (ki vsebujejo D-ribozo ali njene modificirane oblike), npr. RNA, in vsako drugo vrsto polinukleotida, ki je N-glikozid aliOligomers include oligonucleotides, oligonucleosides, polydeoxyribonucleotides (containing 2′-deoxy-D-ribose or modified forms thereof), e.g. DNA, polyribonucleotides (containing D-ribose or modified forms thereof), e.g. RNA, and any other type of polynucleotide that is N-glycoside or

-12C-glikozid purinske ali pirimidinske baze ali modificirana purinska ali pirimidinska baza. Za oligomer, kot je uporabljen tu notri je tudi predvideno, da vključuje spojine pri katerih sta sosednja nukleomonomera povezana preko hidroksamatnih vezi. Elementi, običajno najdeni pri oligomerih, kot so furanozni obroč in/ali fosfodiesterska vez, so lahko nadomeščeni z vsakim ustreznim funkcionalno ekvivalentnim elementom. Za izraz “oligomer” je predvideno, da vključuje vsako strukturo, ki služi kot ogrodje aii podpora za baze, v kateri ogrodje dovoljuje vezanje na tarčne nukleinske kisline na sekvenčno odvisen način. Oligomeri, ki so trenutno poznani, so lahko določeni v štiri skupine, ki so lahko označene kot take, ki imajo (i) fosfodiesterske vezi ali vezi fosfodiesterskih analogov (fosforotioatna, metil-fosfonatna, itd.), (ii) nadomestne vezi, ki imajo nefosforne izostere (riboacetalna, formacetalna, karbamatna, itd.), (iii) morfolino ostanke, karbociklične ostanke ali druge furanozne sladkorje, kot sta arabinoza ali heksoza na mestu riboze ali deoksiriboze in (iv) nukleomonomere, povezane preko amidnih vezi ali aciklične nukleomonomere, povezane preko vsake ustrezne nadomestne vezi.-12C-glycoside of purine or pyrimidine base or modified purine or pyrimidine base. An oligomer as used herein is also contemplated to include compounds in which adjacent nucleomonomers are linked via hydroxamate bonds. Elements commonly found in oligomers, such as the furanose ring and / or phosphodiester bond, may be replaced by any corresponding functionally equivalent element. The term "oligomer" is intended to include any structure that serves as a framework or support for bases in which the framework permits binding to the target nucleic acids in a sequentially dependent manner. Oligomers that are currently known may be classified into four groups, which may be designated as having (i) phosphodiester bonds or phosphodiester analogs (phosphorothioate, methyl phosphonate, etc.), (ii) substituent bonds which having non-phosphorus isosters (riboacetal, formacetal, carbamate, etc.), (iii) morpholino residues, carbocyclic residues or other furanose sugars, such as arabinose or hexose at the site of ribose or deoxyribose; linked through each appropriate alternate bond.

Izraz “nukleomonomer”, kot je uporabljen tu notri, se nanaša na delec, ki obsega (1) bazo, kovalentno povezano na (2) drug delec. Nukleomonomeri vključujejo nukleozide, nukleotide ali baze povezane na amino alkohol. Nukleomonomeri so lahko povezani, da tvorijo oligomere, ki se vežejo na tarčne ali komplementarne bazne sekvence nukleinskih kislin na sekvenčno specifičen način.The term "nucleomonomer" as used herein refers to a particle comprising (1) a base covalently linked to (2) another particle. Nucleomonomers include nucleosides, nucleotides or bases linked to amino alcohol. Nucleomonomers may be coupled to form oligomers that bind to the target or complementary nucleic acid base sequences in a sequence-specific manner.

Izraz “drug delec”, kot je uporabljen tu notri, se nanaša na spojino, povezano na nukleomonomer in vključuje aminokislinski/amino alkoholni delec, običajno serinol, aspartinsko kislino, glutaminsko kislino, glicin in tiste vrste, ki obsegajo modifikacije aminokislinskega delca, npr. v katerihThe term "other particle" as used herein refers to a compound linked to a nucleomonomer and includes an amino acid / amino alcohol particle, typically serinol, aspartic acid, glutamic acid, glycine, and those species that comprise modifications of an amino acid particle, e.g. in which

-13je eden ali več vodikov nadomeščenih z drugo funkcionalno skupino (glej formule 24-41) ali pa je ena karboksilna kislina pretvorjena v alkohol, amine, tiole, hidroksilamine in podobno. Nukleomonomeri, kot je definirano tu notri, so tudi mišljeni, da vključujejo bazo, povezano na aminokislino aii amino alkohol in/ali aminokislinski/alkoholni analog, ki ima prosto karboksilno/hidroksilno skupino in/ali prosto amino skupino in/ali njihove zaščitene oblike.-13 is one or more hydrogen substituted by another functional group (see formulas 24-41) or one carboxylic acid is converted to alcohol, amines, thiols, hydroxylamines and the like. Nucleomonomers as defined herein are also intended to include a base linked to an amino acid or an amino alcohol and / or amino acid / alcohol analog having a free carboxylic / hydroxyl group and / or a free amino group and / or protected forms thereof.

Izraz “nukleozid”, kot je uporabljen tu notri, se nanaša na aminokislino in njen amino alkoholni derivat, kot je nadalje opisano spodaj, ki nosi purin, pirimidin ali njune analogne oblike, kot je definirano spodaj, toda nima povezovalnega delca, kot je fosfodiesterski analog ali modificirana internukleozidna vez. S “5”’ nukleozidom je mišljen nukleozid, ki zagotavlja 5’ ogljikovo povezovalno točko do linkerja. “5”’ konec linkerja se veže na 5’ nukleozida. “3”’ konec linkerja se veže na 3’ pozicijo na naslednjem nukleozidu. Če je prisoten modificiran nukleozid, ki ne vključuje točno 3’ in/ali 5’ ogljika, pri tem delu izkušena oseba razume, da je ta “3”’ in “5’” terminologija za opisovanje polarnosti verige uporabljena po analogiji z DNA in RNA.The term "nucleoside" as used herein refers to an amino acid and its amino alcohol derivative, as further described below, which carries purine, pyrimidine, or analogues thereof, as defined below, but does not have a linking moiety such as a phosphodiester analog or modified internucleoside bond. By "5" 'nucleoside is meant a nucleoside that provides a 5' carbon point to the linker. The '5' 'end of the linker binds to the 5' nucleoside. The '3' 'end of the linker binds to the 3' position at the next nucleoside. If a modified nucleoside that does not accurately include 3 'and / or 5' carbon is present, the person skilled in the art understands that this' 3 'and' 5 '' terminology is used to describe the polarity of the chain by analogy with DNA and RNA .

Izraz “nukleozid”, kot je uporabljen tu notri, se nanaša na bazo, kovalentno povezano na amino alkoholni/aminokislinski analog in, ki vsebuje linker med bazo in aminokislino/amino alkoholom. Izraz nukleozid običajno vključuje ribonukleozide, deoksiribonukleozide ali vsak drug nukleozid, ki je N-glikozid ali C-glikozid baze.The term "nucleoside" as used herein refers to a base covalently linked to an amino alcohol / amino acid analogue and containing a linker between the base and the amino acid / amino alcohol. The term nucleoside typically includes ribonucleosides, deoxyribonucleosides, or any other nucleoside that is an N-glycoside or a C-glycoside of the base.

Izraz “nukleotid”, kot je uporabljen tu notri, se nanaša na nukleozid, ki ima fosfatno skupino ali fosfatni analog (skupine s fosforjem v enakem oksidacijskem stanju kot pri fosfatni skupini, npr. tiofosfat, amidat).The term "nucleotide" as used herein refers to a nucleoside having a phosphate group or a phosphate analog (groups with phosphorus in the same oxidation state as with a phosphate group, eg thiophosphate, amidate).

-14Izraz “baza”, kot je uporabljen tu notri, se nanaša na številne različne nukleozidne baze, vključno s purinskimi in pirimidinskimi heterocikli in heterocikličnimi analogi in njihovimi tautomerami. Purini vključujejo adenin, gvanin in ksantin in ponazorilni purinski analogi vključujejo 8-okso-N6metiladenin in 7-deazaksantin. Pirimidini vključujejo uracil in citozin in njihove analoge, kot so 5-metilcitozin, 5-(1-propiniluracil), 5-(1-propinilcitozin), 5-metiluracil in 4,4-etanocitozin. “Baze, kadar so povezane na ustrezno molekularno ogrodje, npr. fosfodiestersko hrbtenico, so zmožne vstopanja v razmerje parjenja baz, ki se pojavlja v dvojnoverižni DNA ali drugih dvojnoverižnih nukleinskih kislinah s podobno strukturo. Baze so tudi lahko zmožne vstopanja v razmerje parjenja baz v trojno vijačni nukleinski kislini.-14The term "base" as used herein refers to many different nucleoside bases, including purine and pyrimidine heterocycles and heterocyclic analogues and their tautomers. Purines include adenine, guanine, and xanthine, and illustrative purine analogues include 8-oxo-N 6 methyladenine and 7-deazaxanthin. Pyrimidines include uracil and cytosine and their analogues such as 5-methylcytosine, 5- (1-propynyluracil), 5- (1-propynylcytosine), 5-methyluracil and 4,4-ethanocytosine. "Bases when connected to an appropriate molecular framework, e.g. phosphodiester backbones are capable of entering into the mating ratio of bases occurring in double stranded DNA or other double stranded nucleic acids of similar structure. The bases may also be capable of entering into the mating ratio of the bases in the triple helix.

Izraz “sladkorna modifikacija”, kot je uporabljen tu notri, se nanaša na vsak drug aminokislinski ali amino alkoholni delec in ne na 2’-deoksiribozo.The term "sugar modification" as used herein refers to any amino acid or amino alcohol moiety other than 2′-deoxyribose.

Izraz “aminokisline/alkoholi”, kot je uporabljen tu notri, se nanaša na vse naravne aminokisline in alkohole z obema, “R” in “S” izomerama.The term "amino acids / alcohols" as used herein refers to all natural amino acids and alcohols with both the "R" and "S" isomers.

Izraz “nukleozidne vezi”, kot je uporabljen tu notri, se nanaša na vez, ki obstaja znotraj monomera.The term "nucleoside bonds" as used herein refers to a bond existing within a monomer.

Izraz “vez”, kot je uporabljen tu notri, se nanaša na delec, ki je uporabljen zato, da veže bazo z aminokislino/amino alkoholom in njunimi derivati.The term "bond" as used herein refers to a particle used to bind a base to an amino acid / amino alcohol and derivatives thereof.

Izraz “internukleotidne vezi”, kot je uporabljen tu notri, se nanaša na fosfodiesterski delec (-O-P(O) (O)-O-) ali vsak drug funkcionalno ekvivalenten delec, ki kovalentno povezuje sosednje nukleomonomere.The term "internucleotide bonds" as used herein refers to a phosphodiester particle (-O-P (O) (O) -O-) or any other functionally equivalent particle that covalently bonds adjacent nucleomonomers.

-15Izraz “nadomestne vezi”, kot je uporabljen tu notri, se nanaša na vsak analog naravne skupine ali vsak ustrezen delec, ki kovaientno povezuje sosednje nukleomonomere. Nadomestne vezi vključujejo fosfodiesterske analoge, npr. take, kot sta fosforotioat in metilfosfonat in vezi, ki nimajo fosforja, npr. take kot so amidi, hidroksamati, hidroksilamin. Nadomestne vezi vključujejo vezi izuma, ki ne vsebujejo fosforja (2’,5’ vezi, 3’,5’ vezi in 4’,5’ vezi).-15The term "substituent bonds" as used herein refers to any analog of a natural group or to any suitable particle that covariates adjacent nucleomonomers. Alternate bonds include phosphodiester analogs, e.g. such as phosphorothioate and methylphosphonate and phosphorus-free bonds, e.g. such as amides, hydroxamates, hydroxylamine. Alternate bonds include phosphorus-free inventive bonds (2 ', 5' bonds, 3 ', 5' bonds and 4 ', 5' bonds).

Izraz “premreževalni delec”, kot je uporabljen tu notri, se nanaša na skupino ali delec v oligomeru, ki tvori kovaientno vez s tarčno nukleinsko kislino. Premreževalni delci vključujejo vrste, ki so zmožne kovalentnega vezanja, tako da kovaientno vežejo oligomer na tarčne nukleinske kisline ali spontano (npr. N4,N4-etanocitozin) ali preko fotoaktivacije (npr. psoralen) in podobno.The term "crosslinker" as used herein refers to a group or particle in an oligomer that forms a covariate bond with the target nucleic acid. Cross-linking particles include species capable of covalent binding by covalently binding the oligomer to the target nucleic acids either spontaneously (e.g., N 4 , N 4 -ethancytosine) or via photoactivation (e.g., psoralen) and the like.

Izraz “blokirne skupine, kot je uporabljen tu notri, se nanaša na substituento, ki ni vodik in je kovaientno povezana na oligomere ali nukleomonomere, ali kot zaščitna skupina, povezovalna skupina za sintezo, OPO3.2, ali drug konvencionalni konjugat, kot so trdna podlaga, označba, protitelo, monoklonsko protitelo ali njegovi fragmenti in podobno. Kot je uporabljeno tu notri, ni mišljeno, da bo “blokirna skupina” tolmačena samo kot zaščitna skupina po terminologiji narečja, ampak je tudi mišljeno, da vključuje, npr. povezovalne skupine kot sta H-fosfonatna ali fosforamiditna.The term “blocking groups as used herein refers to a non-hydrogen substituent covalently linked to oligomers or nucleomonomers, or as a protecting group, synthesis linking group, OPO 3 . 2 , or other conventional conjugate, such as a solid support, labeling, antibody, monoclonal antibody, or fragments thereof, and the like. As used herein, it is not intended to be interpreted as a "blocking group" as a protecting group by the terminology of the dialect, but is also intended to include, e.g. linking groups such as H-phosphonate or phosphoramidite.

Izraz “zaščitna skupina”, kot je uporabljen tu notri, se nanaša na vsako skupino, ki je sposobna ščititi O-atom, S-atom ali N-atom na katerega je povezana iz sodelovanja v reakciji ali pri vezanju. Take zaščitne skupine za N-atome na baznem delcu v nukleomonomeru in njihova uvedba soThe term "protecting group" as used herein refers to any group capable of protecting the O-atom, S-atom or N-atom to which it is linked from participating in the reaction or in bonding. Such protecting groups for the N-atoms on the base particle in the nucleomonomer and their introduction are

-16konvencionalno poznane pri tem delu. Primeri ustreznih zaščitnih skupin, ki te skupine ne omejujejo, vključujejo: diizobutilformamidinsko, benzoilno, sililno in podobne skupine. Primerne zaščitne skupine za O-atome in Satome so npr. DMT, MMT, FMOC ali estri. “Zaščitne skupine”, kot je uporabljeno tu notri, vključujejo vsako skupino, ki je zmožna odvračanja Oatoma, S-atoma ali N-atoma na katerega je povezana, od udeležbe v reakciji ali pri vezanju. Take zaščitne skupine za 0-, S- in N-atome v nukleomonomerih so opisane in metode za njihovo vpeljevanje so pri tem delu splošno poznane. Zaščitne skupine tudi vključujejo vsako skupino, ki je zmožna preprečevanja reakcij in vezanja na karboksilne kisline, tiole in podobne.-16 conventionally known in this work. Examples of suitable protecting groups which do not limit these include: diisobutylformamidine, benzoyl, silyl and the like. Suitable protecting groups for O-atoms and Satomes are e.g. DMT, MMT, FMOC or esters. "Protective groups" as used herein include any group capable of deterring the Oatom, S atom or N atom to which it is attached, from participating in the reaction or in its binding. Such protecting groups for the 0-, S- and N-atoms in the nucleomers are described and methods for their introduction are generally known in the art. Protective groups also include any group capable of preventing reactions and binding to carboxylic acids, thiols and the like.

Izraz “povezovalna skupina”, kot je uporabljen tu notri, se nanaša na vsako skupino, ki je primerna za tvorjenje vezi ali nadomestne vezi med nukleomonomeri, take kot sta vodik fosfonatna in fosforamiditna.The term " linking group " as used herein refers to any group that is suitable for bonding or substitution bonds between nucleomonomers such as hydrogen phosphonate and phosphoramidite.

Izraz “konjugat” ali “konjugatni delec”, kot je uporabljen tu notri, se nanaša na vsako skupino, povezano na oligomer na terminalnem koncu aii znotraj samega oligomera. Konjugati vključujejo trdne podlage, kot so npr. silikagel, kontrolirano porozno steklo in polistiren; označbe, kot so fluorescentna, kemiluminescentna, radioaktivni atomi ali molekule, encimatski delci in reporterske skupine; oligomema transportna sredstva, kot so polikationi, serumski proteini in glikoproteini ter polimeri in podobno. Drugi konjugatni delci vključujejo O-holesterol, polietilen glikol (PEG), aminokisline, interkalatorje, polinukleotidne bistrilne delce, premreževalne funkcionalne skupine, lipide, hidroksamate, sredstva za alkiliranje in podobno.The term "conjugate" or "conjugate particle" as used herein refers to any group attached to an oligomer at the terminal end aii within the oligomer itself. The conjugates include solid substrates such as e.g. silica gel, controlled porous glass and polystyrene; indications such as fluorescent, chemiluminescent, radioactive atoms or molecules, enzymatic particles and reporter groups; oligomem transport agents such as polycations, serum proteins and glycoproteins and polymers and the like. Other conjugate particles include O-cholesterol, polyethylene glycol (PEG), amino acids, intercalators, polynucleotide clarifying particles, cross-functional groups, lipids, hydroxamates, alkylating agents and the like.

Izraz “sinton”, kot je uporabljen tu notri, se nanaša na strukturno oziroma gradbeno enoto znotraj oligonukleotidnega analoga izuma.The term "synthon" as used herein refers to a structural or structural unit within an oligonucleotide analogue of the invention.

-17Izraz “transfekcija”, kot je uporabljen tu notri, se nanaša na vsako metodo, ki je ustrezna za povečan vnos oligomerov v celice.-17The term "transfection" as used herein refers to any method that is appropriate for the increased uptake of oligomers into cells.

Izraz “subjekt”, kot je uporabljen tu notri, se nanaša na rastlino ali žival, vključno s sesalcem, posebno človekom.The term "subject" as used herein refers to a plant or animal, including a mammal, especially a human.

Izraz “derivati” in monomemi sestavni deli njihovih oligomerov vključuje tiste, ki so pri tem delu splošno poznani. Na primer, oligonukleotidi so lahko kovalentno povezani na različne delce, kot so npr. interkalatorji, substance, ki korelirajo zlasti z manjšim od obeh kanalov na DNA dvojni vijačnici in drugi poljubno izbrani konjugati, kot so označbe (radioaktivna, fluorescentna, encimska, itd.). Ti dodatni delci so lahko (toda ni potrebno) derivatizirani s pomočjo modificirane vezi hrbtenice, kot del vezi same. Na primer, interkalatorji, kot je akridin so lahko povezani s pomočjo R-CH2skupine, povezane z vsako razpoložljivo -OH ali SH, npr., na terminalno 5’ pozicijo RNA ali DNA, 2’ pozicijo RNA, ali OH ali SH, kjer je bila v 5 poziciji pirimidinov, npr., namesto 5 metila citozina, načrtovana derivatizirana oblika, ki vsebuje -CH2CH2CH2OH ali -CH2CH2CH2SH v 5 poziciji. Povezane so lahko številne različne substituente, vključno s tistimi, povezanimi s konvencionalnimi vezmi. Skladno so lahko pokazani OH delci v oligomeru s formulo (1) zamenjani s fosfatnimi skupinami, zaščitenimi s standardnimi zaščitnimi skupinami ali aktivirani za pripravljanje dodatnih vezi za druge nukleotide ali pa so lahko povezani na konjugirano substituento. 5’ terminalni OH je konvencionalno fosforiliran; 2’-OH ali OH substituente na 3’ koncu so tudi lahko substituirani. Hidroksili so tudi lahko derivatizirani v standardne zaščitne skupine.The term "derivatives" and monomemic constituents of their oligomers include those generally known in the art. For example, oligonucleotides may be covalently linked to different particles, such as e.g. intercalators, substances that correlate in particular with the smaller of the two channels on the DNA double helix and other arbitrarily selected conjugates such as labels (radioactive, fluorescent, enzymatic, etc.). These additional particles can be (but need not) be derivatized using a modified spine bond as part of the bond itself. For example, intercalators such as acridine may be coupled via the R-CH 2 group associated with any available -OH or SH, e.g., to the terminal 5 'position of RNA or DNA, the 2' position of RNA, or OH or SH, wherein, in the 5 position of the pyrimidines, for example, instead of 5 methyl cytosine, a derivatized form containing -CH 2 CH 2 CH 2 OH or -CH 2 CH 2 CH 2 SH in the 5 position was designed. Many different substituents can be linked, including those related to conventional bonds. Accordingly, the displayed OH particles in the oligomer of formula (1) may be replaced by phosphate groups protected by standard protecting groups or activated to prepare additional bonds for other nucleotides or may be coupled to a conjugated substituent. The 5 ′ terminal OH is conventionally phosphorylated; The 2'-OH or OH substituents at the 3 'end can also be substituted. Hydroxyls can also be derivatized into standard protecting groups.

-18Izraz “fosfodiesterski analog”, kot je uporabljen tu notri, se nanaša na analog z običajno fosfodiestersko vezjo, kakor tudi alternativnimi povezovalnimi skupinami. Te alternativne povezovalne skupine vključujejo, toda niso omejene na izvedbe v katerih je O-P(O) zamenjan s P(O)S, P(O)NR2, P(O)R, P(O)OR’, kjer je R H ali alkil (1-7C) in je R’ alkil (1-7C). Ni potrebno, da so vsi fosfodiesterski analogi v istem oligomeru identični, edina zahteva je, da je vsaj ena od teh vezi modificirana internukleotidna vez, kot je opisana tu notri.-18The term "phosphodiester analogue" as used herein refers to an analogue with a conventional phosphodiester bond as well as alternative linking groups. These alternative linking groups include, but are not limited to, embodiments in which OP (O) is replaced by P (O) S, P (O) NR 2 , P (O) R, P (O) OR ', where RH or alkyl (1-7C) and R 'is alkyl (1-7C). Not all phosphodiester analogs in the same oligomer are required to be identical, the only requirement is that at least one of these bonds is a modified internucleotide bond as described herein.

“Analogne” oblike purinov in pirimidinov so tiste, ki so pri tem delu splošno poznane, mnoge od njih so uporabljene kot kemoterapevtska sredstva. Ponazorilen, toda nepopoln seznam vključuje: 4-acetilcitozin, 8hidroksi-N6-metiladenin, aziridinilcitozin, pseudoizocitozin, 5(karboksihidroksimetil) uracil, 5-fluorouracil, 5-bromouracil, 5karboksimetilaminometil-2-tiouracil, 5-karboksimetilaminometiluracil, dihidrouracil, inozin, N6-izopenteniladenin, 1-metiladenin, 1-metilpseudouracil, 1-metilgvanin, 1-metilinozin, 2,2-dimetilgvanin, 2-metiladenin, 2-metilgvanin, 3metilcitozin, 5-metilcitozin, N6-metiladenin, 7-metiladenin, 7-metilgvanin, 5metilaminometiluracil, 5-metoksiaminometil-2-tiouracil, beta-D-manozilgvanozin, 5’-metoksikarbonilmetiluracil, 5-metoksiuracil, 2-metiltio-N6-izopenteniladenin, uracil-5-oksiocetnokislinski metilester, uracil-5-oksiocetno kislino, oksibutoksozin, pseudouracil, geozin, 2-tiouracil, 4-tiouracil, 5-metiluracil, Nuracil-5-oksiocetnokislinski metilester, uracil-5-oksiocetno kislino, pseudouracil, 2-tiocitozin in 2,6-diaminopurin. Posebno prednosten analog je 5-metilcitozin (tu notri okrajšan kot “Cme”).The "analog" forms of purines and pyrimidines are those commonly known in the art, many of which are used as chemotherapeutic agents. An illustrative but incomplete list includes: 4-acetylcytosine, 8hydroxy-N 6 -methyladenine, aziridinylcytosine, pseudoisocytosine, 5 (carboxyhydroxymethyl) uracil, 5-fluorouracil, 5-bromouracyl, 5carboxymethylaminomethyl-2-carboxymethylaminomethyl-2-carboxymethylacetyl-2-carboxamide N 6 -isopentenyladenine, 1-methyladenine, 1-methylpseudouracil, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3methylcytosine, 5-methylcytosine, N 6- methyladenine, 7-methyladenine, 7-methyladenine 7-methylguanine, 5methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylguanosine, 5'-methoxycarbonylmethyluracil, 5-methoxyuracil, 2-methylthio-N 6 -isopentenyladenine, uracyl-5-oxiocycetyl acid, oxybutoxosin, pseudouracil, geosine, 2-thiouracil, 4-thiouracil, 5-methyluracil, Nuracyl-5-oxyacetic acid methyl ester, uracil-5-oxyacetic acid, pseudouracil, 2-thiocytosine and 2,6-diocytopenin. A particularly preferred analogue is 5-methylcytosine (abbreviated herein as "Cme").

Izraz “izosteričen”, kot je uporabljen tu notri, se nanaša na prostorske lastnosti ter lastnosti, ki izhajajo iz usmerjenosti internukleozidne vezi in dejstva, da so te lastnosti tako podobne lastnostim naravne fosfodiesterskeThe term "isosteric" as used herein refers to the spatial properties and properties resulting from the orientation of the internucleoside bond and the fact that these properties are so similar to those of the natural phosphodiester

-19vezi, da bo modificiran oligonukleotid, ki vsebuje izosterično vez nadomestil, zamenjal za, posnemal in/ali hibridiziral z naravnim oligonukleotidom.-19 binds that a modified oligonucleotide containing an isosteric bond will be replaced, replaced, imitated and / or hybridized with a natural oligonucleotide.

Izraz “riboza-amid”, kot je uporabljen tu notri, se nanaša na internukleotidno vez, ki obstaja med dvema nukleobazama. Ribizno-amidna internukleotidna vez ima kombinacijo riboznih/(2‘-deoksi) in aminokislinskih funkcionalnih skupin.The term "ribose-amide" as used herein refers to an internucleotide bond that exists between two nucleobases. The currant-amide internucleotide bond has a combination of ribose / (2′-deoxy) and amino acid functional groups.

V tej prijavi so uporabljene različne okrajšave, ki se nanašajo na funkcionalne skupine in spojine. Te okrajšave oseba, ki je izkušena pri delu na področju organske kemije brez težav razume, npr. “Ph” se nanaša na fenil, “Me” se nanaša na metil, “(1-7C)” kaže, da dana veriga povsod vsebuje od 1 do 7 ogljikov, itd.Various abbreviations referring to functional groups and compounds are used in this application. These abbreviations are easily understood by a person who is experienced in working in the field of organic chemistry, e.g. “Ph” refers to phenyl, “Me” refers to methyl, “(1-7C)” indicates that a given chain contains from 1 to 7 carbons everywhere, etc.

OdIs Izuma:OdIs Izuma:

Pričujoči izum zagotavlja nove oligonukleotidne analoge, ki vsebujejo modificirane aminokislinske/amino alkoholne vezi med bazami in hrbtenicami (fosfodiester, fosforotioati in drugi, kot je prikazano v tabeli 1) navedene tudi kot modificirane nukleotidne vezi. Te modifikacije ali njihov funkcionalni ekvivalent zamenjujejo sladkorni delec, ki leži med hrbtenico in bazami, z aminokislinskimi derivati, npr. kot je pokazano v formuli 24. Pričujoči izum tudi zagotavlja nove nukleomonomere in metode za njihovo vključitev v oligomere, ki vsebujejo nukleomonomere.The present invention provides novel oligonucleotide analogues containing modified amino acid / amino alcohol bonds between bases and spines (phosphodiester, phosphorothioates and others, as shown in Table 1) also referred to as modified nucleotide bonds. These modifications or their functional equivalent replace the sugar particle lying between the spine and the bases with amino acid derivatives, e.g. as shown in Formula 24. The present invention also provides novel nucleomonomers and methods for incorporating them into oligomers containing nucleomonomers.

Izum zagotavlja različne nukleomonomerne spojine, ki imajo strukture s formulami 1-23.The invention provides various nucleomomeric compounds having structures of formulas 1-23.

BazaBase

-21Baza-21Base

BazaBase

BazaBase

BazaBase

BazaBase

BazaBase

BazaBase

BazaBase

I zs ,A And with s, A

BazaBase

BazaBase

-22Oligomeri izuma so polimeri, ki obsegajo eno ali več predmetnih monomemih spojin povezanih tako, da zagotavljajo strukturni analog DNA ali RNA. Oligomeri izuma obsegajo dva ali več nukleomonomerov in lahko dejansko obsegajo vsako število nukleomonomerov, čeprav so oligomeri z 200 ali manj nukleomonomeri splošno lažji za sintetiziranje. Spojine s formulami 1-23, so lahko druga na drugo povezane s 4’-5’ vezmi, 3’-5’ vezmi in 2’-5’ vezmi, kot se lahko vidi v formulah 24-41.-22Oligomers of the invention are polymers that comprise one or more of the subject monomemic compounds linked to provide a structural analog of DNA or RNA. The oligomers of the invention comprise two or more nucleomonomers and can actually comprise any number of nucleomonomers, although oligomers with 200 or less nucleomonomers are generally easier to synthesize. Compounds of formulas 1-23 may be linked to each other by 4′-5 ′ bonds, 3′-5 ′ bonds and 2′-5 ′ bonds, as can be seen in formulas 24-41.

Nukleotidne vezi v spojinah izuma so narejene iz aminokislin serina in glicina ali njunih derivatov. Oligonukleotidi izuma so stabilni in vivo. odporni na endogene nukleaze in so zmožni hibridiziranja na tarčne nukleotidne sekvence. Ponazorilne spojine tega izuma so prikazane v formulah 24 do 41 in so konformacijsko bolj omejene, relativno na fosfodiesterske vezi, ki jih najdemo v nemodificirani DNA in RNA. Ta konformacijska omejitev lahko deloma prispeva k povečanim vezavnim lastnostim predmetnih spojin do komplementarnih polinukleotidnih tarčnih sekvenc; vendar uporaba izuma za povečane vezavne lastnosti ni odvisna od te teorije.The nucleotide bonds in the compounds of the invention are made from the amino acids serine and glycine or derivatives thereof. The oligonucleotides of the invention are stable in vivo. resistant to endogenous nucleases and capable of hybridizing to target nucleotide sequences. The illustrative compounds of the present invention are shown in formulas 24 to 41 and are conformationally more limited relative to the phosphodiester bonds found in unmodified DNA and RNA. This conformational restriction may in part contribute to the increased binding properties of the subject compounds to complementary polynucleotide target sequences; however, the use of the invention for increased binding properties is not dependent on this theory.

V drugi izvedbi je pričujoči izum usmerjen k modificiranim oligonukleotidom ali njihovim derivatom v katerih je furanozni delec naravnega oligonukleotida, npr. DNA ali RNA, zamenjan z aminokislinskim/aminoIn another embodiment, the present invention is directed to modified oligonucleotides or derivatives thereof wherein the furanose particle is a natural oligonucleotide, e.g. DNA or RNA replaced with amino acid / amino

-23alkoholnim delcem in so druge modifikacije, ki obsegajo substitucijo na aminokislinskih pozicijah pokazane v formulah 25 do 41. Internukleotidna vez med sosednjimi nukleomonomeri je vez med 4’ in 5’ pozicijo sosednjih nukleomonomerov. Ali povedano drugače, fosfodiesterska internukleotidna vez ali njen funkcionalni ekvivalent, izhaja iz 5’-pozicije enega nukleomonomera in povezuje 4’-pozicijo sosednjega monomera, kot je ponazorjeno s spojinami s formulami 24-33:-23 alcohol particles and other modifications comprising substitution at amino acid positions are shown in formulas 25 to 41. The internucleotide bond between adjacent nucleomonomers is a bond between the 4 'and 5' position of adjacent nucleomonomers. In other words, the phosphodiester internucleotide bond or its functional equivalent originates from the 5′-position of one nucleomonomer and associates the 4′-position of the adjacent monomer, as illustrated by the compounds of formulas 24-33:

25A25A

BazaBase

BazaBase

ZZ

BazaBase

BazaBase

BazaBase

32Α32Α

32Β32Β

V katerih je vsak “R” neodvisno H, OH, SH, CN, CH3, OCH3, SCH3, ONH2, ONH(CH3), Ph, -(CHJk-F; kjer je “x” 1-7 ogljik in je “F” NH2, SH, OH, COOH, OCH3, SCH3, SPh, NOH, NOH(CH3), SNH2, S(O)NH2, S(O) (O)NH2, CH3, Ph.In which each "R" is independently H, OH, SH, CN, CH 3 , OCH 3 , SCH 3 , ONH 2 , ONH (CH 3 ), Ph, - (CHJk-F; where "x" is 1-7 carbon and is “F” NH 2 , SH, OH, COOH, OCH 3 , SCH 3 , SPh, NOH, NOH (CH 3 ), SNH 2 , S (O) NH 2 , S (O) (O) NH 2 , CH 3 , Ph.

V katerih je vsaka “baza” neodvisno nukleozidna baza.In which each “base” is independently a nucleoside base.

V katerih je vsak “Rf neodvisno H, OH, SH, CN, CH3, OCH3, SCH3, ONH2, ONH(CH3), Ph, -(CH2)X-F; kjer je “x” 1-7 ogljik in je “F” NH2, SH, OH, COOH, OCH3, SCH3, SPh, NOH, NOH(CH3), SNH2, S(O)NH2, S(O) (O)NH2, CH3, Ph.In which each Rf is independently H, OH, SH, CN, CH 3 , OCH 3 , SCH 3 , ONH 2 , ONH (CH 3 ), Ph, - (CH 2 ) X -F; where "x" is 1-7 carbon and "F" is NH 2 , SH, OH, COOH, OCH 3 , SCH 3 , SPh, NOH, NOH (CH 3 ), SNH 2 , S (O) NH 2 , S (O) (O) NH 2 , CH 3 , Ph.

V katerih je vsak “R2” neodvisno H, OH, SH, CN, CH3, OCH3, SCH3, ONH2, ONH(CH3), Ph, -(CH2)x-F; kjer je “x” 1-7 ogljik in je “F” NH2, SH, OH, COOH, OCH3, SCH3, SPh, NOH, NOH(CH3), SNH2, S(O)NH2, S(O) (O)NH2, CH3, Ph.In which each “R 2 ” is independently H, OH, SH, CN, CH 3 , OCH 3 , SCH 3 , ONH 2 , ONH (CH 3 ), Ph, - (CH 2 ) x -F; where "x" is 1-7 carbon and "F" is NH 2 , SH, OH, COOH, OCH 3 , SCH 3 , SPh, NOH, NOH (CH 3 ), SNH 2 , S (O) NH 2 , S (O) (O) NH 2 , CH 3 , Ph.

V katerih je vsak “R3” neodvisno H, OH, SH, CN, CH3, OCH3, SCH3, ONH2, ONH(CH3), Ph, -(CH2)X-F; kjer je “X” 1-7 ogljik in je “F” NH2, SH, OH, COOH, OCH3, SCH3, SPh, NOH, NOH(CH3), SNH2, S(O)NH2, S(O) (O)NH2, CH3, Ph.In which each “R 3 ” is independently H, OH, SH, CN, CH 3 , OCH 3 , SCH 3 , ONH 2 , ONH (CH 3 ), Ph, - (CH 2 ) X -F; where "X" is 1-7 carbon and "F" is NH 2 , SH, OH, COOH, OCH 3 , SCH 3 , SPh, NOH, NOH (CH 3 ), SNH 2 , S (O) NH 2 , S (O) (O) NH 2 , CH 3 , Ph.

-27V katerih je vsak “R4” neodvisno H, OH, SH, CN, CH3, OCH3, SCH3, ONH2, ONH(CH3), Ph, -(CH2)X-F; kjer je “x 1-7 ogljik in je “F” NH2, SH, OH, COOH, OCH3, SCH3, SPh, NOH, NOH(CH3), SNH2, S(O)NH2, S(O) (O)NH2, ch3, Ph.-27In which each "R 4 " is independently H, OH, SH, CN, CH 3 , OCH 3 , SCH 3 , ONH 2 , ONH (CH 3 ), Ph, - (CH 2 ) X -F; where "x 1-7 is carbon and" F "is NH 2 , SH, OH, COOH, OCH 3 , SCH 3 , SPh, NOH, NOH (CH 3 ), SNH 2 , S (O) NH 2 , S ( O) (O) NH 2 , ch 3 , Ph.

V katerih je vsak “A” neodvisno (ΟΗ^χ, CO, CS, S, S(O), S(O) (O), NH, NOH, NCH3, NR5 in Se, kjer je “x 1-7 ogljik.In which each “A” is independently (ΟΗ ^ χ, CO, CS, S, S (O), S (O) (O), NH, NOH, NCH 3 , NR 5 and Se, where “x 1- 7 carbon.

V katerih je vsak “B” neodvisno (CH2)X, CO, CS, S, S(O), S(O) (O), NH, NOH, NCH3, NR5 in Se, kjer je “x” 1-7 ogljik.In which each “B” is independently (CH2) X , CO, CS, S, S (O), S (O) (O), NH, NOH, NCH 3 , NR 5 and Se, where “x” 1 -7 carbon.

V katerih je vsak “X neodvisno (CH2)X, CO, CS, O, S, S(O), S(O) (O), NH, NOH, NCH3 in NR5, kjer je “x” 1-7 ogljik.In which each “X is independently (CH 2 ) X , CO, CS, O, S, S (O), S (O) (O), NH, NOH, NCH 3 and NR 5 , where“ x ”1 -7 carbon.

V katerih je vsak “Z” neodvisno (CH^, CO, CS, S, S(O), S(O) (O), NH, NOH, NCH3 in NR5, kjer je “x” 1-7 ogljik.In which each "Z" is independently (CH ^, CO, CS, S, S (O), S (O) (O), NH, NOH, NCH 3 and NR 5 , where "x" is 1-7 carbon .

R5 je H, OH, OMe, CN, NH, NOH, ONCH3, ONH2, etil, propil, nižji alkil (17C), Me, heteroalkil (1-7C), aril(6-7C), -(CH2)XF; kjer je “x” 1-7C in je “F” neodvisno H, OH, SH, OCH3, CN, SCH3, ONH2, ONH(CH3), SNH2, S(O)NH2, S(O) (O)NH2, CH3, Ph.R 5 is H, OH, OMe, CN, NH, NOH, ONCH 3 , ONH 2 , ethyl, propyl, lower alkyl (17C), Me, heteroalkyl (1-7C), aryl (6-7C), - (CH 2 ) X F; where “x” is 1-7C and “F” is independently H, OH, SH, OCH 3 , CN, SCH 3 , ONH 2 , ONH (CH 3 ), SNH 2 , S (O) NH 2 , S (O ) (O) NH 2 , CH 3 , Ph.

V katerih je vsak “V” neodvisno fosfodiesterski analog, fosforotioati, metilfosfonati, fosforoditioati, borfosfonati, selenofosfonati, fosforamidati, acetamidat, oksiformamido, oksiacetamido, diizopropilsilil, karbamat, dimetilen sulfid, dimetilen sulfoksid, dimetilen sulfon in/ali je dva do štiri atome dolga internukleozidna vez izbrana iz ogljika, dušika, kisika, žvepla in selena. Dolžina oligomera se lahko spreminja od dimera do 200-meraIn which each "V" is independently a phosphodiester analogue, phosphorothioates, methylphosphonates, phosphorodithioates, borphosphonates, selenophosphonates, phosphoramidates, acetamidate, oxyformamido, oxyacetamido, diisopropylsilyl, carbamate, dimethylethenyl sulfoxidate or dimethylene sulfide internucleoside bond selected from carbon, nitrogen, oxygen, sulfur and selenium. The length of the oligomer may vary from dimer to 200-mer

-28ali več. Prednostne modificirane internukleotidne vezi, ki vključujejo strukture za “V” so prikazane v tabeli 1.-28or more. Preferred modified internucleotide bonds that include structures for “V” are shown in Table 1.

Dodatno so spojine s temi formulami lahko konjugirane v enega ali več konjugatnih delcev. Ustrezni konjugatni delci vključujejo O-holesterol, polietilen glikol, aminokisline, interkalatorje, cepitvene delce (npr. imidazoi), premreževalne delce (npr. psoralen), lipide, peptide, sredstva za alkiliranje, hidroksamate in fluorescentne označbe. Konjugatni delec lahko neodvisno nadomesti enega ali več od R, R-ι, R2, R3, R4 in R5.Additionally, compounds of these formulas may be conjugated to one or more conjugate particles. Suitable conjugate particles include O-cholesterol, polyethylene glycol, amino acids, intercalators, cleavage particles (eg imidazoins), crosslinking particles (eg psoralen), lipids, peptides, alkylating agents, hydroxamates and fluorescent designations. The conjugate particle can independently replace one or more of R, R-ι, R 2 , R3, R 4 and R 5 .

V spet drugi izvedbi predmetni izum zagotavlja oligomerne strukture, kot je ponazorjeno v formulah 34-36 in njihove derivate:In another embodiment, the present invention provides oligomeric structures as exemplified in formulas 34-36 and derivatives thereof:

Formula 34Formula 34

V spojinah s formulami 34-36 so vezi med sosednjimi nukleomonomeri 3’ do 5’ vezi.In compounds of formulas 34-36, the bonds between adjacent nucleomers are 3 'to 5' bonds.

V katerih je vsak “R” neodvisno H, OH, SH, CN, CH3, OCH3, SCH3, ONH2, ONH(CH3), Ph, -(CH2)x-F; kjer je “x” 1-7 ogljik in je “F” NH2, SH, OH, COOH, OCH3, SCH3, SPh, NOH, NOH(CH3), SNH2, S(O)NH2, S(O) (O)NH2, CH3, Ph.In which each “R” is independently H, OH, SH, CN, CH 3 , OCH 3 , SCH 3 , ONH 2 , ONH (CH 3 ), Ph, - (CH 2 ) x -F; where "x" is 1-7 carbon and "F" is NH 2 , SH, OH, COOH, OCH 3 , SCH 3 , SPh, NOH, NOH (CH 3 ), SNH 2 , S (O) NH 2 , S (O) (O) NH 2 , CH 3 , Ph.

V katerih je vsaka “baza” neodvisno nukleozidna baza.In which each “base” is independently a nucleoside base.

V katerih je vsak “R-,” neodvisno H, OH, SH, CN, CH3, OCH3, SCH3, ONH2, ONH(CH3), Ph, -(CH^-F; kjer je “x” 1-7 ogljik in je “F” NH2, SH, OH, COOH, OCH3, SCH3, SPh, NOH, NOH(CH3), SNH2, S(O)NH2, S(O) (O)NH2, CH3, Ph.In which each "R-," is independently H, OH, SH, CN, CH 3 , OCH 3 , SCH 3 , ONH 2 , ONH (CH 3 ), Ph, - (CH ^ -F; where "x" 1-7 carbon and is "F" NH 2 , SH, OH, COOH, OCH 3 , SCH 3 , SPh, NOH, NOH (CH 3 ), SNH 2 , S (O) NH 2 , S (O) (O ) NH 2 , CH 3 , Ph.

V katerih je vsak “R2” neodvisno H, OH, SH, CN, CH3, OCH3, SCH3, ONH2, ONH(CH3), Ph, -(CH2)x-F; kjer je “x” 1-7 ogljik in je “F” NH2, SH, OH, COOH, OCH3, SCH3, SPh, NOH, NOH(CH3), SNH2, S(O)NH2, S(O) (O)NH2, CH3j Ph.In which each “R 2 ” is independently H, OH, SH, CN, CH 3 , OCH 3 , SCH 3 , ONH 2 , ONH (CH 3 ), Ph, - (CH 2 ) x -F; where "x" is 1-7 carbon and "F" is NH 2 , SH, OH, COOH, OCH 3 , SCH 3 , SPh, NOH, NOH (CH 3 ), SNH 2 , S (O) NH 2 , S (O) (O) NH 2 , CH 3j Ph.

-30V katerih je vsak “R3” neodvisno H, OH, SH, CN, CH3, OCH3, SCH3, ONH2, ONH(CH3), Ph, -(CH2)X-F; kjer je “x” 1-7 ogljik in je “F” NH2, SH, OH, COOH, OCH3, SCH3i SPh, NOH, NOH(CH3), SNH2, S(O)NH2, S(O) (O)NH2, CH3j Ph.-30V in which each "R 3 " is independently H, OH, SH, CN, CH 3 , OCH 3 , SCH 3 , ONH 2 , ONH (CH 3 ), Ph, - (CH 2 ) X -F; where "x" is 1-7 carbon and "F" is NH 2 , SH, OH, COOH, OCH 3 , SCH 3i SPh, NOH, NOH (CH 3 ), SNH 2 , S (O) NH 2 , S ( O) (O) NH 2 , CH 3j Ph.

V katerih je vsak “R4” neodvisno H, OH, SH, CN, CH3, OCH3, SCH3, ONH2, ONH(CH3), Ph, -(CH2)X-F; kjer je “x” 1-7 ogljik in je “F NH2, SH, OH, COOH, OCH3, SCH3, SPh, NOH, NOH(CH3), SNH2, S(O)NH2, S(O) (O)NH2, CH3i Ph.In which each “R 4 ” is independently H, OH, SH, CN, CH 3 , OCH 3 , SCH 3 , ONH 2 , ONH (CH 3 ), Ph, - (CH 2 ) X -F; where “x” is 1-7 carbon and is “F NH 2 , SH, OH, COOH, OCH 3 , SCH 3 , SPh, NOH, NOH (CH 3 ), SNH 2 , S (O) NH 2 , S ( O) (O) NH 2 , CH 3i Ph.

V katerih je vsak “A” neodvisno (CH2)X, CO, CS, S, S(O), S(O) (O), NH, NOH, NCH3, NR5 in Se. Kjer je “x” 1-7.In which each “A” is independently (CH 2 ) X , CO, CS, S, S (O), S (O) (O), NH, NOH, NCH 3 , NR 5 and Se. Where "x" is 1-7.

V katerih je vsak “B” neodvisno (CH2)X, CO, CS, S, S(O), S(O) (O), NH, NOH, NCH3> NR5 in Se. Kjer je “x” 1-7.In which each “B” is independently (CH 2 ) X , CO, CS, S, S (O), S (O) (O), NH, NOH, NCH 3> NR 5 and Se. Where "x" is 1-7.

V katerih je vsak “X” neodvisno (CH2)X, CO, CS, O, S, S(O), S(O) (O), NH, NOH, NCH3 in NR5. Kjer je “x” 1-7.In which each “X” is independently (CH 2 ) X , CO, CS, O, S, S (O), S (O) (O), NH, NOH, NCH 3 and NR5. Where "x" is 1-7.

V katerih je vsak Ύ neodvisno (CH^, CO, CS, O, S, S(O), S(O) (O), NH, NOH, NCH3 in NR5. Kjer je “x” 1-7.In which each Ύ is independently (CH ^, CO, CS, O, S, S (O), S (O) (O), NH, NOH, NCH 3 and NR 5. Where "x" is 1-7.

V katerih je vsak “Z” neodvisno (CH2)X, CO, CS, S, S(O), S(O) (O), NH, NOH, NCH3 in NR5. Kjer je “x 1-7.In which each "Z" is independently (CH 2 ) X , CO, CS, S, S (O), S (O) (O), NH, NOH, NCH 3 and NR 5 . Where 'x 1-7.

R5 je H, OH, OMe, CN, NH, NOH, ONCH3, ONH2, etil, propil, nižji alkil (17C), Me, heteroalkil (1-7C), aril(6-7C), -(CH2)XF; kjer je “x” 1-7C in je “F”R 5 is H, OH, OMe, CN, NH, NOH, ONCH 3 , ONH 2 , ethyl, propyl, lower alkyl (17C), Me, heteroalkyl (1-7C), aryl (6-7C), - (CH 2 ) X F; where “x” is 1-7C and is “F”

-31neodvisno H, OH, SH, OCH3, CN, SCH3, ONH2, ONH(CH3), SNH2, S(O)NH2, S(O) (O)NH2, CH3, Ph.-31 independently of H, OH, SH, OCH 3 , CN, SCH 3 , ONH 2 , ONH (CH 3 ), SNH 2 , S (O) NH 2 , S (O) (O) NH 2 , CH 3 , Ph.

V katerih je vsak “V” neodvisno fosfodiesterski analog, fosforotioati, metilfosfonati, fosforoditioati, borfosfonati, selenofosfonati, fosforamidati in/ali je dva do štiri atome dolga internukleozidna vez izbrana iz ogljika, dušika, kisika, žvepla in selena. Dolžina oligomerov se lahko spreminja od dimera do 200-mera in več. Prednostne modificirane internukleotidne vezi, ki vključujejo strukture za “V” so prikazane v tabeli I.In which each "V" is independently a phosphodiester analogue, phosphorothioates, methylphosphonates, phosphorodithioates, borphosphonates, selenophosphonates, phosphoramidates and / or two to four atoms long internucleoside bond is selected from carbon, nitrogen, oxygen, sulfur and selenium. The length of the oligomers can vary from dimer to 200mm and above. Preferred modified internucleotide bonds that include structures for “V” are shown in Table I.

V drugi izvedbi izuma predmetni izum zagotavlja oligomere, ki imajo formule 37 do 41 ali njihove različice, oligomere, ki obsegajo nove internukleotidne vezi, ki so 2’,5’ vezi. Ti oligonukleotidi so stabilni in vivo. imajo izboljšano rezistenco na endogene nukleaze in so zmožni hibridiziranja na tarčne oligonukleotidne sekvence.In another embodiment of the invention, the present invention provides oligomers having formulas 37 to 41 or variants thereof, oligomers comprising new internucleotide bonds that are 2 ', 5' bonds. These oligonucleotides are stable in vivo. have improved resistance to endogenous nucleases and are capable of hybridizing to target oligonucleotide sequences.

37A37A

37B37B

zz

Χ-ΝΧ-Ν

BazaBase

R,dr \ z Χ-ΝR, dr \ z Χ-Ν

AA

- Baza- Base

R,-<R, - <

Χ-ΝΧ-Ν

2'Baza v2'Baza v

R,— r-BazaR, - r-Base

Χ-ΝΧ-Ν

39A39A

39B39B

V z-Baza 'Χ-Ν \ Z' Baza Xx—N'In z-Base 'Χ-Ν \ Z' Base X x - N '

40B40B

y z-Baza 'Χ-Ν \y z-Base 'Χ-Ν \

V i Z'V and Z '

BazaBase

V katerih je vsak “R” neodvisno H, OH, SH, CN, CH3, OCH3, SCH3, ONH2, ONH(CH3), Ph, -(CH2)X-F; kjer je “x 1-7 ogljik in je “F” NH2, SH, OH, COOH, OCH3, SCH3i SPh, NOH, NOH(CH3), SNH2, S(O)NH2, S(O) (O)NH2, CH3i Ph.In which each “R” is independently H, OH, SH, CN, CH 3 , OCH 3 , SCH 3 , ONH 2 , ONH (CH 3 ), Ph, - (CH 2 ) X -F; where "x 1-7 is carbon and" F "is NH 2 , SH, OH, COOH, OCH 3 , SCH 3i SPh, NOH, NOH (CH 3 ), SNH 2 , S (O) NH 2 , S (O ) (O) NH 2 , CH 3i Ph.

V katerih je vsaka “baza” neodvisno nukleozidna baza.In which each “base” is independently a nucleoside base.

V katerih je vsak “R-ι” neodvisno H, OH, SH, CN, CH3, OCH3, SCH3, ONH2, ONH(CH3), Ph, -(CH^-F; kjer je “x” 1-7 ogljik in je “F” NH2, SH, OH, COOH, OCH3, SCH3, SPh, NOH, NOH(CH3), SNH2, S(O)NH2, S (O) (O)NH2, CH3, Ph.In which each "R-ι" is independently H, OH, SH, CN, CH 3 , OCH 3 , SCH 3 , ONH 2 , ONH (CH 3 ), Ph, - (CH ^ -F; where "x" 1-7 carbon and is "F" NH 2 , SH, OH, COOH, OCH 3 , SCH 3 , SPh, NOH, NOH (CH 3 ), SNH 2 , S (O) NH 2 , S (O) (O ) NH 2 , CH 3 , Ph.

V katerih je vsak “R2” neodvisno H, OH, SH, CN, CH3, OCH3, SCH3, ONH2, ONH(CH3), Ph, -(CH2)x-F; kjer je “x” 1-7 ogljik in je “F” NH2, SH, OH, COOH, OCH3, SCH3, SPh, NOH, NOH(CH3), SNH2, S(O)NH2, S(O) (O)NH2, CH3, Ph.In which each “R 2 ” is independently H, OH, SH, CN, CH 3 , OCH 3 , SCH 3 , ONH 2 , ONH (CH 3 ), Ph, - (CH 2 ) x -F; where "x" is 1-7 carbon and "F" is NH 2 , SH, OH, COOH, OCH 3 , SCH 3 , SPh, NOH, NOH (CH 3 ), SNH 2 , S (O) NH 2 , S (O) (O) NH 2 , CH 3 , Ph.

V katerih je vsak “R3” neodvisno H, OH, SH, CN, CH3, OCH3, SCH3, ONH2, ONH(CH3), Ph, -(CH2)X-F; kjer je “x” 1-7 ogljik in je “F” NH2, SH, OH, COOH, OCH3, SCH3, SPh, NOH, NOH(CH3), SNH2, S(O)NH2, S(O) (O)NH2, CH3i Ph.In which each “R 3 ” is independently H, OH, SH, CN, CH 3 , OCH 3 , SCH 3 , ONH 2 , ONH (CH 3 ), Ph, - (CH 2 ) X -F; where "x" is 1-7 carbon and "F" is NH 2 , SH, OH, COOH, OCH 3 , SCH 3 , SPh, NOH, NOH (CH 3 ), SNH 2 , S (O) NH 2 , S (O) (O) NH 2 , CH 3i Ph.

-34V katerih je vsak “R4 neodvisno H, OH, SH, CN, CH3, OCH3, SCH3, ONH2, ONH(CH3), Ph, -(CH2)X-F; kjer je “x 1-7 ogljik in je “F” NH2, SH, OH, COOH, OCH3) SCH3, SPh, NOH, NOH(CH3), SNH2l S(O)NH2, S(O) (O)NH2, CH3, Ph.-34V each of which R4 is independently H, OH, SH, CN, CH 3 , OCH 3 , SCH 3 , ONH 2 , ONH (CH 3 ), Ph, - (CH 2 ) X -F; where "x 1-7 is carbon and" F "is NH 2 , SH, OH, COOH, OCH 3) SCH 3 , SPh, NOH, NOH (CH 3 ), SNH 2l S (O) NH 2 , S (O ) (O) NH 2 , CH 3 , Ph.

V katerih je vsak “A” neodvisno (ΟΗ^χ, CO, CS, S, S(O), S(O) (O), NH, NOH, NCH3, NR5 in Se; kjer je “x” 1-7 ogljik.In which each “A” is independently (ΟΗ ^ χ, CO, CS, S, S (O), S (O) (O), NH, NOH, NCH 3 , NR 5 and Se; where “x” 1 -7 carbon.

V katerih je vsak “B” neodvisno (CH^, CO, CS, S, S(O), S(O) (O), NH, NOH, NCH3, NR5 in Se; kjer je “x” 1-7 ogljik.Wherein each "B" is independently (CH ^, CO, CS, S, S (O), S (O) (O), NH, NOH, NCH 3, NR 5 and Se, where "x" is 1- 7 carbon.

V katerih je vsak “X” neodvisno (CH2)X, CO, CS, O, S, S(O), S(O) (O), NH, NOH, NCH3 in NR5; kjer je “x” 1-7 ogljik.In which each “X” is independently (CH 2 ) X , CO, CS, O, S, S (O), S (O) (O), NH, NOH, NCH 3 and NR 5 ; where "x" is 1-7 carbon.

V katerih je vsak “Z” neodvisno (ΟΗ^χ, CO, CS, S, S(O), S(O) (O), NH, NOH, NCH3, NR5 in Se; kjer je “x 1-7 ogljik.In which each “Z” is independently (ΟΗ ^ χ, CO, CS, S, S (O), S (O) (O), NH, NOH, NCH 3 , NR 5 and Se; where “x 1- 7 carbon.

R5 je H, OH. OMe, CN, NH, NOH, ONCH3, ONH2, etil, propil, nižji alkil (17C), Me, heteroalkil (1-7C), aril(6-7C), -(CH2)XF; kjer je “x 1-7C in je “F” neodvisno H, OH, SH, OCH3, CN, SCH3, ONH2, ONH(CH3), SNH2, S(O)NH2, S(O) (O)NH2, CH3, Ph.R 5 is H, OH. OMe, CN, NH, NOH, ONCH 3 , ONH 2 , ethyl, propyl, lower alkyl (17C), Me, heteroalkyl (1-7C), aryl (6-7C), - (CH 2 ) X F; where "x is 1-7C and" F "is independently H, OH, SH, OCH 3 , CN, SCH 3 , ONH 2 , ONH (CH 3 ), SNH 2 , S (O) NH 2 , S (O) (O) NH 2 , CH 3 , Ph.

V katerih je vsak “V” neodvisno fosfodiesterski analog, fosforotioati, metilfosfonati, fosforoditioati, borfosfonati, selenofosfonati, fosforamidati in/ali je dva do štiri atome dolga intemukleozidna vez izbrana iz ogljika, dušika, kisika, žvepla in selena. Dolžina oligomera se lahko spreminja od dimera do 200-mera ali več. Prednostne modificirane internukleotidne vezi, ki vključujejo strukture za “V” so prikazane v tabeli I.In which each &quot; V &quot; is independently a phosphodiester analogue, phosphorothioates, methylphosphonates, phosphorodithioates, borphosphonates, selenophosphonates, phosphoramidates and / or two to four atoms long intemucoside bond is selected from carbon, nitrogen, oxygen, sulfur and selenium. The length of the oligomer may vary from dimer to 200 mm or more. Preferred modified internucleotide bonds that include structures for “V” are shown in Table I.

-35V drugih izvedbah izuma je predmetni izum usmerjen k oligomeru s sledečimi formulami (formula 42) in njegovim monomernim sestavnim delom (formule 85-90).-35 In other embodiments of the invention, the present invention is directed to an oligomer of the following formulas (Formula 42) and its monomer component (Formulas 85-90).

V katerih jeIn which

X izbran iz skupine sestavljene iz (CH2)n, kjer je n=1-3, CO(CH2)n, kjer je n=0-2 in (CH2)nSO2, kjer je n=1-2,X is selected from the group consisting of (CH 2 ) n , where n = 1-3, CO (CH2) n , where n = 0-2, and (CH 2 ) n SO 2 , where n = 1-2,

Y je izbran iz skupine sestavljene iz CH2, CO, COOH, CS in SO2,Y is selected from the group consisting of CH 2 , CO, COOH, CS and SO 2 ,

Y’ je izbran iz skupine sestavljene iz CH2, CO, COOH, CS in SO2,Y 'is selected from the group consisting of CH 2 , CO, COOH, CS and SO 2 ,

Z je izbran iz skupine sestavljene iz O, S, NH in CH2,Z is selected from the group consisting of O, S, NH and CH 2 ,

R je izbran iz skupine sestavljene iz CH2OH, CH2NH2, CH2NHCHO, CONH2 in COOH,R is selected from the group consisting of CH 2 OH, CH 2 NH 2 , CH 2 NHCHO, CONH 2 and COOH,

B je nukleozidna baza.B is a nucleoside base.

V katerih jeIn which

X izbran iz skupine sestavljene iz (CH^n, kjer je n=1-3, COfCH^n, kjer je n=0-2 in (CH2)nSO2, kjer je n=1-2,X is selected from the group consisting of (CH ^ n, where n = 1-3, COfCH ^ n, where n = 0-2, and (CH2) n SO 2 , where n = 1-2,

V je izbran iz skupine sestavljene iz CH2, CO, COOH, CS in SO2,V is selected from the group consisting of CH 2 , CO, COOH, CS and SO 2 ,

Y’ je izbran iz skupine sestavljene iz CH2, CO, COOH, CS in SO2,Y 'is selected from the group consisting of CH 2 , CO, COOH, CS and SO 2 ,

Z je izbran iz skupine sestavljene iz O, S, NH in CH2,Z is selected from the group consisting of O, S, NH and CH 2 ,

R je izbran iz skupine sestavljene iz CH2OH, CH2NH2, CH2NHCHO, CONH2 in COOH,R is selected from the group consisting of CH 2 OH, CH 2 NH 2 , CH 2 NHCHO, CONH 2 and COOH,

B je nukleozidna baza.B is a nucleoside base.

V drugih izvedbah izum zagotavlja metode za zdravljenje bolezni, posredovanih s prisotnostjo nukleotidne sekvence, ki obsegajo dajanje učinkovite količine zgornjih modificiranih oligonukleotidov, zmožnih specifičnega vezanja nukleotidne sekvence za njeno deaktiviranje subjektu, ki potrebuje tako zdravljenje.In other embodiments, the invention provides methods for treating diseases mediated by the presence of a nucleotide sequence comprising administering an effective amount of the above modified oligonucleotides capable of specifically binding the nucleotide sequence to its deactivation to a subject in need of such treatment.

-37V oligonukleotidih izuma je vsaj ena od fosfodiesterskih skupin vključenih znotraj “V-jev” s formulami 24-41, substituirana z modificiranimi internukleozidnimi vezmi, ki so opisane tu notri. Zaželeno so mnogokratne fosfodiesterske vezi v nemodificiranem oligonukleotidu, substituirane z modificirano internukleozidno vezjo, lahko v tej strukturi ponovno uporabljene ali, če je zaželeno je lahko v posameznem oligonukleotidu uporabljena različna vrsta modificiranih internukleotidnih vezi. V prednostni izvedbi predmetnih oligonukleotidov so te nadomestne vezi ne-kiralne, tako da povečajo zmožnost oligonukleotida, da se hibridizira na zaželeno tarčo; vendar, uporabne spojine izuma vključujejo tiste izvedbe, v katerih so uporabljene kiralne oblike.-37V The oligonucleotides of the invention are at least one of the phosphodiester groups included within the "Vs" of formulas 24-41, substituted by the modified internucleoside bonds described herein. It is desirable that multiple phosphodiester bonds in an unmodified oligonucleotide substituted with a modified internucleoside bond may be reused in this structure or, if desired, different types of modified internucleotide bonds may be used in a single oligonucleotide. In a preferred embodiment of the oligonucleotides in question, these alternative bonds are non-chiral, increasing the ability of the oligonucleotide to hybridize to the desired target; however, useful compounds of the invention include those embodiments in which chiral forms are used.

-38Prednostne modificirane internukleotidne vezi, ki vključujejo strukture za “V” so prikazane v tabeli 1.-38 Preferred modified internucleotide bonds that include structures for “V” are shown in Table 1.

Tabela 1Table 1

-o-s-S(0)-S(0) (0)-Se-si-C(0)—C(S)—-o-s-S (0) -S (0) (0) -Se-si-C (0) —C (S) -

-NH-NOH-NCHj-NR5-CH2-O-CHj-CH2-0-O-CHj-CKj-CH2-CH3-O-ch2-o-ch2-o-ch2-o-S-CHj-CH2-S-S-CH2-CH2-CH2-CH2-S-CHj-S-CH,-s-ch2-s-o-ch2-s~-NH-NOH-NCHj-NR 5 -CH 2 -O-CHj-CH 2 -O-O-CHj-CKj-CH 2 -CH 3 -O-ch 2 -o-ch 2 -o-ch 2 -oS -CHj-CH 2 -SS-CH 2 -CH 2 -CH 2 -CH 2 -S-CHj-S-CH, -s-ch 2 -so-ch 2 -s ~

-S-CHj-O-S(O)-CH;-CH2-S(O)-S(O)-CH2-CH2-CH2-CH2-S(O)-CHj-S (O) -CHj-S(O)-CH2-S(O)-O-CHj-S(O)-S (O)-CH-,-0-S{0) (O)-CHj-CH2-S(O) (0)-S (O) (O)-CH2-CH2-CH2-CH2-S(O) (O) -CH2-S(O) (O)-CHj-S(0) (O)-CH2-S(O) (0)-O-CHj-S(O) (O) — -S(0) (O)-CHj-O-s-s-S(O)-S(O)-39-S (O) (O)-S(O)-(O)-Se-CH2-CHj-Se-Se-CHj-CHj-CHj-CHj-Se-CHj-Se-CH2-Se-CH2-Se-O-CHj-Se-Se-CHj-O-Se(O)-CH2-CH2-Se(O)-Se(O)-CHj-CHj-CH2-CH2-Se(O)-CH2-Se (O) -CH2-Se(O)-CH2-Se(O)-O-CH2-Se(O)-Se (O)-CH2-O-Se(O)(O)-CH,-CH2-Se(O) (O) -Se (O) (O)-CH,-CHj-CH2-CH2-Se (O) (O) -CH2-Se(O) (O)-CHj-Se(O)(O)-CH2-Se (O)(0)-Se-Se-Se(0)-Se (O,-Se(0)(O)-Se(O)-(0)-O-CH2-Se(O) [0)-Se(0)(0)-CH2-0-5-CH2-Se-Se-CH2-S-S(0)-CH2-Se(O)-Se(O)-CH2-S(O)—-S-CH3-OS (O) -CH ; -CH 2 -S (O) -S (O) -CH 2 -CH 2 -CH 2 -CH 2 -S (O) -CHj-S (O) -CHj-S (O) -CH 2 -S ( O) -O-CHj-S (O) -S (O) -CH -, - 0-S {0) (O) -CHj-CH 2 -S (O) (0) -S (O) (O) ) -CH 2 -CH 2 -CH 2 -CH 2 -S (O) (O) -CH 2 -S (O) (O) -CHj-S (0) (O) -CH 2 -S (O) (0) -O-CHj-S (O) (O) - -S (0) (O) -CHj-OssS (O) -S (O) -39-S (O) (O) -S (O) ) - (O) -Se-CH 2 -CHj-Se-Se-CHj-CHj-CHj-CHj-Se-CHj-Se-CH 2 -Se-CH 2 -Se-O-CHj-Se-Se-CHj -O-Se (O) -CH 2 -CH 2 -Se (O) -Se (O) -CHj-CHj-CH 2 -CH 2 -Se (O) -CH 2 -Se (O) -CH 2 - Se (O) -CH 2 -Se (O) -O-CH 2 -Se (O) -Se (O) -CH 2 -O-Se (O) (O) -CH, -CH 2 -Se (O ) (O) -Se (O) (O) -CH, -CHj-CH 2 -CH 2 -Se (O) (O) -CH 2 -Se (O) (O) -CHj-Se (O) ( O) -CH 2 -Se (O) (0) -Se-Se-Se (0) -Se (O, -Se (0) (O) -Se (O) - (0) -O-CH 2 - Se (O) [0) -Se (0) (0) -CH 2 -0-5-CH 2 -Se-Se-CH 2 -SS (0) -CH 2 -Se (O) -Se (O) -CH 2 -S (O) -

-S(O)(O)-CHj-Se(O)(O) — -Se(O) (O)-CH2-S(O) (0)-S-S-S(O)-S (O) -S{0,(O)-S(O)(0,-Se-Se-Se(O)-Se (O)-Se(O)(O)-Se(O)(0)-N(Rs)-CH2-CH2-N(Rs)-N(Rs)-CH2-CH2-CHj-CH2-N(R5)-CH2-N(Rs)-CH2-N(RS)-O-O-N(R5)-N(Rj)-O-CH2-CH2-O-N(Rj)-CH2-N(Rs)-O-0-N (Rj) -CHj-40-O-CH2-N(RS)-N(Rs)-CH2-O-N{Rj)-S-S-N(R5)-N(R5)-S-CH2-CH2-S-N(R5)-CH2-N(Rs)-S-S-N(Rj)-CH2-S-CH2-N(Rs)-N(Rj)-CH2-S-N(Rs)-S(O)-S(O)-N(Rs)-N(R5)-S(O)-CHj-CH2-S(O)-N(Rs)-CH2-N(Rs)-S(O)-S(O)-N(R5)-CH2-S(O)-CH2-N(Rs)-N (Rj) -CH2-S (O) -N (Ri) -S (O) (O)-S (O) (O)-N(Rj)-N (Rj) -s (O) (O)-CH,-CHj-S(O) (O) -N (Rs) -CH2-N (R5) -S (O) (0)-S{0) (Or-N(RS)-CH2-S (O) (O)-CH2-N (Rs)-N (Rj) -CH2-S (O) (0)-0-N(R5)-S-S-N(Rj)-O~ -0-N(Rs)-S(0)-S(O)-N(R5)-O-O-N(R5)-S(O) (O) “S (O) (0)-N(R5)-0-o-s-o-O-S(O)-O-O-S(O)(O)-O-N (Rs) -S-N (Rs) -N(Rs)-S(O)-N(Rs,-N(Rs)-S(0) (O)-N(RJ-CHj-S-O-CH2-S(O)-O-CHj-S(O) (0)-0-CH2-C(O)-O-CH2-C(S)-0-CH2-N(R5)-C(O)-O-CH2-N(Rj)-C(S)-O-N(Rs)-C{O)-O-CH2-N(R5)-C(S)-O-CH2-O-C(O)-N(RS)-O-0-C(S)-N(R5)-0-O-C(O)-N(R5)-CH2-0-C{S)-N(Rs)-CH2-41-O-C(O)-CHj-N(R5)-O-C(S)-CHj-N(Rj)-O-C(O)-CHi-O-N(Rs)-O-C(S)-CH2-O-N(R5)-O-C(O)-N{RS)-O-CH:-O-C(S)-N(R5)-O-CH2-O-N(R5)-C(O)-O-CH2-O-N{Rs)-C(S)-O-CH2-CH,-O-C (O) -N (R5) -0-CH2-O-C(S)-N(Rs)-O-CHj-O-C (O) -N (Rs) -CH2-CH2-O-C(S)-N(Rs)-CH2-CH2-O-C(O)-CH2-N{R5)-CH2-O-C(S)-CH2-N(Rj)-CH2-O-C(O)-N(Rj)-CH2-O-C(S)-N(Rs)-CH2-O-C(O)-N(R5)-O-CH2-O-C(S)-N{R5)-O-CH2-0-N{Rs)-C(0)-0-CH2-O-N(R5)-C(S)-O-CH2-N(R5)-C(O)-S-CH2-N(Rs)-C(S)-S-N(Rj)-C.(O)-S-CH.“ -N(Rj)-C(S)-S-CH,-S-C(O)-N(Rs)-O-O-C(S)-N(R5)-S-S-C (O)-N (Rj)-CHj-S-C(S)-N (Rj)-CH2-S-C(O)-CH2-N(R5)-S-C(S)-CH2-N(RJ-S-C(O)-CH2-O-N(R5,-O-C(S)-CH2-S-N(Rj)-O-C(O)-N(Rs)-S-CH2-S-C(S)-N(R5)-O-CHj-S-N(R5)-C(O)-O-CHj-O-N(Rs)-C{S)-S-CH2-CHj-S-C(O)-N(R5)“O-CH2-O-C(S)-N(R5)-S-CH2-S-C (O) -N (Rs) -CH2-CH2-S-C (S) -N (Rs) -CHj-CH2-S-C(O)-CH2-N(Rs)-CH2-S-C (S) -CH2-N (Rs) -CH2-S-C(O)-N(Rs)-CHj-S-C(S)-N(R5)-CH2-S-C(O)-N(R5)-O-CH2-S-C(S)-N(R5)-O-CH2-S-N(Rs)-C(O)-O-CHj-S-N(R5)-C(S)-O-CH2-O-C(O)-N{Rs)-S“-S (O) (O) -CHj-Se (O) (O) - -Se (O) (O) -CH 2 -S (O) (0) -SSS (O) -S (O) -S {0, (O) -S (O) (0, -Se-Se-Se (O) -Se (O) -Se (O) (O) -Se (O) (0) -N (R s ) -CH 2 -CH 2 -N (R s ) -N (R s ) -CH 2 -CH 2 -CH 1 -CH 2 -N (R 5 ) -CH 2 -N (R s ) -CH 2 -N ( R S ) -OON (R 5 ) -N (Rj) -O-CH 2 -CH 2 -ON (Rj) -CH 2 -N (R s ) -O-0-N (Rj) -CHj-40- O-CH 2 -N (R S ) -N (R s ) -CH 2 -ON {Rj) -SSN (R 5 ) -N (R 5 ) -S-CH 2 -CH 2 -SN (R 5 ) -CH 2 -N (R s ) -SSN (Rj) -CH 2 -S-CH 2 -N (R s ) -N (Rj) -CH 2 -SN (R s ) -S (O) -S ( O) -N (R s ) -N (R 5 ) -S (O) -CHj-CH 2 -S (O) -N (Rs) -CH 2 -N (R s ) -S (O) -S (O) -N (R 5 ) -CH 2 -S (O) -CH 2 -N (R s ) -N (Rj) -CH 2 -S (O) -N (R 1) -S (O) ( O) -S (O) (O) -N (Rj) -N (Rj) -s (O) (O) -CH, -CHj-S (O) (O) -N (R s ) -CH 2 -N (R 5 ) -S (O) (O) -S {0) (Or-N (R S ) -CH 2 -S (O) (O) -CH 2 -N (R s ) -N ( Rj) -CH 2 -S (O) (O) -0-N (R 5 ) -SSN (Rj) -O ~ -0-N (R s ) -S (O) -S (O) -N ( R 5 ) -OON (R 5 ) -S (O) (O) “S (O) (0) -N (R 5 ) -0-osoOS (O) -OOS (O) (O) -ON (R) s ) -SN (R s ) -N (R s ) -S (O) -N (R s , -N (R s ) -S (O) (O) -N (RJ-CHj-SO-CH 2 -S (O) -O-CHZ-S (O) (0) -0-CH 2 -C (O) -O-CH 2 -C (S) -0-CH 2 -N (R 5) -C (O) -O-CH 2 -N ( Rj) -C (S) -ON (R s ) -C {O) -O-CH 2 -N (R 5 ) -C (S) -O-CH 2 -OC (O) -N (R S ) -O-0-C (S) -N (R 5 ) -O-OC (O) -N (R 5 ) -CH 2 -O-C {S) -N (R s ) -CH 2 -41- OC (O) -CHj-N (R 5 ) -OC (S) -CHj-N (Rj) -OC (O) -CHi-ON (R s ) -OC (S) -CH 2 -ON (R 5 ) -OC (O) -N {R S ) -O-CH : -OC (S) -N (R 5 ) -O-CH 2 -ON (R 5 ) -C (O) -O-CH 2 - ON {R s ) -C (S) -O-CH 2 -CH, -OC (O) -N (R 5 ) -0-CH 2 -OC (S) -N (R s ) -O-CH 2 - OC (O) -N (R s ) -CH 2 -CH 2 -OC (S) -N (R s ) -CH 2 -CH 2 -OC (O) -CH 2 -N {R 5 ) -CH 2 -OC (S) -CH 2 -N (Rj) -CH 2 -OC (O) -N (Rj) -CH 2 -OC (S) -N (R s ) -CH 2 -OC (O) -N (R 5 ) -O-CH 2 -OC (S) -N {R 5 ) -O-CH 2 -O-N {R s ) -C (O) -O-CH 2 -ON (R 5 ) - C (S) -O-CH 2 -N (R 5 ) -C (O) -S-CH 2 -N (Rs) -C (S) -SN (R 1) -C. (O) -S-CH . "-N (Rj) -C (S) -S-CH, -SC (O) -N (R s ) -OOC (S) -N (R 5 ) -SSC (O) -N (Rj) - CHj-SC (S) -N (Rj) -CH 2 -SC (O) -CH 2 -N (R 5 ) -SC (S) -CH 2 -N (RJ-SC (O) -CH 2 -ON (R 5 , -OC (S) -CH 2 -SN (Rj) -OC (O) -N (R s ) -S-CH 2 -SC (S) -N (R 5 ) -O-CHj-SN (R 5 ) -C (O) -O-CHj-ON (R s ) -C {S) -S-CH 2 -CHj-SC (O) -N (R 5 ) “O-CH 2 -OC ( S) -N (R 5) -S-CH 2 -SC (O) N (R s) -CH 2 -CH 2 -SC (S) N (R s) -CHj-CH 2 -SC (O ) -CH 2 -N (R s.) ) -CH 2 -SC (S) -CH 2 -N (R s ) -CH 2 -SC (O) -N (R s ) -CHj-SC (S) -N (R 5 ) -CH 2 -SC (O) -N (R 5 ) -O-CH 2 -SC (S) -N (R 5 ) -O-CH 2 -SN (R s ) -C (O) -O-CH 2 -SN (R 5 ) -C (S) -O-CH 2 -OC (O) -N {R s ) -S "

-CHj-O-C(S)-N(R5)-S-CH2-O-N(Rs)-C(O)-S-42-CH2-O-N(Rs)-C(S)-S-N(R})_N(Rj)-N{Rs)-N(Rs)-CH2-CH2-N(Rs)-N(R5)-N=C(NHj)-N{R5)-N(R5)-N=C(NH2)-S(O)-CH2-O-0-CH2-S(0)-S-CH(Rs)-O-O-CH(Ri)-S-o-ch2-ch«ch-S-CHj-CH=CH-S—CHj—C—C—-CHj-OC (S) -N (R 5 ) -S-CH 2 -ON (R s ) -C (O) -S-42-CH 2 -ON (R s ) -C (S) -SN ( R}) _ N (Rj) -N {R s ) -N (R s ) -CH 2 -CH 2 -N (R s ) -N (R 5 ) -N = C (NHj) -N {R 5 ) -N (R 5 ) -N = C (NH 2 ) -S (O) -CH 2 -O-O-CH 2 -S (O) -S-CH (R s ) -OO-CH (R 1) -So-ch 2 -ch «ch-S-CHj-CH = CH-S — CHj — C — C—

-N(R5)-CH2-N(R5)-N(Rs)-C{O)-N(R5)-N(Rs)-C(S)-N(R5)-N(R5)-C(O)-S-N(Rs)-C(S)-S-N(R'5)-C(S)-O-N(RS)-C(O)-O-O-C(O)-N(R$)-O-C(S)-N{Rs)-S-C(O)-N(Rs)-S-C (S) -N (Ri) R5 je H, OH, OMe, CN, NH, NOH, ONCH3, ONH2, etil, propil, nižji alkil (ΙΣΟ), Me, heteroalkil (1-7C), aril (6-7C), -(CH2)XF; kjer je “x” 1-7C in je “F” neodvisno H, OH, SH, OCH3, CN, SCH3, ONH2, ONH(CH3), SNH2, S(O)NH2, S(O) (O)NH2, CH3, Ph. Dodatno je lahko konjugat enega ali večih delcev povezan na vez, tako da ustvarja oligomerni konjugat. Ustrezni konjugatni delci vključujejo O-holesterol, polietilen glikol, aminokisline, interkalatorje, cepitvene delce (npr. imdazol), premreževalne delce (npr. psoralen), lipide, peptide, alkilacijska sredstva, hidroksamate in fluorescentne označbe.-N (R 5 ) -CH 2 -N (R 5 ) -N (R s ) -C {O) -N (R 5 ) -N (Rs) -C (S) -N (R 5 ) -N (R 5 ) -C (O) -SN (R s ) -C (S) -SN (R ' 5 ) -C (S) -ON (R S ) -C (O) -OOC (O) -N (R $) - OC (S) -N {R s ) -SC (O) -N (R s ) -SC (S) -N (R 1) R 5 is H, OH, OMe, CN, NH, NOH , ONCH 3 , ONH 2 , ethyl, propyl, lower alkyl (ΙΣΟ), Me, heteroalkyl (1-7C), aryl (6-7C), - (CH 2 ) X F; where “x” is 1-7C and “F” is independently H, OH, SH, OCH 3 , CN, SCH 3 , ONH 2 , ONH (CH 3 ), SNH 2 , S (O) NH 2 , S (O ) (O) NH 2 , CH 3 , Ph. Additionally, the conjugate of one or more particles may be bonded to form an oligomeric conjugate. Suitable conjugate particles include O-cholesterol, polyethylene glycol, amino acids, intercalators, cleavage particles (eg imdazole), crosslinking particles (eg psoralen), lipids, peptides, alkylating agents, hydroxamates and fluorescent designations.

Posebno prednostne 4’-5’ vezi vključujejo fosfodiester, fosforotioate, metilfosfonate, karboksamid, tiokarboksamid, hidroksamat, sulfonamid, hidroksilamin in karbamat. Enake modifikacije so tudi prednostne za 2’-5’ in 3’-5’ vezi.Particularly preferred 4′-5 ′ bonds include phosphodiester, phosphorothioates, methylphosphonates, carboxamide, thiocarboxamide, hydroxamate, sulfonamide, hydroxylamine and carbamate. The same modifications are also preferred for 2'-5 'and 3'-5' bonds.

-43Oligomeri izuma niso omejeni na oligomere s homogeno vrsto vezi in te izmenično ali naključno porazdeljene nadomestne vezi, vključno z 2’, 5’ vezmi so vključene. Ker so oligomeri izuma lahko tako sintetizirani, da je naenkrat sintetiziran po en nukleomonomerni ostanek je vsaka posamezna vez in/ali nadomestna vez in narava vsake posamezne “bazne” substituente lahko izbrana neodvisno, tako da se izdeluje oligonukleotide, ki imajo zaželeno sekvenco.-43Oligomers of the invention are not limited to oligomers with a homogeneous bond type and these alternately or randomly distributed alternate bonds, including 2 ', 5' bonds are included. Because the oligomers of the invention can be so synthesized that one nucleomomeric residue is synthesized at a time, each individual bond and / or substituent bond and the nature of each individual "base" substituent can be selected independently to produce oligonucleotides having the desired sequence.

Oligomeri izuma lahko vsebujejo vsako želeno število nadomestnih vezi. Te nadomestne vezi so lahko med seboj identične ali različne, na temelju izvedb, izbranih za “V”, vključno z drugimi nadomestnimi vezmi, ki niso zajete v izumu. Ker so oligomeri pripravljeni zaporedoma je lahko uporabljen kakršenkoli vzorec vezi ali vrst nadomestnih vezi, baz in sladkornih modifikacij.The oligomers of the invention may contain any desired number of alternative bonds. These alternate bonds may be identical or different, based on the embodiments selected for "V", including other alternate bonds not covered by the invention. As the oligomers are prepared sequentially, any pattern of bonds or types of substitution bonds, bases and sugar modifications may be used.

V prednostnih izvedbah izuma se nadomestne vezi izuma vrstijo po regularnem vzorcu. Na primer, eni nadomestni vezi sledita dve fosfodiesterski vezi, ki jima sledi ena nadomestna vez izuma, itd. Dodatne izvedbe vključujejo, npr. izmenjujoče se vezi, kot je nadomestna vez, ki ji sledi fosfodiesterski analog (npr. tioat, itd.), temu sledi nadomestna vez izuma, tej vezi sledi fosfodiesterski analog, itd., na primer oligomer izuma lahko obsega po eno menjavo dveh vrst nadomestnih vezi. Oligomeri izuma, ki obsegajo več kot eno vrsto vezi, imajo lahko kakršnokoli število regularnih vzorcev, formiranih z menjavami med različnimi vrstami vezi, prisotnimi med podenotami oligomera.In preferred embodiments of the invention, the alternate bonds of the invention are arranged in a regular pattern. For example, one alternate bond is followed by two phosphodiester bonds, followed by one alternate bond of the invention, etc. Additional embodiments include e.g. alternating bonds, such as an alternate bond followed by a phosphodiester analogue (e.g., thioate, etc.), followed by an alternative bond of the invention, this bond followed by a phosphodiester analogue, etc., for example, the oligomer of the invention may comprise one alternation of two types of alternative ties. The oligomers of the invention comprising more than one type of bond may have any number of regular patterns formed by alternations between different types of bonds present between the subunits of the oligomer.

Sladkorne modifikacije so lahko narejene v enem ali več nukleomonomernih ostankih v oligomerih izuma; vendar so 4’-5’, 3’-5’ in 2’5’ nukleotidne vezi med aminokislinskimi ostanki prednostne, kadar gre zaThe sugar modifications may be made in one or more nucleomomeric residues in the oligomers of the invention; however, 4′-5 ′, 3′-5 ′ and 2′5 ′ nucleotide bonds between amino acid residues are preferred when it comes to

-44to, da se vključi take modifikacije. V takem primeru je lahko uporabljena nadaljna okrajšava za predstavitev sekvence baz oligonukleotidnega analoga. Na primer, pri standardni DNA (ali RNA) so sekvence običajno označene s sekvencami baz samih, kot je npr., ATG CGC TGA. V splošnem je vnaprej določeno ali to predstavlja RNA ali DNA sekvenco. Odgovarjajoči sistem zapisovanja je uporabljen tu notri tako, da predstavlja oligonukletidne analoge z dano bazno sekvenco.-44to include such modifications. In such a case, a further abbreviation may be used to represent the sequence of bases of the oligonucleotide analogue. For example, for standard DNA (or RNA), the sequences are usually indicated by the sequences of the bases themselves, such as, for example, ATG CGC TGA. It is generally predetermined whether this represents an RNA or DNA sequence. The corresponding recording system is used herein to represent oligonucleotide analogues with a given base sequence.

Dodatne nukleomonomerne modifikacije:Additional nucleomomeric modifications:

Poleg nadomestnih vezi izuma lahko oligomeri izuma obsegajo tudi različne modifikacije. Dodatne modifikacije vključujejo oligomere, kjer (i) je na 2’, 3’, 4’ in 5’ pozicijah modificiran eden ali več nukleomonomernih ostankov, (ii) je vključen eden ali več delcev za kovalentno premreževanje, (iii) so vključene druge nadomestne vezi, ki niso predmet tega izuma, (iv) so vključeni drugi bazni analogi, kot je 8-okso-N6 -metiladenin in (v) so vključeni konjugati, kot so interkalatorska sredstva ali polilizin, ki povečajo vezavno afiniteto do tarčnih nukleinsko kislinskih sekvenc ali, ki povečajo združitev oligomera s celicami.In addition to the alternate bonds of the invention, the oligomers of the invention may also comprise various modifications. Additional modifications include oligomers, where (i) one or more nucleomomeric residues are modified at 2 ', 3', 4 'and 5' positions, (ii) one or more covalent crosslinking particles are included, (iii) other alternatives are included (iv) other base analogs, such as 8-oxo-N 6 -methyladenine, are included, and (v) conjugates such as intercalator agents or polylysine which increase the binding affinity to the target nucleic acid are included sequences or that increase the association of the oligomer with cells.

Sekvenčno specifične vezavne lastnosti oligomerov izuma za enojnoverižne in dupleksne tarče so kompatibilne z nadaljnjimi modifikacijami v oligomeru. Te nadaljnje modifikacije tudi lahko dajejo druge uporabne lastnosti, kot so stabilnost do nukleazne cepitve (npr. na področju oligomera izuma, ki ima fosfodiesterske vezi) ali povečanje njihove sposobnosti prodiranja skozi celične membrane in podobno.The sequence-specific binding properties of the oligomers of the invention for single-stranded and duplex targets are compatible with further modifications in the oligomer. These further modifications may also confer other useful properties, such as stability to nuclease cleavage (e.g. in the field of the oligomer of the invention having phosphodiester bonds) or enhancing their ability to penetrate cell membranes and the like.

Oligomeri izuma lahko obsegajo eno ali več nadomestnih vezi, kot so sulfidne ali sulfonske vezi (Benner, S.A., mednarodna objava št. WOThe oligomers of the invention may comprise one or more substituent bonds such as sulfide or sulfone bonds (Benner, S.A., International Publication No. WO

-4589/12060), sulfamatne vezi (mednarodna objava št. WO 91/15500), karbamatne ali druge nadomestne vezi v morfolino-povezanih oligomerih (Stirchak, E.P. s sod., Nucleic Acids Res., 1989, 17, 6129-6141; Summerton, J., s sod., mednarodna objava št. 216 860) in sorodne vezi.-4589/12060), sulfamate bonds (International Publication No. WO 91/15500), carbamate or other substitute bonds in morpholino-linked oligomers (Stirchak, EP et al., Nucleic Acids Res. 1989, 17, 6129-6141; Summerton, J., et al., International Publication No. 216 860) and Related Links.

Tako ponazorilne izvedbe oligomerov izuma vključujejo oligomere, ki imajo (1) vsaj eno nadomestno vez in eno aminokislino, ki je vezana na sosednji monomer in (2) eno ali več nadomestnih vezi, ki niso predmet tega izuma, izbranih iz skupine sestavljene iz fosforotioata, metilfosfonata in tionometilfosfonata in/ali (3) eno ali več fosfodiesterskih vezi in/ali (4) purinske ali pirimidinske analoge, ki povečujejo vezavno afiniteto za komplementarne tarčne sekvence. Drugi ponazorilni oligomeri bi vključevali (1) oligomer, ki ima nadomestne vezi izuma na 3’ in/ali 5’ koncih in fosforotioatne vezi nekje drugje v oligomeru; (2) oligomere, ki imajo nadomestne vezi izuma in standardne purinske ali pirimidinske baze (npr. adenin, gvanin, citozin, timin ali uracil); (3) oligomere, ki imajo nadomestne vezi izuma in eno ali več baz, ki povečajo vezavno afiniteto ali permeacijsko kompetenco oligomera (npr. 5-metilcitozin, 5’ (1-propinil) uracil, 5-(1-propinil) citozin). Vključeni so tudi oligomeri, ki vsebujejo nukleomonomerne ostanke, povezane preko hidroksamatov.Thus, exemplary embodiments of the oligomers of the invention include oligomers having (1) at least one alternative bond and one amino acid attached to the adjacent monomer and (2) one or more alternative bonds not subject to this invention selected from the group consisting of phosphorothioate, methylphosphonate and thionomethylphosphonate and / or (3) one or more phosphodiester bonds and / or (4) purine or pyrimidine analogues that increase binding affinity for complementary target sequences. Other illustrative oligomers would include (1) an oligomer having alternate bonds of the invention at the 3 'and / or 5' ends and phosphorothioate bonds elsewhere in the oligomer; (2) oligomers having alternative linkages of the invention and standard purine or pyrimidine bases (e.g., adenine, guanine, cytosine, thymine or uracil); (3) oligomers having alternative linkages of the invention and one or more bases that increase the binding affinity or permeation competence of the oligomer (e.g., 5-methylcytosine, 5 '(1-propynyl) uracil, 5- (1-propynyl) cytosine). Also included are oligomers containing nucleomomeric residues linked via hydroxamates.

Sinteza oligomerov:Synthesis of oligomers:

Oligomeri izuma so lahko tvorjeni z uporabljanjem nukleomonomerov izuma samih ali v kombinaciji s konvencionalnimi nukleomonomeri in sintetizirani z uporabljanjem standardnih oligomernih sinteznih tehnik na trdni fazi (ali v raztopini), ki so sedaj komercialno dostopne. V splošnem so oligomeri izuma lahko sintetizirani po metodi, ki obsega naslednje stopnje: sintetiziranje nukleomonomernega ali oligomernega sintona, ki ima zaščitnoThe oligomers of the invention may be formed using nucleomonomers of the invention alone or in combination with conventional nucleomonomers and synthesized using standard solid phase (or in solution) oligomeric synthesis techniques now commercially available. In general, the oligomers of the invention can be synthesized by a method comprising the following steps: synthesizing a nucleomonomer or oligomer synthon having a protective

-46skupino in bazo in povezovalno skupino, ki se lahko veže na nukleomonomer ali oligomer; povezovanje nukleomonomernega ali oligomernega sintona na sprejemni nukleomonomer ali na sprejemni oligomer; odstranjevanje zaščitne skupine; in ponavljanje cikla tako dolgo, kot je potrebno, da je zaželen oligomer sintetiziran.-46 group and base and linker group that can bind to a nucleomonomer or oligomer; coupling a nucleomonomer or oligomer synthon to a receiving nucleomonomer or to a receiving oligomer; removal of the protecting group; and repeating the cycle for as long as is necessary for the desired oligomer to be synthesized.

Oiigomeri pričujočega izuma so lahko katerekoli dolžine, vključno s tistimi, daljšimi kot 40, 50, 100, 200 ali 500 nukleomonomerov. V splošnem, prednostni oiigomeri vsebujejo 2-30 nukleomonomerov. Dolžine, ki so daljše ali enake približno 8 do 20 nukleomonomerov so lahko uporabne za terapevtske ali diagnostične uporabe, oiigomeri s temi dolžinami imajo zagotovljene ustrezne bazne sekvence. Kratki oiigomeri, ki vsebujejo 2, 3, 4 ali 5 nukleomonomerov so specifično vključeni v pričujoči izum in so lahko uporabljeni kot sintoni.Oiigomers of the present invention may be of any length, including those longer than 40, 50, 100, 200, or 500 nucleomonomers. In general, preferred oiigomers contain 2-30 nucleomomers. Lengths greater than or equal to about 8 to 20 nucleomonomers may be useful for therapeutic or diagnostic uses, and oiigomers of these lengths have corresponding base sequences provided. Short oligomers containing 2, 3, 4 or 5 nucleomonomers are specifically included in the present invention and can be used as synthons.

Oiigomeri, ki imajo naključno sekvenco in vsebujejo okoli 6, 7 ali 8 nukleomonomerov so lahko uporabljeni kot primerji, ki se uporabljajo v protokolih za kloniranje ali amplifikacijo, ki uporabljajo naključno sekvenčne primerje, pod pogojem, da oligomer vsebuje 1 ali 2 ostanka na 3’ koncu, ki lahko služi kot primer za polimeraze ali reverzne transkriptaze ali da drugače ne interferira s polimerazno aktivnostjo.Oiigomers having a random sequence and containing about 6, 7 or 8 nucleomomers may be used as primers for use in cloning or amplification protocols using random sequence primers, provided that the oligomer contains 1 or 2 residues at 3 ' an end that may serve as an example for polymerases or reverse transcriptases or that does not otherwise interfere with polymerase activity.

Poleg vezi, ki so prvič opisane tu notri, lahko oiigomeri izuma obsegajo običajne fosfodiesterske vezi ali pa lahko vsebujejo druge nadomestne vezi, kot so fosforamidatne vezi poleg nadomestnih vezi izuma. Te nadomestne vezi vključujejo izvedbe, toda niso omejene nanje, v katerih je delec s formulo -O-P(O) (S)-O- (“fosforotioat'’), -O-P(O) (NR2 11)-X2, -O-P(O) (R11)-O-, -O-P(S) (R11)-O- (“tionoalkilfosfonat”), -P(O) (OR9)-X2, -O-C(O)-X2 ali -O-C(O) (NR2 11)-X2~, kjer je R11 H (ali sol) ali alkil (1-12C, vključno z metilom inIn addition to the bonds described herein first, the oiigomers of the invention may comprise conventional phosphodiester bonds or may contain other substituent bonds, such as phosphoramidate bonds in addition to those of the invention. These alternate bonds include, but are not limited to, embodiments of which have a particle of formula -OP (O) (S) -O- ("phosphorothioate"'), -OP (O) (NR 2 11 ) -X2, -OP (O) (R 11 ) -O-, -OP (S) (R 11 ) -O- ("thioalkylphosphonate"), -P (O) (OR 9 ) -X 2 , -OC (O) -X 2 , or -OC (O) (NR 2 11 ) -X 2 ~ where R 11 is H (or salt) or alkyl (1-12C, including methyl and

-47etilom) in je R9 alkil (1-9C) in je vez povezana na sosednje nukleomonomere s pomočjo -O- ali -S- povezanih na ogljik nukleomonomera in je X2 O ali S. Fosforotioatne in fosfodiesterske vezi so dobro poznane. Posebno prednostne nadomestne vezi za uporabo v oligomerih pričujočega izuma vključujejo fosfodiesterske, fosforotioatne, metilfosfonatne in tionometilfosfonatne nadomestne vezi. Fosforotioatne in metilfosfonatne nadomestne vezi, ki oligomeru dajejo dodatno stabilnost morajo biti identične, posebno prednostni oligomeri izuma vsebujejo eno ali več fosforotioatnih ali metilfosfonatnih nadomestnih vezi.-47ethyl) and R 9 is alkyl (1-9C) and the bond is attached to adjacent nucleomonomers by -O- or -S- carbon-linked nucleomonomers and X 2 is O or S. Phosphorothioate and phosphodiester bonds are well known. Particularly preferred alternative bonds for use in the oligomers of the present invention include phosphodiester, phosphorothioate, methylphosphonate, and thionomethylphosphonate replacement bonds. The phosphorothioate and methylphosphonate replacement bonds that give the oligomer additional stability must be identical, especially preferred oligomers of the invention contain one or more phosphorothioate or methylphosphonate replacement bonds.

Oligomeri izuma in njihovi segmenti so lahko sintetizirani z uporabljanjem metod, ki so osebi, ki je običajno izkušena pri tem delu dobro poznane. Metode sinteze, poznane na tem področju in opisane tu notri so lahko uporabljene za sintetiziranje oligomerov, ki vsebujejo nadomestne vezi izuma, kakor tudi druge vezi ali nadomestne vezi poznane pri tem delu, z uporabljanjem primerno zaščitenih nukleomonomerov. Metode za sintezo oligomerov, ki imajo vezi, ki vsebujejo fosfor najdemo na primer v Froehler, B., s sod., Nucleic Acids Res., 1986, 14, 5399-5467; Nucleic Acids Res., 1988, 16, 4831-4839; Nucleosides & Nucleotides, 1987, 6, 287291; Froehler, B., Tetrahedron Letts., 1986, 27, 5575-5578; Caruthers, M.H. v Oligodeoxynucleotides Antisense Inhibitions of Gene Expression, 1989, J.S. Cohen, editor, CRC Press, Boca Raton, p7-24; Reese, C.B. s sod, Tetrahedron Letts., 1985, 26, 2245-2248. Sinteza metilfosfonatno povezanih oligomerov preko metil fosfonamiditne kemije je tudi že bila opisana (Agravval, S. s sod., Tetrahedron Letts., 1987, 28, 3539-3542; Klem, R.E., s sod., mednarodna objava št. WO 92/07864).The oligomers of the invention and their segments can be synthesized using methods well known to one of ordinary skill in the art. Synthesis methods known in the art and described herein may be used to synthesize oligomers containing alternative bonds of the invention, as well as other or alternative bonds known in the art, using suitably protected nucleomonomers. Methods for the synthesis of oligomers having phosphorus-containing bonds are found, for example, in Froehler, B., et al., Nucleic Acids Res., 1986, 14, 5399-5467; Nucleic Acids Res., 1988, 16, 4831-4839; Nucleosides & Nucleotides, 1987, 6, 287291; Froehler, B., Tetrahedron Letts., 1986, 27, 5575-5578; Caruthers, M.H. in Oligodeoxynucleotides Antisense Inhibitions of Gene Expression, 1989, J.S. Cohen, editor, CRC Press, Boca Raton, p7-24; Reese, C.B. et al., Tetrahedron Letts., 1985, 26, 2245-2248. The synthesis of methylphosphonate-linked oligomers via methyl phosphonamidite chemistry has already been described (Agravval, S. et al., Tetrahedron Letts., 1987, 28, 3539-3542; Klem, RE, et al., International Publication No. WO 92/07864 ).

Oligomeri, ki imajo vezi pričujočega izuma so ustrezno sintetizirani tudi s pripravo dimernih aii trimernih spojin s kemijo v tekoči fazi, čemur slediThe oligomers having the bonds of the present invention are also properly synthesized by the preparation of dimeric or trimeric compounds with liquid phase chemistry, followed by

-48konverzija sintona v derivat, ki je vključen v oligomere bodisi s kemijo na trdni ali pa v tekoči fazi. Tipični sintoni so 5’ DMT ali MMT blokirani 3’ fosfonatni ali fosforamidatni derivati, ki so pripravljeni s standardnimi metodami (glej: Gait, M.J. ed., Oligonukleotide Synthesis; A Practical Approach 1984, IRL Press, Oxford).-48 Conversion of synthon to a derivative incorporated in oligomers either by solid or liquid chemistry. Typical synthons are 5 'DMT or MMT blocked 3' phosphonate or phosphoramidate derivatives prepared by standard methods (see: Gait, M.J. ed., Oligonucleotide Synthesis; A Practical Approach 1984, IRL Press, Oxford).

Sintoni, ki so vključeni v obsegu pričujočega izuma, vključujejo dimere, trimere, tetramere, heksamere in daljši oligomer, narejene s sintezo na trdni ali v tekoči fazi. Trimeri in daljši sintoni imajo lahko več kot eno vrsto vezi. Sintoni lahko vključujejo vsako bazo, kot je opisano zgoraj ali 2’, 3', 4’ in 5’ skupine kot so OH, DMTO, MMTO, O-alilna, fosfatna, fosfonatna ali amiditna, kot je opisano zgoraj.The synthons included in the scope of the present invention include dimers, trimers, tetramers, hexamers and a longer oligomer made by solid or liquid phase synthesis. Trimmers and longer synthons can have more than one type of bond. Synthons may include any base as described above or 2 ', 3', 4 'and 5' groups such as OH, DMTO, MMTO, O-allyl, phosphate, phosphonate or amidite as described above.

Ribozno-amidni oligonukleotidi so lahko sintetizirani z uporabljanjem standardnih pogojev peptidne sinteze na trdni fazi (Fmoc kemija), (glej sliko 26).Ribose-amide oligonucleotides can be synthesized using standard conditions of solid phase peptide synthesis (Fmoc chemistry), (see Figure 26).

Blokirne skupine za sintezo spojin Izuma:Blocking groups for the synthesis of compounds of the Invention:

1. Povezovalne skupine.1. Liaison groups.

Ustrezne povezovalne skupine so, na primer, H-fosfonatna, metilfosfonamiditna ali fosforamiditna skupina.Suitable linking groups are, for example, the H-phosphonate, methylphosphonamidite or phosphoramidite group.

Fosforamiditi, ki se lahko uporabljajo, vključujejo β-cianoetilfosforamidite (prednostno).Phosphoramidites that may be used include β-cyanoethylphosphoramidites (preferably).

Metilfosfonamiditi, alkilfosfonamiditi (vključno z etilfosfonamiditi in propilfosfonamiditi) se tudi lahko uporabljajo. Ponazorilni fosforamiditi so prikazani v slikah 1 do 21.Methylphosphonamidites, alkylphosphonamidites (including ethylphosphonamidites and propylphosphonamidites) may also be used. Illustrative phosphoramidites are shown in Figures 1 to 21.

-49Ustrezne “povezovalne skupine” na 2’, 3’, 4’ ali 5’ poziciji za sintezo oligomerov preko fosforamiditne kemije triestrov, tu notri navedene kot “amiditna” kemija, vključujejo N.N-diizopropilamino-p-cianoetoksifosfinsko, N,N-diizopropilamino-metoksifosfinsko, Ν,Ν-dietilamino-cianoetoksifosfinsko in (N-morfolino)-metoksifosfinsko povezovalno skupino (Moore, M.F., s sod., J Org Chem., 1985, 50, 2019-2025; Uznanski, A.W., s sod., Tetrahedron Letts., 1987, 28, 3401-3404; Bjergarde, K., s sod., Nucl Acids Res., 1991, 19, 5843-5850; Dahi, O. Sulfur Reports, 1991, H, 167-192). Sorodne povezovalne skupine, kot so Ν,Ν-diizopropilamino-metil-fosfinska ali N,Ndietilamino-metil-fosfinska se tudi lahko uporabljajo za pripravljanje metilfosfonatov. Metilfosfonatni oligomeri so lahko ustrezno sintetizirani z uporabljanjem povezovalnih skupin, kot je N,N-diizopropilaminometilfosforamiditna. Sinteza nukieomonomernih amiditov izuma je lahko izvedena s konvencionalnimi metodami (npr., Gryaznov, S.M., s sod., Nucl Acids Res., 1992, 20, 1879-1882; Vinayak, R., s sod., Nucl Acids Res., 1992, 20, 1265-1269; Sinha, N.D., s sod., Nucl Acids Res., 1984, 12, 4539-4557; in druge reference, citirane tu notri).-49Equivalent "linking groups" at the 2 ', 3', 4 'or 5' position for the synthesis of oligomers via the phosphoramidite chemistry of triesters, referred to herein as 'amidite' chemistry, include N-diisopropylamino-p-cyanoethoxyphosphine, N, N-diisopropylamino -methoxyphosphine, Ν, Ν-diethylamino-cyanoethoxyphosphine and (N-morpholino) -methoxyphosphine linking group (Moore, MF, et al., J Org Chem., 1985, 50, 2019-2025; Uznanski, AW, et al., Tetrahedron Letts., 1987, 28, 3401-3404; Bjergarde, K., et al., Nucl Acids Res., 1991, 19, 5843-5850; Dahi, O., Sulfur Reports, 1991, H, 167-192). Related linking groups such as Ν, Ν-diisopropylamino-methyl-phosphine or N, Ndiethylamino-methyl-phosphine can also be used to prepare methylphosphonates. Methylphosphonate oligomers can be properly synthesized using linker groups such as N, N-diisopropylaminomethylphosphoramidite. The synthesis of the nucleo-monomeric amidites of the invention can be carried out by conventional methods (e.g., Gryaznov, S. M., et al., Nucl Acids Res., 1992, 20, 1879-1882; Vinayak, R., et al., Nucl Acids Res., 1992 , 20, 1265-1269; Sinha, ND, et al., Nucl Acids Res., 1984, 12, 4539-4557; and other references cited herein).

2. Zaščitne skupine.2. Protective groups.

Zaščitne skupine, take kot so na primer diizobutilformamidinska, benzoilna, izobutirilna, FMOC, dialkilformamidinska, dialkilacetamidinska ali druge skupine, poznane pri tem delu, se lahko uporabljajo za zaščito eksocikličnega dušika citozina, adenina ali gvanina heterociklov. Alternativno je lahko citidin, z uporabljanjem opisanih metod, direktno vključen v oligomere, brez zaščitne skupine na eksocikličnem dušiku (Gryaznov, S.M. s sod., J Amer Chem Soc., 1991, 113. 5876-5877; Gryaznov, S.M. s sod., Nucl Acids Res., 1992, 20, 1879-1882; Kung, P.-P. s sod., Tetrahedron Letts., 1992, 33, 5869-5872).Protective groups such as, for example, diisobutylformamidine, benzoyl, isobutyryl, FMOC, dialkylformamidine, dialkylacetamidine, or other groups known in the art can be used to protect the exocyclic nitrogen of cytosine, adenine or guanine heterocycles. Alternatively, cytidine may be directly incorporated into the oligomers using the described methods without the protecting group on exocyclic nitrogen (Gryaznov, SM et al., J Amer Chem Soc. 1991, 113. 5876-5877; Gryaznov, SM et al. Nucl Acids Res., 1992, 20, 1879-1882; Kung, P.-P. et al., Tetrahedron Letts., 1992, 33, 5869-5872).

-50Ustrezne zaščitne skupine so DMT (dimetoksi tritilna), Bz (benzoilna), Bu (izobutirilna), fenoksiacetilna, MMT (monometoksitritilna) ali FMOC na 5’ koncu in/ali hidrogen fosfonatna, metil fosforamiditna, metil fosfonamiditna, β-cianoetilfosforamiditna, TBS (t-butildimetilsililna) ali TBDPS (tbutildifenilsililna) na 3’-koncu.-50Convenient protecting groups are DMT (dimethoxy trityl), Bz (benzoyl), Bu (isobutyryl), phenoxyacetyl, MMT (monomethoxytrityl) or FMOC at the 5 'end and / or hydrogen phosphonate, methyl phosphoramidite, methyl phosphonamidite, β-cyanoethylyl, β-cyanoethyl, (t-butyldimethylsilyl) or TBDPS (tbutyldiphenylsilyl) at the 3'-end.

Prednostne zaščitne skupine so Bz (benzoilna), DMT (dimetoksitritilna), MMT (monometoksitritilna) ali FMOC na 5' koncu ali poziciji in/ali TBS, hidrogen fosfonatna, metilfosforamiditna, metil-fosfonamiditna, βcianoetilfosforamiditna na 3’-koncu. Vendar pa je mišljeno, da je pozicija zaščitnih skupin lahko obrnjena, ko je to potrebno (npr., fosforamiditna na 5’ poziciji in DMT na 3’ poziciji). V splošnem so nukleomonomeri in oligomeri izuma lahko derivatizirani v takšne “zaščitne skupine”, kot je ponazorjeno v ustreznih formulah z metodami, ki so poznane pri tem delu.Preferred protecting groups are Bz (benzoyl), DMT (dimethoxytrityl), MMT (monomethoxytrityl) or FMOC at the 5 'end or position and / or TBS, hydrogen phosphonate, methylphosphoramidite, methylphosphonamidite, βcyanoethylphosphoramidite at the 3′-end. However, it is thought that the position of the protecting groups may be reversed when necessary (e.g., phosphoramidite at 5 'position and DMT at 3' position). In general, the nucleomonomers and oligomers of the invention can be derivatized into such "protecting groups" as exemplified in the corresponding formulas by methods known in the art.

Koniugati:Koniugati:

Predmetni izum tudi zagotavlja “konjugate” oligomerov izuma. “Konjugati” konvencionalnih oligomerov so osebi z običajnimi izkušnjami pri tem delu poznani. Na primer, oligomeri izuma so lahko kovalentno povezani na različne delce, take, kot so npr., interkalatorji in spojine, ki specifično korelirajo z manjšim kanalom DNA dvojne vijačnice. Drugi delci za konjugiranje na predmetne oligomere vključujejo označbe (npr., radioaktivno, fluorescentno, encimsko) ali delce, ki olajšujejo celično združevanje z uporabljanjem ceplijivih linkerjev in podobno. Ustrezne radioaktivne označbe so 32P, 35S, 3H, 1311 in 14C; in ustrezne fluorescentne označbe vključujejo fluorescenco, resorufin, rodamin, BODIPY (molekularne probe) in Texas rdečo; ustrezni encimi vključujejo alkalno fosfatazo inThe present invention also provides "conjugates" of the oligomers of the invention. The "conjugates" of conventional oligomers are known to one of ordinary skill in the art. For example, the oligomers of the invention may be covalently linked to different particles, such as, for example, intercalators and compounds that specifically correlate with the smaller double-stranded DNA channel. Other particles for conjugation to the subject oligomers include labels (e.g., radioactive, fluorescent, enzymatic) or particles that facilitate cellular association by using fissile linkers and the like. The corresponding radioactive indications are 32 P, 35 S, 3 H, 131 1 and 14 C; and appropriate fluorescent designations include fluorescence, resorufin, rhodamine, BODIPY (molecular probes) and Texas red; suitable enzymes include alkaline phosphatase and

-51hrenovo peroksidazo. Druge spojine, ki se lahko uporabljajo kot kovalentno povezani delci, ki vključujejo biotin, protitelesa ali fragmente protiteles, azialoglikoprotein, transferin in HIV Tat protein, so tudi lahko kovalentno povezane na oligomere izuma.-51hren peroxidase. Other compounds that can be used as covalently linked particles, including biotin, antibodies or antibody fragments, asialoglycoprotein, transferrin and HIV Tat protein, may also be covalently linked to the oligomers of the invention.

Ti dodatni delci so lahko derivatizirani s pomočjo vsakega ustreznega delca. Na primer, interkalatorji, taki kot sta akridin ali psoralen, so na oligomere izuma lahko povezani s pomočjo vsakega primernega -OH ali SH delca, npr., na končni 5’-poziciji oligomera, 2’-pozicijah RNA, ali OH, NH2, COOH ali SH vključenih v 5-pozicijo pirimidinov. Primerna je derivatizirana oblika, ki ima na primer, -CH2CH2CH2OH ali -CH2CH2CH2SH v 5-poziciji pirimidinov. Konjugati, vključno s polilizinom ali lizinom, so lahko sintetizirani kot je bilo opisano in lahko dalje povečajo vezavno afiniteto oligomera do njegove tarčne nukleinsko kislinske sekvence (Lemaitre, M. s sod., Proč Natl Acad Sci. USA, 1987, 84, 648-652; Lemaitre, M. s sod., Nucleosides and Nucleotides, 1987, 6, 311-315).These additional particles can be derivatized with the aid of each corresponding particle. For example, intercalators such as acridine or psoralen may be coupled to the oligomers of the invention by any suitable -OH or SH particle, e.g., at the oligomer end 5'-position, 2'-RNA positions, or OH, NH 2 , COOH or SH included in the 5-position of the pyrimidines. A derivatized form having, for example, -CH 2 CH 2 CH 2 OH or -CH 2 CH 2 CH 2 SH in the 5-position of the pyrimidines is suitable. Conjugates, including polylysine or lysine, can be synthesized as described and can further increase the binding affinity of the oligomer to its target nucleic acid sequence (Lemaitre, M. et al., Natl Acad Sci. USA, 1987, 84, 648- 652; Lemaitre, M. et al., Nucleosides and Nucleotides, 1987, 6, 311-315).

Povezanih je lahko veliko različnih substituent, vključno s tistimi, povezanimi s pomočjo vezi ali nadomestnih vezi. V oligomerih so -OH delci lahko nadomeščeni s fosfatnimi skupinami, zaščitenimi s standardnimi zaščitnimi skupinami ali povezovalnimi skupinami za pripravljanje dodatnih vezi za druge nukleomonomere ali pa so lahko povezani na konjugirano substituento. 5’-končni OH je lahko fosforiliran; 2’-OH ali OH substituente na 3’-koncu so tudi lahko fosforilirane. Hidroksili so lahko tudi derivatizirani v standardne zaščitne skupine.Many different substituents can be bonded, including those bonded or bonded. In oligomers, the -OH particles may be replaced by phosphate groups protected by standard protecting groups or linking groups to prepare additional bonds for other nucleomonomers or may be linked to a conjugated substituent. The 5′-terminal OH can be phosphorylated; 2′-OH or OH substituents at the 3′-end can also be phosphorylated. Hydroxyls may also be derivatized into standard protecting groups.

Oligomeri izuma so lahko kovalentno derivatizirani v delce, ki olajšajo združevanje celic z uporabljanjem cepljivih linkerjev. Primerni konjugati tudi vključujejo trdne podlage za sintezo oligomerov in za olajševanje detekcijeThe oligomers of the invention may be covalently derivatized into particles that facilitate cell assembly by the use of fission linkers. Suitable conjugates also include solid substrates for the synthesis of oligomers and for facilitating detection

-52nukleinsko kislinskih sekvenc. Trdne podlage vključujejo silikagel, steklo s kontrolirano velikostjo por, polistiren in magnetne steklene kroglice, toda niso omejene na te snovi.-52nucleic acid sequences. Solid substrates include, but are not limited to, silica, controlled-size glass, polystyrene, and magnetic glass beads.

Sladkorne modifikacije:Sugar modifications:

Derivati so lahko narejeni s substitucijo na sladkorjih. Med prednostnimi derivati oligomerov izuma sta 2’-0-alilna ali 3’-alilna skupina, za kateri se zdi, da povečata permeacijsko sposobnost in stabilnost za degradacijo z nukleazami, toda ne kažeta, da bi zmanjšali afiniteto oligomera za enojnoverižne ali dupleksne tarče. Posebno v oligonukleotidih z ribozaamidno hrbtenico so lahko na Γ, 2’, 3’, 4’ in 5’ pozicijah riboznega delca, za izboljšanje farmakokinetičnih lastnosti odgovarjajočih oligonukleotidov, vpeljane različne funkcionalne skupine.Derivatives may be made by substitution on sugars. Preferred oligomer derivatives of the invention are the 2′-0-allyl or 3′-allyl group, which appear to increase permeation ability and stability for degradation by nuclease but do not appear to reduce the affinity of the oligomer for single-stranded or duplex targets. Especially in ribosamide backbone oligonucleotides, different functional groups may be introduced at the Γ, 2 ′, 3 ′, 4 ′ and 5 ′ positions of the ribose particle to enhance the pharmacokinetic properties of the corresponding oligonucleotides.

Nadomestne vezi:Alternate Links:

Oligomeri izuma imajo lahko tudi eno ali več “nadomestnih vezi”, poleg 2’5’, 3’-5’ in 4’-5’ vezi razkritih tu notri, ki so splošno razumljene pri tem delu. Te “nadomestne vezi” vključujejo fosforotioatno, metilfosfonatno, tionometilfosfonatno, fosforoditioatno, alkilfosfonatne, morfolino sulfamidno, boranofosfatno (-O-P(OCH3) (BH3)-O-), siloksansko (-O-Si(X4) (X4)-O-; X4 je 1-6C alkil ali fenil) in fosforamidatno (metoksietilamin (-O-P (OCH2GH2OCH3) (O) -O-) in podobno) in so sintetizirane kot je opisano v splošno dostopni literaturi vključno s sledečimi referencami (Sood, A., s sod., J. Am. Chem. Soc., 1990, 112, 9000-9001; WO 91/08213; WO 90/15065; WO 91/15500; Stirchak, E.P., s sod., Nucleic Acids Res., 1989, 17. 6129-6141; U.S. patent 5,034,506; U.S. patent 5,142,047; Hewitt, J.M. s sod., Nucleosides & Nucleotides, 1992, H, 1661-1666; Summerton, J. s sod., mednarodnaThe oligomers of the invention may also have one or more "substituent bonds" in addition to the 2'5 ', 3'-5' and 4'-5 'bonds disclosed herein, which are generally understood in the art. These "substitute linkages" include phosphorothioate, metilfosfonatno, tionometilfosfonatno, fosforoditioatno, alkilfosfonatne, morpholino sulfamidno, boranofosfatno (-OP (OCH 3) (BH 3) -O-), siloxane (-O-Si (X 4) (X 4) -O-; X 4 is 1-6C alkyl or phenyl) and phosphoramidate (methoxyethylamine (-OP (OCH 2 GH 2 OCH 3 ) (O) -O-) and the like) and have been synthesized as described in generally available literature including with the following references (Sood, A., et al., J. Am. Chem. Soc., 1990, 112, 9000-9001; WO 91/08213; WO 90/15065; WO 91/15500; Stirchak, EP, s et al., Nucleic Acids Res., 1989, 17. 6129-6141; US patent 5,034,506; US patent 5,142,047; Hewitt, JM et al., Nucleosides & Nucleotides, 1992, H, 1661-1666; Summerton, J. et al. , international

-53objava št. 216 860). Nadomestne vezi, ki so lahko uporabljene v oligomerih, razkritih tu notri, vključujejo tudi sulfonamidno (-O-SO2-NH-), sulfidno (-CH2-S-CH2-), sulfonatno (-O-SO2-CH2-), karbamatno (O-C(O)-NH-, NH-C(O)-O-), dimetilhidrazino (-CH2-NCH3-), sulfamatno (-O-S(O) (O)-N-; -NS(O) (O)-N-), 3’-amino (-NH-CH2-), N-metilhidroksilamino (-CH2-NCH3-O-) in 2’,5’ vezi (take kot so npr. 2’,5’ karbamatna (2’ -N(H)-C(O)-O- 5’), 5’,2’ karbamatna (2’-O-C(O)-N(H)-5’), 5',2’ metilkarbamatna (2’-O-C(O)-N(CH3)-5’) in 5’,2’ tioformacetalna (2'-O-CH2-S-5’). Dodatne nadomestne vezi, ki so primerne, vključujejo amidne vezi, ki jih je opisal Buchardt, O. s sod., (mednarodna objava št. WO 92/20702) in tiste, ki sta jih opisala Cook, P.D. s sod., (mednarodna objava št. WO 92/20822) in De Mesmaeker, A. s sod., (mednarodna objava št. WO 92/20823) in kot je opisano v PCT/US92/04294.-53post no. 216 860). Alternate bonds that may be used in the oligomers disclosed herein also include sulfonamide (-O-SO 2 -NH-), sulfide (-CH 2 -S-CH 2 -), sulfonate (-O-SO 2 -CH 2 -), carbamate (OC (O) -NH-, NH-C (O) -O-), dimethylhydrazino (-CH 2 -NCH 3 -), sulfamate (-OS (O) (O) -N-; -NS (O) (O) -N-), 3'-amino (-NH-CH 2 -), N-methylhydroxylamino (-CH 2 -NCH 3 -O-) and 2 ', 5' bonds (such as eg 2 ', 5' carbamate (2 '-N (H) -C (O) -O- 5'), 5 ', 2' carbamate (2'-OC (O) -N (H) -5 '), 5', 2 'methylcarbamate (2'-OC (O) -N (CH 3 ) -5') and 5 ', 2' thioformacetal (2'-O-CH 2 -S-5 '). suitable substitutions include amide bonds described by Buchardt, O. et al. (International Publication No. WO 92/20702) and those described by Cook, PD et al. (international publication). No. WO 92/20822) and De Mesmaeker, A. et al. (International Publication No. WO 92/20823) and as described in PCT / US92 / 04294.

Razen kjer je specifično označeno, so nadomestne vezi, kot je formacetalna vez, -O- CH2-O-, povezane ali na 4’, 3’, 2’ ogljik nukleomonomera na levi strani in na 5' ogljik nukleomonomera na desni strani. Skladno so pozicije 4’, 3’, 2’ ali 5’ ogljika lahko modificirane, kadar je kakšna druga struktura in ne riboza, deoksiriboza ali arabinoza, povezana na sosednji nukleomonomer. Take strukture vključujejo ksilozo, heksozo, morfolino obroč, karbociklični obroč (npr. ciklopentan) in podobne.Except where specifically indicated, alternative bonds such as the formacetal bond are -O- CH 2 -O- bonded to either the 4 ', 3', 2 'carbon nucleomonomer on the left and the 5' carbon nucleomonomer on the right. Accordingly, the positions of 4 ', 3', 2 'or 5' of carbon may be modified when any structure other than ribose, deoxyribose or arabinose is attached to a neighboring nucleomonomer. Such structures include xylose, hexose, morpholino ring, carbocyclic ring (e.g. cyclopentane) and the like.

Uporaba karbamatnih, karbonatnih, sulfidnih, sulfoksidnih, sulfonatnih, Nhidroksilaminskih in dimetilhidrazino vezi v sintonih ali oligomerih je bila že opisana (Vaseur, J-J. s sod., J Amer Chem Soc., 1992, 114, 4006-4007; WO 89/12060; Musicki, B. s sod., J Org Chem., 1990, 55, 4231-4233; Reynolds, R.C. s sod., J. Org. Chem., 1992, 57, 2983-2985; Mertes, M.P., s sod., J. Med. Chem., 1969, 12, 154-157; Mungall, W.S., s sod., J. Org.The use of carbamate, carbonate, sulfide, sulfoxide, sulfonate, Nhydroxylamine and dimethylhydrazino bonds in synthons or oligomers has already been described (Vaseur, JJ. Et al., J Amer Chem Soc., 1992, 114, 4006-4007; WO 89/12060 ; Musicki, B. et al., J Org Chem., 1990, 55, 4231-4233; Reynolds, RC et al., J. Org. Chem., 1992, 57, 2983-2985; Mertes, MP, et al. ., J. Med. Chem., 1969, 12, 154-157; Mungall, WS, et al., J. Org.

-54Chem., 1977, 42, 703-706; Stirchak, E.P., s sod., J. Org. Chem., 1987, 52, 4202-4206; Wang, H., s sod., Tetrahedron Letts., 1991, 32, 7385-7388; mednarodna prijava št. PCT US91/03680). Nadomestna vez(i) je lahko v oligomerih uporabljena za številne namene, take kot so nadaljnje olajševanje vezanja s komplementarnimi tarčnimi nukleinsko kislinskimi sekvencami in/ali povečevanje stabilnosti oligomerov proti nukleazam.-54Chem., 1977, 42, 703-706; Stirchak, E.P., et al., J. Org. Chem., 1987, 52, 4202-4206; Wang, H., et al., Tetrahedron Letts., 1991, 32, 7385-7388; international application no. PCT US91 / 03680). The substitution bond (s) can be used in oligomers for many purposes, such as further facilitating binding by complementary target nucleic acid sequences and / or enhancing oligomer stability against nucleases.

Baze:Bases:

Primerne baze za uporabo kot nukleozidne baze v spojinah izuma, vključujejo ne samo naravno obstoječe purinske in pirimidinske baze, ampak tudi analoge teh heterocikličnih baz in njihove tautomere. Taki analogi vključujejo alkilirane purine ali pirimidine, acilirane purine ali pirimidine ali druge heterocikle. Taki “analogni purini” in “analogni pirimidini ali purinski ali pirimidinski analogi so tisti, ki so pri tem delu splošno znani, nekateri od njih so uporabljani kot kemoterapevtska sredstva. Ponazorilen, toda nepopoln seznam vključuje N4N4-etanocitozin, 7deazaksantozin, 7-deazagvanozin, 8-okso-N6-metiladenin, 4-acetilcitozin, 5(karboksihidroksilmetil) uracil, 5-fluorouracil, 5-bromouracil, 5karboksimetilaminometil-2-tiouracil, 5-karboksimetilaminometil uracil, inozin, N6-izopentenil-adenin, 1-metiladenin, 2-metilgvanin, 5-metilcitozin, N6metiladenin, 7-metilgvanin, 5-metilaminometil uracil, 5-metoksi aminometil-2tiouracil, 2-tiouracil, 4-tiouracil, 5-(1-propinil)-4-tiouracil, 5-(1-propinil)-2tiouracil, 5-(1-propinil)-2-tiocitozin, 2-tiocitozin in 2,6-diaminopurin. Kot dodatek tem baznim analogom, so bili pirimidinski analogi, vključno s 6azacitozinom, 6-azatimidinom in 5-trifluorometiluracilom opisani v Cook, D.P., s sod., mednarodna objava št. WO 92/02258 (tu notri vključena z referenco) lahko ustrezno vključeni v oligomere izuma.Suitable bases for use as nucleoside bases in the compounds of the invention include not only naturally occurring purine and pyrimidine bases but also analogues of these heterocyclic bases and their tautomers. Such analogues include alkylated purines or pyrimidines, acylated purines or pyrimidines or other heterocycles. Such &quot; purine analogues &quot; and &quot; pyrimidine analogs or purine or pyrimidine analogues are those commonly known in the art, some of which are used as chemotherapeutic agents. An illustrative but incomplete list includes N 4 N 4 -ethancytosine, 7deazaxanthosine, 7-deazaguanosine, 8-oxo-N 6 -methyladenine, 4-acetylcytosine, 5 (carboxyhydroxylmethyl) uracil, 5-fluorouracil, 5-bromouracyl, 5carboxymethyl thiouracil, 5-carboxymethylaminomethyl uracil, inosine, N 6 -isopentenyl-adenine, 1-methyladenine, 2-methylguanine, 5-methylcytosine, N 6 methyladenine, 7-methylguanine, 5-methylaminomethyl uracil, 5-methoxy aminomethyl-2-methoxyaminomethyl-2- thiouracil, 4-thiouracil, 5- (1-propynyl) -4-thiouracil, 5- (1-propynyl) -2thiouracil, 5- (1-propynyl) -2-thiocytosine, 2-thiocytosine and 2,6-diaminopurine. In addition to these base analogs, pyrimidine analogs, including 6azacytosine, 6-azathimidine and 5-trifluoromethyluracil, have been described in Cook, DP, et al., International Publication no. WO 92/02258 (incorporated herein by reference) may be suitably included in the oligomers of the invention.

-55Vključevanje 4-tiouridina in 2-tiotimidina v oligomere je bilo opisano (Nikiforov, T.T., s sod., Tetrahedron Letts., 1992, 33, 2379-2382; Clivio, P., s sod., Tetrahedron Letts., 1992 33:65-68; Nikiforov, T.T., s sod., Tetrahedron Letts., 1991 32:2505-2508; Xu, Υ.-Ζ., s sod., Tetrahedron Letts., 1991 32:2817-2820; Clivio, P., s sod., Tetrahedron Letts., 1992 33:69-72; Connolly, B.A., s sod., Nucl. Acids Res., 1989 17:4957-4974). Prednostne baze vključujejo naslednje baze: adenin, gvanin, timin, uracil, citozin, 5metilcitozin, 5-(1-propinil) uracil, citozin, 5-metilcitozin, 5-(1 -propinil) uracil, 5(1-propinil) citozin, 8-okso-N6-metiladenin, 7-deaza-7-metilgvanin, 7-deaza-7metiladenin in 7-deazaksantozin.-55The incorporation of 4-thiouridine and 2-thiothymidine into oligomers has been described (Nikiforov, TT, et al., Tetrahedron Letts. 1992, 33, 2379-2382; Clivio, P., et al., Tetrahedron Letts., 1992 33 : 65-68; Nikiforov, TT, et al., Tetrahedron Letts., 1991 32: 2505-2508; Xu, Υ.-Ζ., et al., Tetrahedron Letts., 1991 32: 2817-2820; Clivio, P ., et al., Tetrahedron Letts., 1992 33: 69-72; Connolly, BA, et al., Nucl. Acids Res., 1989 17: 4957-4974). Preferred bases include the following bases: adenine, guanine, thymine, uracil, cytosine, 5methylcytosine, 5- (1-propynyl) uracil, cytosine, 5-methylcytosine, 5- (1-propynyl) uracil, 5 (1-propynyl) cytosine, 8-oxo-N 6- methyladenine, 7-deaza-7-methylguanine, 7-deaza-7methyladenine and 7-deazaxanthosine.

Delec za kovaientno povezovanje:Covariate coupling particle:

V nekaterih oligomerih izuma je vključen delec, ki lahko izvede vsaj eno kovaientno vez med oligomerom in dupleksom. Ob zagotavljanju veliko takih premreževalnih delcev, se lahko tvorijo tudi mnogokratne kovalentne vezi. Kovalentna vez je prednostna za bazni ostanek v tarčni verigi, lahko pa je narejena tudi z drugimi deli tarče, vključno s saharidom ali fosfodiestrom. Reakcijsko naravo delca, ki izvaja premreževanje, določa narava tarče v dupleksu. Prednostni premreževalni delci vključujejo acilacijska in alkilacijska sredstva in še posebno tista sredstva, nameščena relativno na del, ki daje sekvenčno specifičnost tako, da dopuščajo reakcijo z lokacijo tarče v verigi.Some of the oligomers of the invention include a particle capable of at least one covariate bond between the oligomer and the duplex. By providing many such crosslinking particles, multiple covalent bonds can also be formed. The covalent bond is preferred to the base residue in the target chain, but may also be formed by other parts of the target, including saccharide or phosphodiester. The reaction nature of the particle performing the crosslinking is determined by the nature of the target in the duplex. Preferred crosslinking moieties include acylating and alkylating agents, and in particular those agents positioned relative to the moiety, which gives sequence specificity in such a way as to allow reaction with the target location in the chain.

Razumljivo je, da ni potrebno, da je heterocikel purin ali pirimidin; resnično tudi ni potrebno, da je psevdo-baza na katero je reaktivna skupina povezana, sploh heterocikel. Vsi načini povezovanja reaktivne skupine so zadovoljivi tako dolgo, dokler je nameščanje pravilno.It is understood that the heterocycle is not required to be purine or pyrimidine; it is also really not necessary that the pseudo-base to which the reactive group is linked is at all heterocycle. All methods of connecting a reactive group are satisfactory as long as the installation is correct.

-56Polarnost oligomerov:-56Polarity of oligomers:

V njihovi najbolj splošni obliki simbol 3’—5’ kaže območje oligomera v katerem so vezi dosledno tvorjene med 5’-hidroksilom aminokislinskega ostanka nukleomonomera na levi s 3’- (ali 2’- za oligomere, ki imajo 2’-5’ vezi ali 4’ za oligomere, ki imajo 4’-5’ vezi) hidroksilom aminokislinskega ostanka nukleomonomera na desni (npr. območje iste polarnosti) in tako ostaja 5’-hidroksil najbolj desnega nukleomonomernega aminokislinskega ostanka prost za dodatno konjugacijo. Analogno, 5’—3’ kaže območje nasprotno usmerjenega oligomera, v katerem so vezi tvorjene med 3’hidroksilom aminokislinskega ostanka levega nukleomonomera in 5’hidroksilom aminokislinskega ostanka nukleomonomera na desni, da tako ostaja 3’-hidroksil najbolj desnega nukleomonomernega ostanka prost za dodatno konjugacijo. Enako velja za 5’—-4’ območje oligomerov.In their most general form, the symbol 3'-5 'indicates the region of the oligomer in which the bonds are consistently formed between the 5'-hydroxyl of the amino acid residue on the left by the 3'- (or 2'- for oligomers having 2'-5' bonds or 4 'for oligomers having 4'-5' bonds) by the hydroxyl of the amino acid residue of the nucleomonomer on the right (e.g., the region of the same polarity), thus leaving the 5'-hydroxyl of the rightmost nucleomomeric amino acid residue free for additional conjugation. Analogously, 5'-3 'shows the region of a counter-directed oligomer in which the bonds are formed between the 3'-hydroxyl of the amino acid residue of the left nucleomonomer and the 5'-hydroxyl of the amino acid residue of the nucleomomer on the right, leaving the 3'-hydroxyl of the most right nucleomonomer residue free conjugation. The same goes for the 5 '- - 4' oligomer range.

Farmacevtsko sprejemljive soli:Pharmaceutically acceptable salts:

Izum zagotavlja tudi različne soli vseh spojin, ki so razkrite tu notri, vključno s farmacevtsko sprejemljivimi solmi za dajanje živali ali človeku. Farmacevtsko sprejemljive soli in materiali za tvorjenje takih soli so pri tem delu dobro poznani. Farmacevtsko sprejemljive soli so prednostno kovinske ali amonijeve soli oligomerov izuma in vključujejo alkalijske ali alkalne soli zemeljskih kovin, npr., natrijeve, kalijeve, magnezijeve ali kalcijeve soli; ali ugodneje amonijeve soli, ki kristalizirajo brez težav in so dobljene iz amoniaka ali organskih aminov, kot so mono-, di- ali tri-nižji (alkil, cikloalkil ali hidroksialkil)-amidi, nižji alkilendiamini ali nižje (hidroksialkil ali arilalkil)alkilamonijeve baze, npr. metiiamin, dietilamin, trietilamin, dicikloheksilamin, trietanolamin, etilendiamin, tris-(hidroksimetil)-aminometan ali benziltrimetilamonijev hidroksid. Oiigomeri izuma lahko tvorijo dodatne soli kislin,The invention also provides various salts of all the compounds disclosed herein, including pharmaceutically acceptable salts for administration to animals or humans. Pharmaceutically acceptable salts and materials for forming such salts are well known in the art. Pharmaceutically acceptable salts are preferably metal or ammonium salts of the oligomers of the invention and include alkali or alkaline earth metal salts, e.g., sodium, potassium, magnesium or calcium salts; or more preferably ammonium salts which crystallize easily and are obtained from ammonia or organic amines such as mono-, di- or tri-lower (alkyl, cycloalkyl or hydroxyalkyl) -amides, lower alkylenediamines or lower (hydroxyalkyl or arylalkyl) alkylammonium bases , e.g. methylamine, diethylamine, triethylamine, dicyclohexylamine, triethanolamine, ethylenediamine, tris- (hydroxymethyl) -aminomethane or benzyltrimethylammonium hydroxide. Oiigomers of the invention may form additional acid salts,

-57prednostno, terapevtsko sprejemljivih anorganskih ali organskih kislin, takih kot so močne mineralne kisline, na primer hidrofilne, npr., klorovodikova ali bromovodikova kislina; žveplova, fosforna; alifatske ali aromatske karboksilne ali sulfonske kisline, npr., mravljinčna, ocetna, propionska, jantarna, glikolna, mlečna, jabolčna, vinska, glukonska, citronska, askorbinska, maleinska, fumarna, hidroksimaleinska, piruvična, fenilocetna, benzojeva, 4-aminobenzojeva, antranilna, 4-hidroksibenzojeva, salicilna, 4aminosalicilna, metansulfonska, etansulfonska, hidroksietansulfonska, benzensulfonska, sulfanilna ali cikloheksilsulfaminska kislina in podobne.-57 preferably, therapeutically acceptable inorganic or organic acids, such as strong mineral acids, for example hydrophilic, e.g., hydrochloric or hydrobromic acid; sulfur, phosphoric; aliphatic or aromatic carboxylic or sulfonic acids, e.g., formic, acetic, propionic, succinic, glycolic, lactic, malic, tartaric, gluconic, citric, ascorbic, maleic, fumaric, hydroxymaleic, pyruvic, phenylacetic, benzoic, 4-amine, benzoic, 4-amine , 4-hydroxybenzoic, salicylic, 4aminosalicylic, methanesulfonic, ethanesulfonic, hydroxyethanesulfonic, benzenesulfonic, sulfanyl or cyclohexylsulfamic acid and the like.

Koristnost in daianie:Utility and benefits:

Ker so oligomeri izuma zmožni značilne enojnoverižne ali dvojnoverižne tarčne nukleinsko kislinske vezavne aktivnosti za tvorjenje dupleksov, tripleksov ali drugih oblik stabilnih zvez z naravno obstoječimi polinukleotidi in njihovimi strukturnimi analogi, se oligomeri izuma lahko uporabljajo v večini postopkov pri katerih se uporabljajo običajni oligomeri. Tako so oligomeri izuma lahko uporabljeni, kot na primer, polinukleotidne hibridizacijske probe, primerji za polimerazno verižno reakcijo in podobne ciklične amplifikacijske reakcije, primerji pri sekvencioniranju in podobno. Oligomere izuma se lahko uporablja tudi pri diagnozi in terapijah bolezni. Terapevtske uporabe oligomerov izuma vključujejo specifično inhibicijo ekspresije genov (ali inhibiranje translacije RNA sekvenc, nakodiranih s temi geni), ki so povezani bodisi z uspostavitvijo ali vzdrževanjem patološkega stanja, s pomočjo uporabe antisense oligomerov. Oligomeri izuma so lahko uporabljeni za posredovanje antisense inhibicije številnih genetskih tarč, Ponazorilni geni ali RNA molekule nakodirane s temi geni, ki so lahko ciljani s pomočjo antisense metode, ki uporablja oligomere, vključujejo tiste, ki kodirajo encime, hormone, serumske proteine, transmembranskeBecause the oligomers of the invention are capable of characterizing single or double stranded target nucleic acid binding activities to form duplexes, triplexes or other forms of stable bonds with naturally occurring polynucleotides and their structural analogues, the oligomers of the invention can be used in most processes using conventional oligomers. Thus, the oligomers of the invention can be used, for example, polynucleotide hybridization probes, primers for polymerase chain reaction, and similar cyclic amplification reactions, primers for sequencing, and the like. The oligomers of the invention can also be used in the diagnosis and therapy of diseases. The therapeutic uses of the oligomers of the invention include specific inhibition of gene expression (or inhibition of translation of RNA sequences encoded by these genes), which are associated with either the establishment or maintenance of a pathological condition through the use of antisense oligomers. The oligomers of the invention can be used to mediate the antisense inhibition of many genetic targets, Illustrative genes or RNA molecules encoded by these genes, which can be targeted by an antisense method using oligomers include those encoding enzymes, hormones, serum proteins, transmembrane

-58proteine, adhezijske molekule (LFA-1, ΘΡΐνΐΙΙ3, ELAM-1, VACM-1, ICAM-1, E-selekcija in podobne), receptorske molekule, vključno s citokinskiml receptorji, citokine (IL-1, IL-2, IL-3, IL-4, IL-6 in podobne), onkogene, rastne faktorje in interlevkine. Tarčni geni ali RNA molekule so lahko povezani z vsakim patološkim stanjem, kot so tista povezana z vnetnimi stanji, kardiovaskularnimi motnjami, imunskimi reakcijami, rakom, virusnimi infekcijami, bakterijskimi infekcijami, infekcijami s kvasovkami, infekcijami s paraziti in podobno.-58proteins, adhesion molecules (LFA-1, ΘΡΐνΐΙΙ 3 , ELAM-1, VACM-1, ICAM-1, E-selection and the like), receptor molecules, including cytokinin receptors, cytokines (IL-1, IL-2, IL-3, IL-4, IL-6 and the like), oncogenes, growth factors and interleukins. Target genes or RNA molecules can be associated with any pathological condition, such as those associated with inflammatory conditions, cardiovascular disorders, immune responses, cancer, viral infections, bacterial infections, yeast infections, parasite infections and the like.

Oligomeri pričujočega izuma so primerni za uporabo pri obeh, in vivo ter ex vivo aplikacijah.The oligomers of the present invention are suitable for use in both in vivo and ex vivo applications.

Indikacije za ex vivo uporabe vključujejo zdravljenje celic, kot so celice kostnega mozga ali periferne krvi pri stanjih, kot so npr. levkemija (kronična mielogena levkemija, akutna limfocitna levkemija) ali virusna infekcija. Tarčni geni ali RNA molekule nakodirane s temi geni, ki služojo kot tarče za zdravljenja raka vključujejo onkogene, kot so ras, k-ras, bcl-2, c-myb, ber, c-myc, c-abl ali prekomerno izražene sekvence take kot npr. mdm2, onkostatin M, IL-6 (Kaposijev sarkom), HER-2 in translokacije, kot je bcr-abl. Virusne genske sekvence ali RNA molekule nakodirane s temi geni, kot so geni za polimerazo ali reverzno transkriptazo herpes virusov, kot so CMV, HSV-1, HSV-2, retrovirusov kot so HTLV-1, HIV-1, HIV-2 ali drugih DNA ali RNA virusov, takih kot so HBV, HPV, VZV, virus gripe, adenovirusi, flavivirusi, rinovirusi in podobni so tudi primerne tarče. Dajanje oligomerov za specifično vezanje se lahko uporablja v povezavi z drugimi terapevtskimi zdravljenji. Druge terapevtske uporabe za oligomere izuma vključujejo (1) modulacijo vnetnih odzivov z moduliranjem ekspresije genov, kot so npr., IL-1 receptor, IL-1, ICAM-1 ali E-selekcija, ki imajo vlogo pri posredovanju vnetja in (2) modulacijo celične proliferacije v pogojih kot jeIndications for ex vivo administration include the treatment of cells such as bone marrow or peripheral blood cells in conditions such as e.g. leukemia (chronic myelogenous leukemia, acute lymphocytic leukemia) or viral infection. Target genes or RNA molecules encoded by these genes that serve as targets for cancer treatments include oncogenes such as ras, k-ras, bcl-2, c-myb, ber, c-myc, c-abl, or overexpressed sequences of such such as mdm2, oncostatin M, IL-6 (Kaposi's sarcoma), HER-2, and translocations such as bcr-abl. Viral gene sequences or RNA molecules encoded by these genes, such as the polymerase or reverse transcriptase genes of herpes viruses such as CMV, HSV-1, HSV-2, retroviruses such as HTLV-1, HIV-1, HIV-2 or other DNA or RNA viruses such as HBV, HPV, VZV, influenza virus, adenoviruses, flaviviruses, rhinoviruses and the like are also suitable targets. Administration of specific binding oligomers may be used in conjunction with other therapeutic treatments. Other therapeutic uses for the oligomers of the invention include (1) modulating inflammatory responses by modulating gene expression, such as, for example, IL-1 receptor, IL-1, ICAM-1 or E-selection, which play a role in mediating inflammation and (2) modulation of cell proliferation under conditions such as

-59zamašitev arterij (restenoza) po angioplastiji z moduliranjem ekspresije (a) rastnih ali mitogenih faktorjev kot so nemišični miozin, myc, fox, PCNA, PDGF ali FGF ali njihovi receptorji, ali (b) celičnih proliferacijskih faktorjev takih kot je c-myb. Drugi ustrezni proliferacijski faktorji ali signalni transdukcijski faktorji, taki kot TGFx, IL-6, gINF, protein kinaza C, tirozin kinaze (take kot sta p210, p190), so lahko ciljani za zdravljenje luskavice ali drugih stanj. Prav tako so EGF receptor, THFa ali MHC aleli lahko ciljani pri avtoimunskih boleznih.-59 artery blockage (restenosis) after angioplasty by modulating the expression of (a) growth or mitogenic factors such as non-muscle myosin, myc, fox, PCNA, PDGF or FGF or their receptors, or (b) cell proliferation factors such as c-myb. Other suitable proliferation factors or signal transduction factors, such as TGFx, IL-6, gINF, protein kinase C, tyrosine kinases (such as p210, p190) may be targeted for the treatment of psoriasis or other conditions. Likewise, EGF receptor, THFα or MHC alleles may be targeted in autoimmune diseases.

Vnos oligomerov izuma v celice je lahko povečan z vsako ustrezno metodo, vključno s kalcijevim fosfatom, DMSO, glicerolno ali dekstransko transfekcijo, elektroporacijo ali z uporabo kationsko anionskih in/ali nevtralnih lipidnih zmesi ali liposomov po opisanih metodah (mednarodne objave s št. WO 90/14074, WO 91/16024, WO 91/17424, U.S. patent 4,897,355). Oligomeri so lahko v celice vstavljeni s kompleksiranjem s kationskimi lipidi kot je DOTMA (ki lahko ali pa tudi ne more tvoriti liposomov), katerih kompleks je potem v kontaktu s celicami. Ustrezni kationski lipidi vključujejo N-(2,3-di(9-(Z)-oktadekeniloksil))-prop-1-il-N,N,Ntrimetilamonij (DOTMA) in njegove soli, 1-O-oleil-2-O-oleil-3dimetilaminopropil-p-hidroksietilamonij in njegove soli in 2,2-bis (oleiioksi)-3(trimetilamonio) propan in njegove soli, vendar niso omejeni na te spojine.The uptake of the oligomers of the invention into cells can be enhanced by any suitable method, including calcium phosphate, DMSO, glycerol or dextran transfection, electroporation, or using cationically anionic and / or neutral lipid mixtures or liposomes according to the methods described (International Publication No. WO 90 / 14074, WO 91/16024, WO 91/17424, U.S. Patent 4,897,355). Oligomers can be inserted into cells by complexation with cationic lipids such as DOTMA (which may or may not form liposomes), the complex of which is then in contact with the cells. Suitable cationic lipids include N- (2,3-di (9- (Z) -octadecenyloxy)) - prop-1-yl-N, N, N-trimethylammonium (DOTMA) and its salts, 1-O-oleyl-2-O -oleyl-3dimethylaminopropyl-p-hydroxyethylammonium and its salts and 2,2-bis (oleioxy) -3 (trimethylammonio) propane and its salts, but are not limited to these compounds.

Povečan vnos oligomerov izuma je lahko posredovan tudi z uporabo (i) virusov, takih kot sta Sendai virus (Bartzatt, R., Biotechnol App! Biochem., 1989, H, 133-135) ali adenovirus (VVagner, E. s sod., Proč Natl Acad Sci. USA, 1992, 89, 6099-6013); (ii) poliaminskih ali polikationskih konjugatov z uporabljanjem spojin, kot so polilizin, protamin ali Na, N12-bis (etil)spermin (VVagner, E. s sod., Proč Natl Acad Sci. USA, 1991, 88, 4255-4259; Ženke,Increased uptake of the oligomers of the invention may also be mediated by the use of (i) viruses such as Sendai virus (Bartzatt, R., Biotechnol App! Biochem., 1989, H, 133-135) or adenovirus (VVagner, E. et al. , Off Natl Acad Sci. USA, 1992, 89, 6099-6013); (ii) polyamine or polycationic conjugates using compounds such as polylysine, protamine or Na, N 12 -bis (ethyl) spermine (Vagner, E. et al., Natl Acad Sci. USA, 1991, 88, 4255-4259 Females,

M. s sod., Proč. Natl. Acad. Sci. USA, 1990, 87, 3655-3659; Chank, B.K. sM. et al., Off. Natl. Acad. Sci. USA, 1990, 87, 3655-3659; Chank, B.K. s

-60sod., Biochem Biophys Res Commun., 1988, 157, 264-270; U.S. patent 5,138,045); (iii) lipopoliaminskih kompleksov z uporabljanjem spojin, kot je lipospermin (Behr, J.-P. s sod., Proč Natl Acad Sci. USA, 1989, 86, 69826986; Loeffler, J.P. s sod., J. Neurochem., 1990, 54, 1812-1815); (iv) anionskih, nevtralnih ali pH občutljivih lipidov z uporabljanjem spojin, vključno z anionskimi fosfolipidi, takimi kot so fosfatidil glicerol, kardiolipin, fosfatidna kislina ali fosfatidiletanolamin (Lee, K.-D. s sod., Biochem Biophys ACTA, 1992, 1103. 185-197; Cheddar, G. s sod., Arch Biochem Biophys, 1992, 294. 188-192; Yoshimura, T., s sod., Biochem Int., 1990, 20, 697706); (v) konjugatov s spojinami kot sta transferin ali biotin ali (vi) konjugatov s proteini (vključno z albuminom ali protitelesi), glikoproteini ali polimeri (vključno s polietilen glikolom), kar poveča farmakokinetske lastnosti oligomerov v subjektu. Kot je uporabljeno tu notri, se transfekcija nanaša na vsako metodo, ki je ustrezna za vnos oligomerov v celice. Vsak reagent, kot je lipid ali vsako sredstvo, kot je virus, ki je lahko uporabljen v transfekcijskih protokolih je tu notri kolektivno naveden kot “sredstvo za povečevanje permeacije”. Vnos oligomerov v celice lahko poteka preko kotransfekcije z drugimi nukleinskimi kislinami, kot so (i) ekspresijski DNA fragmenti, ki imajo nakodiran protein(e) ali proteinski fragment ali (ii) RNA molekule, ki so prevedljive in imajo nakodiran protein(e) ali proteinski fragment.-60sod., Biochem Biophys Res Commun., 1988, 157, 264-270; U.S. patent 5,138,045); (iii) lipopolyamine complexes using compounds such as lipospermine (Behr, J.-P. et al., Natl Acad Sci. USA, 1989, 86, 69826986; Loeffler, JP et al., J. Neurochem., 1990 , 54, 1812-1815); (iv) anionic, neutral or pH-sensitive lipids using compounds including anionic phospholipids such as phosphatidyl glycerol, cardiolipin, phosphatidic acid or phosphatidylethanolamine (Lee, K.-D. et al., Biochem Biophys ACTA, 1992, 1103 185-197; Cheddar, G. et al., Arch Biochem Biophys, 1992, 294. 188-192; Yoshimura, T., et al., Biochem Int., 1990, 20, 697706); (v) conjugates with compounds such as transferrin or biotin; or (vi) conjugates with proteins (including albumin or antibodies), glycoproteins or polymers (including polyethylene glycol), which increase the pharmacokinetic properties of the oligomers in the subject. As used herein, transfection refers to any method suitable for the uptake of oligomers into cells. Any reagent such as a lipid or any agent such as a virus that can be used in transfection protocols is collectively referred to herein as a "permeation enhancer". The uptake of oligomers into cells may occur via cotransfection with other nucleic acids, such as (i) expression DNA fragments having a protein (s) or protein fragment encoded, or (ii) RNA molecules that are translatable and having a protein (s) encoded, or protein fragment.

Oligomeri izuma so tako lahko vključeni v vsako ustrezno formulacijo, ki povečuje vnos oligomerov v celice. Ustrezne farmacevtske formulacije vključujejo tudi tiste, ki so navadno uporabljane pri dajanjih, kjer so spojine v celice ali tkiva vnesene z lokalnim dajanjem. Spojine kot so polietilen glikol, propilen glikol, azon, nonoksonil-9, oleinska kislina, DMSO, poliamini ali lipopoliamini se lahko uporabijo v lokalnih pripravkih, ki vsebujejo oligomere.The oligomers of the invention can thus be incorporated into any suitable formulation that enhances the uptake of oligomers into cells. Suitable pharmaceutical formulations also include those commonly used for administration where compounds are introduced into cells or tissues by topical administration. Compounds such as polyethylene glycol, propylene glycol, azone, nonoxonyl-9, oleic acid, DMSO, polyamines or lipopolyamines can be used in topical preparations containing oligomers.

-61Oligomeri izuma so lahko primerno uporabljeni kot reagenti za raziskovalne aii produkcijske namene, kjer je zaželena inhibicija ekspresije genov. Trenutno je na voljo zelo malo reagentov, ki z vsakim mehanizmom učinkovito in specifično inhibirajo ekspresijo tarčnega gena. Oligomeri, ki so bili predhodno navedeni, da inhibirajo ekspresijo tarčnega gena, imajo pogosto nespecifične učinke in; ali ne zmanjšajo ekspresije tarčnega gena do zelo nizkih stopenj (manj kot okoli 40% neinhibiranih ciljev).-61Oligomers of the invention may be suitably used as reagents for research or production purposes, where inhibition of gene expression is desirable. Currently, very few reagents are available that effectively and specifically inhibit target gene expression by each mechanism. Oligomers previously cited to inhibit target gene expression often have nonspecific effects and; or do not reduce target gene expression to very low levels (less than about 40% of uninhibited targets).

Tako oligomeri, kot je opisano tu notri ustvarjajo reagent, ki je lahko uporabljen pri metodah inhibiranja ekspresije izbranega proteina ali proteinov v subjektu ali v celicah v katerih so proteini nakodirani z DNA sekvencami in so proteini prevedeni iz RNA sekvenc, kar obsega naslednje stopnje: vstavljanje oligomera izuma v celice; in dopuščanje oligomeru, da tvori tripieks z DNA ali RNA ali dupleks z DNA ali RNA s čimer je ekspresija proteina ali proteinov inhibirana. Metode in spojina pričujočega izuma so primerne za moduliranje genske ekspresije v obeh, prokariotskih in eukariotskih celicah, kot so bakterijske celice, giivne parazitske celice, celice kvasovk in celice sesalcev.Thus, the oligomers described herein generate a reagent that can be used in methods of inhibiting the expression of a selected protein or proteins in a subject or in cells in which proteins are encoded by DNA sequences and proteins are translated from RNA sequences, comprising the following steps: insertion the oligomer of the invention into cells; and allowing the oligomer to form tripiex with DNA or RNA or duplexing with DNA or RNA thereby inhibiting protein or protein expression. The methods and compound of the present invention are suitable for modulating gene expression in both prokaryotic and eukaryotic cells, such as bacterial cells, giva parasite cells, yeast cells and mammalian cells.

RNaza H “kompetentni ali RNaza H “nekompetentni” oligomeri so lahko z uporabljanjem nadomestnih vezi izuma hitro zasnovani. RNaza H kompetentni oligomeri lahko obsegajo eno ali več RNaza H kompetentnih področij, narejenih iz povezanih, RNaza H kompetentnih nukleomonomerov. Oligomeri, ki imajo modifikacije, kot so 2’-substitucije (2’-O-alil in podobne) ali določene vezi brez nabojev (metilfosfonatna, fosforamidatna in podobne) so običajno nekompetentni kot substrat, ki ga RNaza H prepozna in/ali nanj deluje. Kompetenca RNaze H lahko olajša antisense oligomerno funkcijo z degradiranjem tarčne RNA v RNA-oligomer dupleksu (Dagle, J.M.RNase H "competent or RNase H" incompetent "oligomers can be quickly designed using alternative substitution bonds. RNase H competent oligomers may comprise one or more RNase H competent regions made from linked, RNase H competent nucleomonomers. Oligomers that have modifications such as 2'-substitutions (2'-O-allyl and the like) or certain charge-free bonds (methylphosphonate, phosphoramidate and the like) are usually incompetent as a substrate recognized and / or acted upon by RNase H . RNase H competence can facilitate antisense oligomer function by degrading target RNA in the RNA oligomer duplex (Dagle, J.M.

-62s sod., Nucl Acids Res., 1990, 18, 4751-4757; Walder, J.A. s sod., mednarodna objava št. WO 89/05358). Encim cepi RNA v RNA-DNA dupleksih.-62s et al., Nucl Acids Res., 1990, 18, 4751-4757; Walder, J.A. et al., International Publication no. WO 89/05358). The enzyme cleaves RNA in RNA-DNA duplexes.

Zato, da bi zadržali RNaza H kompetenco, oligomer potrebuje RNaza H kompetentno področje treh ali več kompetentnih sosednjih nukleomonomerov, lociranih znotraj oligomera (Ouartin, R.S., s sod., Nucl Acids Res., 1989, 17, 7253-7262). Model oligomerov, rezistentnih na nukleazno presnovo, bo imel za izvajanje nukleazne rezistence končno vez ter modifikacije sladkorjev in/ali baz. Tako so oligomeri lahko zasnovani tako, da imajo modificirane nukleomonomerne ostanke na enem od obeh ali na obeh, 5’- in/ali 3’- koncih, medtem ko imajo notranje RNaza H kompetentno področje. Ponazorilni oligomeri, ki zadržijo kompetenco RNaze H, bi v splošnem imeli enako polarnost in bi obsegali približno 2 do okoli 12 nukleomonomerov na 5’- koncu in na 3’- koncu, kar stabilizira oligomer proti nukleazni degradaciji in približno tri do okoli 26 nukleomonomerov, ki delujejo kot RNaza H kompetentno področje, med RNaza H nekompetentnimi 3’ in 5’- konci. Variacije na tak oligomer bi vključevale (1) krajše RNaza H kompetentno področje, obsegajoče 1 do 2 RNaza H kompetentni vezi ali nadomestni vezi, (2) daljše RNaza H nekompetentno področje, obsegajoče do 15, 20 ali več nadomestnih vezi ali nukleomonomerov, (3) daljše RNaza H kompetentno področje, obsegajoče do 30, 40 aii več vezi, (4) oligomere s samo enim RNaza H nekompetentnim področjem na 3’ koncu ali na 5' koncu.In order to retain RNase H competence, the oligomer requires the RNase H competent domain of three or more competent adjacent nucleomonomers located within the oligomer (Ouartin, R.S., et al., Nucl Acids Res., 1989, 17, 7253-7262). The model of oligomers resistant to nuclease metabolism will have the final binding and modifications of sugars and / or bases to exert nuclease resistance. Thus, the oligomers may be designed to have modified nucleomomeric residues at one or both, 5 'and / or 3' ends, while the internal RNase H has a competent domain. Illustrative oligomers that retain RNase H competence would generally have the same polarity and would comprise about 2 to about 12 nucleomonomers at the 5'-end and 3'-end, stabilizing the oligomer against nuclease degradation and about three to about 26 nucleomonomers, acting as RNase H competent domain, between RNase H incompetent 3 'and 5'- ends. Variations on such an oligomer would include (1) shorter RNase H competent region comprising 1 to 2 RNase H competent bonds or substituent bonds, (2) longer RNase H non-competent region comprising up to 15, 20 or more replacement bonds or nucleomonomers, (3 ) longer RNase H competent region, comprising up to 30, 40 or more bonds, (4) oligomers with only one RNase H incompetent region at the 3 'end or 5' end.

Oligomeri, ki imajo tako malo, kot je okoli 8 nukleomonomerov, se lahko uporabljajo za izvajanje inhibicije ekspresije tarčnega proteina (proteinov) s tvorjenjem dupleksnih ali tripleksnih struktur s tarčnimi nukleinsko kislinskimi sekvencami. Vendar bodo linearni oligomeri uporabljeni za inhibiranjeOligomers having as few as about 8 nucleomonomers can be used to perform inhibition of target protein (s) expression by forming duplex or triplex structures with target nucleic acid sequences. However, linear oligomers will be used for inhibition

-63ekspresije tarčnega proteina preko dupleksnih ali tripleksnih formacij, preferenčno imeli od približno 10 do okoli 20 nukleomonomernih ostankov.-63Expression of the target protein via duplex or triplex formations, preferably having from about 10 to about 20 nucleomomeric residues.

Oligomeri, ki imajo nadomestne vezi izuma so lahko ustrezno zaokroženi, kot je bilo opisano (mednarodna objava št. WO 92/19732; Kool, E.T. J Am Chem Soc., 1991, 113, 6265-6266; Prakash, G. s sod., J Am Chem Soc., 1992, 114, 3523-3527). Taki oligomeri so primerni za vezanje na enojnoverižne ali dvojnoverižne nukleinsko kislinske tarče. Krožni oligomeri so lahko različnih velikosti. Taki oligomeri v velikostnem območju okoli 2250 nukleomonomerov se lahko lažje pripravijo. Krožni oligomeri imajo lahko v območju zanke okoli tri do približno šest nukleomonomernih ostankov, ki ločujejo vezavna področja oligomera, kot je bilo opisano (Prakash, G. v isti objavi). Oligomeri so lahko encimatsko zaokroženi s pomočjo terminalnega fosfata z ligazo ali s kemičnimi sredstvi preko vezi s pomočjo 5’- in 3’terminalnih sladkorjev in/ali baz.The oligomers having alternative linkages of the invention may be properly rounded as described (International Publication No. WO 92/19732; Kool, ET J Am Chem Soc. 1991, 113, 6265-6266; Prakash, G. et al. , J Am Chem Soc., 1992, 114, 3523-3527). Such oligomers are suitable for binding to single-stranded or double-stranded nucleic acid targets. Circular oligomers can be of different sizes. Such oligomers in the size range of about 2250 nucleomonomers can be more readily prepared. Circular oligomers can have in the loop region about three to about six nucleomomeric residues separating the binding regions of the oligomer as described (Prakash, G. in the same publication). The oligomers may be enzymatically rounded by terminal phosphate by ligase or by chemical means via bonds using 5′- and 3′terminal sugars and / or bases.

Oligomeri so lahko uporabljeni za moduliranje ekspresije tarčnega gena z inhibiranjem interakcije nukleinsko kislinskih vezavnih proteinov, odgovornih za moduliranje transkripcije (Maher, L.J., s sod., Science, 1989, 245. 725730) ali translacije. Oligomeri so tako primerni kot sekvenčno-specifična sredstva, ki tekmujejo z nukleinsko kislinskimi vezavnimi proteini (vključno z ribosomi, RNA polimerazami, DNA polimerazami, translacijskimi iniciacijskimi faktorji, transkripcijskimi faktorji, ki bodisi povečajo ali zmanjšajo transkripcijo, proteinsko-hormonskimi transkripcijskimi faktorji in podobnimi). Primerno zasnovani oligomeri so tako lahko uporabljeni za povečanje sinteze tarčnega proteina s pomočjo mehanizmov, kot so vezanje na regulatorno mesto ali blizu tega mesta, da transkripcijski faktorji služijo za zaustavitev ekspresije ali z inhibiranjem ekspresije izbranega represorskega proteina samega.Oligomers can be used to modulate target gene expression by inhibiting the interaction of nucleic acid binding proteins responsible for modulating transcription (Maher, L.J., et al., Science, 1989, 245. 725730) or translation. Oligomers are therefore suitable as sequence-specific agents that compete with nucleic acid binding proteins (including ribosomes, RNA polymerases, DNA polymerases, translation initiation factors, transcription factors that either increase or decrease transcription, protein-hormone transcription factors and the like) . Suitably designed oligomers can thus be used to enhance the synthesis of the target protein by mechanisms such as binding to or near the regulatory site, that transcription factors serve to arrest expression or by inhibiting the expression of the selected repressor protein itself.

-64Oligomeri izuma, ki obsegajo dodatne modifikacije, ki povečajo vezavno afiniteto so lahko zasnovani tako, da imajo sekundarne ali terciarne strukture, kot so psevdovozli ali psevdo-pol-vozli (Ecker, D.J. s sod., Science, 1992, 257, 958-961). Take strukture imajo lahko bolj stabilno sekundarno ali terciarno strukturo, kot odgovarjajoči nemodificirani oligomeri. Povečana stabilnost takih struktur, bi se opirala na povečano vezavno afiniteto med območji same komplementarnosti v enojnem oligomeru ali območji komplementarnosti med dvema ali večimi oligomeri, ki tvorijo dano strukturo. Take strukture so lahko uporabljene za posnemanje struktur, kot je HIV TAR struktura, zato da bi motile pri vezanju s HIV Tat proteinom (protein, ki se veže na TAR). Podoben pristop je lahko uporabljen z drugimi transkripcijskimi ali translacijskimi faktorji, ki prepoznajo višje nukleinsko kislinske strukture, kot so stebla, zanke, pentlje, vozli in podobno. Alternativno so oligomeri izuma lahko uporabljeni za (1) prekinitev ali (2) vezanje na take strukture, kot metodo za (1) oviranje ali (2) povečanje vezanja proteinov na nukleinsko kislinske strukture.-64Oligomers of the invention comprising additional modifications that increase the binding affinity may be designed to have secondary or tertiary structures, such as pseudo-nodes or pseudo-half-nodes (Ecker, DJ et al., Science, 1992, 257, 958- 961). Such structures may have a more stable secondary or tertiary structure than the corresponding unmodified oligomers. The increased stability of such structures would rely on the increased binding affinity between the complementarity regions in a single oligomer or the complementarity regions between two or more oligomers forming a given structure. Such structures can be used to mimic structures such as the HIV TAR structure, in order to interfere with the binding of the HIV Tat protein (TAR-binding protein). A similar approach can be used with other transcription or translation factors that recognize higher nucleic acid structures such as stems, loops, loops, knots and the like. Alternatively, the oligomers of the invention may be used to (1) break or (2) attach to such structures as a method of (1) obstructing or (2) enhancing protein binding to nucleic acid structures.

V dodatku k njihovi uporabi pri antisense ali trojno heliksnih terapijah se oligomere izuma lahko uporabi tudi kot terapevtska ali diagnostična sredstva, ki delujejo z direktno premestitvijo ene verige v dupleksni nukleinski kislini. Premestitev verige v naravnem dupleksu, kot so kromosomska DNA ali dupleksna virusna DNA, RNA ali hibrid DNA/RNA je možna za oligomere z visoko vezavno afiniteto do njihove komplementarne sekvence in ni dovolj dobra za učinkovito premestitev DNA ali RNA verige v dupleksu. Terapevtska učinkovitost oligomerov, ki funkcionirajo z Dlupingom, bi izhajala iz večje afinitete vezanja na komplementarno sekvenco, kar rezultira v modulaciji normalne biološke funkcije, povezane zIn addition to their use in antisense or triple helix therapies, the oligomers of the invention may also be used as therapeutic or diagnostic agents that act by directly displacing a single chain in duplex nucleic acid. Chain displacement in natural duplexes such as chromosomal DNA or duplex viral DNA, RNA, or a DNA / RNA hybrid is possible for oligomers with high binding affinity to their complementary sequence and is not good enough for efficient displacement of DNA or RNA strands in the duplex. The therapeutic efficacy of Dluping-functioning oligomers would result from a higher binding affinity to the complementary sequence, resulting in the modulation of normal biological function associated with Dluping.

-65nukleinsko kislinsko tarčo. Različne vrste tarčnih nukleinskih kislin vključujejo (i) genske sekvence, vključno z eksoni, introni, ekson/intron zvezami, promotor/pospeševalec območji in 5’ ali 3’ neprevedenimi območji, (ii) območja nukleinskih kislin, ki zato da funkcionirajo uporabljajo sekundarne strukture (npr. HIV TAR element steblo-zanka ali tRNA molekule), (iii) nukleinske kisline, ki služijo strukturnim ali drugim funkcijam, kot so telomere, centromere ali izvori replikacije (virus, bakterija in podobno) in (iv) vsako drugo območje dupleksa. Jasno je, da so oiigomeri lahko sintetizirani z diskretnimi funkcionalnimi področji v katerih se eno območje oligomera veže na tarčo z D-lupingom, medtem ko sosednje območje veže tarčno molekulo recimo s tvorjenjem trojnega heliksa ali vezanjem na protein. Alternativno se oligomer, ki tvori D-zanke lahko veže na vsako verižico v dupleksu z menjavanjem verižice na katero se oligomer veže (npr. s tem, da obstaja eno območje oligomera, ki se lahko veže na eno verižico in drugo območje, ki se veže na komplementarno verižico). Kontrolni elementi, ki narekujejo način vezanja (npr. trojna vijačnica ali DOzanka) so sekvenca oligomera in nasledena afiniteta vgrajena v oligomer. Pravila za prepoznavanje baz pri Watson-Crickovem dupleksnem vezanju se razlikujejo od tistih pri Hoogsteenovem kontroliranem tripleksnem vezanju. Zaradi tega. bazna sekvenca oligomera lahko služi za narekovanje tiste vrste pravil vezanja, ki jih bo oligomer uporabil. Strukture D-zank se v naravi tvorijo z encimsko posredovanimi procesi (Harris, LD. s sod., J Biol Chem., 1987, 262, 9285-9292) ali pa so povezane z območji, kjer se dogaja DNA replikacija (Jacobs, H.T. s sod., Nucl Acids Res., 1989, 17, 8949-8966). D-zanke, ki nastanejo iz vezanja oligomerov, lahko izhajajo iz eno ali dvostopenjskega procesa. Direktna premestitev tarčne verige bo povzročila D-zanko z enojno vezavnim dogodkom. Vendar do D-lupinga lahko pride tudi s tvorjenjem trojne-65nucleic acid target. Different types of target nucleic acids include (i) gene sequences, including exons, introns, exon / intron junctions, promoter / promoter regions and 5 'or 3' untranslated regions, (ii) nucleic acid regions which function to utilize secondary structures (e.g., HIV TAR stem-loop or tRNA molecule element), (iii) nucleic acids that serve structural or other functions, such as telomeres, centromeres or replication sources (virus, bacterium, etc.), and (iv) any other duplex region . It is clear that oiigomers can be synthesized by discrete functional regions in which one oligomer region binds to the target by D-luping, while the adjacent region binds the target molecule, for example, by forming a triple helix or by binding to a protein. Alternatively, the D-loop forming oligomer can bind to each chain in the duplex by changing the chain to which the oligomer binds (e.g., by having one oligomer region that can bind to one chain and another region to bind to the complementary chain). The control elements that dictate the binding mode (eg, triple helix or DOZANKA) are the oligomer sequence and the inherited affinity embedded in the oligomer. The rules for recognizing bases for Watson-Crick duplex binding are different from those for Hoogsteen controlled triplex binding. Therefore. the oligomer base sequence can serve to dictate the type of binding rules that the oligomer will use. D-loop structures are naturally formed by enzyme-mediated processes (Harris, LD. Et al., J Biol Chem., 1987, 262, 9285-9292) or are linked to regions where DNA replication occurs (Jacobs, HT et al., Nucl Acids Res., 1989, 17, 8949-8966). D-loops resulting from the binding of oligomers can result from a one- or two-step process. Direct relocation of the target chain will result in a D-loop with a single binding event. However, D-lapping can also occur by forming a triple

-66vijačnice, ki olajšuje premestitev verižice, dogodka, ki vodi do nastanka Dzanke.-66screws, which facilitates the relocation of the chain, the event leading to the formation of Dzanka.

Ribozimi, ki imajo nadomestne vezi izuma so lahko načrtovani zato, da bi oblikovali vrste s spremenjenimi karakteristikami. Ribozimi, ki cepijo enojnoverižno RNA ali DNA (Robertson, D.L., s sod., Nature, 1990, 344, 467-468), so že bili opisani. Terapevtske uporabe ribozimov so bile postulirane (Sarver, N., s sod., Science, 1990, 247, 1222-1225; mednarodna objava št. WO 91/04319). Na sekundarno ali terciarno strukturo, potrebno za ribozimsko funkcijo se lahko vpliva z oblikovanjem primernih sekvenc oligomerov. Na primer, ribozimi, ki imajo nukleazno stabilna tarčna področja, ki vsebujejo nadomestne vezi izuma imajo lahko, medtem ko vzdržujejo specifičnost parjenja baz, večjo afiniteto do tarčnih sekvenc. Zaradi večje afinitete in/ali nukleazne stabilnosti nadomestnih vezi izuma, so lahko v ribozimu (prednost v izdelovanju) oblikovana krajša področja prepoznavanja, ki lahko vodijo do bolj ugodne presnove substrata (prednost v delovanju ribozima)).Ribozymes having alternative linkages of the invention may be designed to form species with altered characteristics. Ribozymes cleaving single-stranded RNA or DNA (Robertson, D.L. et al., Nature, 1990, 344, 467-468) have already been described. Therapeutic uses of ribozymes have been postulated (Sarver, N., et al., Science, 1990, 247, 1222-1225; International Publication No. WO 91/04319). The secondary or tertiary structure required for ribozyme function may be affected by the formation of suitable oligomer sequences. For example, ribozymes having nuclease stable target regions containing alternative linkages of the invention may have greater affinity for target sequences while maintaining the specificity of base pairing. Due to the greater affinity and / or nuclease stability of the substitution bonds of the invention, shorter recognition regions may be formed in the ribozyme (advantage in fabrication), which may lead to more favorable substrate metabolism (advantage in ribozyme action).

V terapevtskih uporabah so oligomeri izuma lahko uporabljeni na način, ki je primeren za zdravljenje različnih stanj z inhibiranjem ekspresije ustreznih tarčnih genov. Za tako terapijo so oligomeri lahko formulirani za različne načine dajanja, vključno s sistemskim, lokalnim ali lokaliziranim dajanjem. Tehnike in formulacije se splošno lahko najde v Remington’s Pharmaceutical Sciences, Merk Publishing Co., Easton, PA, zadnja izdaja. Navadno je oligomerna aktivna sestavina kombinirana z nosilcem kot je razredčilo ali ekscipient, ki lahko vključuje polnila, ekstenderje, veziva, sredstva za močenje, dezintegracijska sredstva, površinsko aktivna sredstva ali maziva, odvisno od narave načina dajanja in doznih oblik. Tipične dozirne oblike vključujejo tablete, praške, tekoče pripravke, vključno sIn therapeutic applications, the oligomers of the invention may be used in a manner suitable for treating various conditions by inhibiting the expression of the corresponding target genes. For such therapy, oligomers may be formulated for a variety of routes of administration, including systemic, topical or topical administration. Techniques and formulations can generally be found in Remington's Pharmaceutical Sciences, Merk Publishing Co., Easton, PA, latest edition. Typically, the oligomeric active ingredient is combined with a carrier such as a diluent or excipient, which may include fillers, extenders, binders, wetting agents, disintegrating agents, surfactants or lubricants, depending on the nature of the route of administration and dosage forms. Typical dosage forms include tablets, powders, liquid preparations, including

-67suspenzijami, emulzijami in raztopinami, granule, kapsule in supozitorije, kakor tudi tekoče pripravke za injekcije, vključno z liposomskimi pripravki.-67 Suspensions, emulsions and solutions, granules, capsules and suppositories, as well as liquid preparations for injection, including liposomal preparations.

Za sistemsko dajanje je prednostna injekcija, vključno z intramuskularno, intravenozno, intraperitonealno in podkožno. Za injiciranje so oligomeri izuma formulirani v tekočih raztopinah, prednostno v fiziološko kompatibilnih pufrih, kot sta Hankova raztopina ali Ringersova raztopina. Dodatno so oligomeri lahko formulirani v trdni obliki in zopet raztopljeni ali suspendirani tik pred uporabo. Vključene so tudi liofilizirane oblike. Doze, ki se lahko uporabijo za dajanje v sistem so preferenčno v območju od okoli 0.01 mg/Kg do 50 mg/Kg, dane enkrat ali dvakrat na dan. Vendar so lahko uporabljeni različni dozirni razporedi, odvisno od (i) zmožnosti posameznega oligomera pri inhibiranju aktivnosti njegove tarčne DNA ali RNA, (ii) težavnosti ali obsega patološkega bolezenskega stanja, povezanega z danim tarčnim genom ali (iii) farmakokinetskega obnašanja danega oligomera.Injection, including intramuscular, intravenous, intraperitoneal and subcutaneous injection, is preferred for systemic administration. For injection, the oligomers of the invention are formulated in liquid solutions, preferably in physiologically compatible buffers such as Hank's solution or Ringers' solution. Additionally, the oligomers may be formulated in solid form and re-dissolved or suspended immediately before use. Freeze-dried forms are also included. The doses that can be used for administration to the system are preferably in the range of about 0.01 mg / Kg to 50 mg / Kg given once or twice daily. However, different dosage schedules may be used depending on (i) the ability of each oligomer to inhibit the activity of its target DNA or RNA, (ii) the difficulty or extent of the pathological disease condition associated with a given target gene, or (iii) the pharmacokinetic behavior of a given oligomer.

Sistemsko dajanje lahko poteka tudi transmukozalno ali transdermalno ali pa so spojine lahko dane oralno. Za transmukozalno ali transdermalno dajanje so v formulacijah uporabljeni tudi penetratorji, primerni za oviro, ki jo je potrebno predreti. Taki penetratorji so pri tem delu splošno poznani in za transmukozalno dajanje vključujejo na primer, žolčne soli in derivate fusidične kisline. Dodatno so za olajšanje permeacije lahko uporabljeni detergenti. Transmukozalno dajanje je lahko npr. s pomočjo nosnih sprejev ali supozitorij. Za oralno dajanje so oligomeri formulirani v običajne oblike za oralno dajanje, kot so kapsule, tablete in toniki.Systemic administration may also be transmucosal or transdermal, or the compounds may be administered orally. For transmucosal or transdermal administration, the formulations also use penetrators suitable for the barrier to be punctured. Such penetrators are generally known in the art and include, for example, bile salts and fusidic acid derivatives for transmucosal administration. Additionally, detergents may be used to facilitate permeation. Transmucosal administration may be e.g. using nasal sprays or suppositories. For oral administration, oligomers are formulated into conventional oral administration forms such as capsules, tablets and tonics.

Za lokalno dajanje so oligomeri izuma formulirani v mazila, balzame, gele ali kreme, kot je splošno poznano pri tem delu. Formulacije oligomerovFor topical administration, the oligomers of the invention are formulated into ointments, balms, gels or creams as is commonly known in the art. Formulations of oligomers

-68izuma za vidne indikacije, kot so virusne infekcije, bi temeljile na standardnih pripravkih, poznanih pri tem delu.-68 The invention for visual indications, such as viral infections, would be based on standard preparations known in the art.

Poleg uporabe pri terapiji se oligomeri izuma lahko uporabljajo kot diagnostični reagenti za odkrivanje prisotnosti ali odsotnosti tarčnih nukleinsko kislinskih sekvenc, na katere se specifično vežejo. Povečana vezavna afiniteta oligomerov izuma je prednost za njihovo uporabo kot primerjev in prob. Diagnostični testi so lahko izvedeni s hibridizacijo s pomočjo, bodisi tvorbe dvojne ali trojne vijačnice, ki se potem detektira na običajne načine. Na primer, oligomeri so lahko označeni z uporabljanjem radioaktivnih, fluorescentnih ali kromogenih označb in potem se detektira prisotnost označbe, vezane na trdno podlago. Alternativno se s protitelesi lahko detektira prisotnost dvojne ali trojne vijačnice, ki specifično prepoznajo te oblike. Načini za izvajanje testov, z uporabljanjem takih oligomerov kot prob, so splošno poznani.In addition to use in therapy, the oligomers of the invention can be used as diagnostic reagents to detect the presence or absence of target nucleic acid sequences to which they specifically bind. The increased binding affinity of the oligomers of the invention is an advantage for their use as primers and probes. Diagnostic tests can be performed by assisted hybridization, either by forming a double or triple helix, which is then detected in the usual ways. For example, oligomers may be labeled using radioactive, fluorescent or chromogenic indications, and then the presence of a tag attached to a solid support is detected. Alternatively, antibodies can detect the presence of double or triple helix that specifically recognize these forms. Methods for performing assays using such oligomers as probes are generally known.

Uporaba oligomerov z nadomestnimi vezmi izuma, kot diagnostičnih sredstev s tvorbo trojnega heliksa je ugodnejša, ker se trojni heliksi tvorijo pod milimi pogoji in so testi tako lahko izvedeni brez izpostavljanja testnih vzorcev preveč ostrim pogojem. Diagnostični testi, ki temeljijo na detekciji RNA za identifikacijo sekvenc bakterij, gliv ali praživali, pogosto zahtevajo izolacijo RNA iz vzorcev ali organizmov, ki so vzgojeni v laboratoriju, kar je težavno in zahteva veliko časa, ker je RNA ekstremno občutljiva na povsod navzoče nukleaze.The use of the oligomers with alternative linkages of the invention as diagnostic agents with the formation of the triple helix is more advantageous because triple helices are formed under mild conditions and can thus be performed without exposing the test specimens to too harsh conditions. Diagnostic tests based on RNA detection to identify bacterial, fungal, or porcine sequences often require isolation of RNA from laboratory-grown samples or organisms, which is difficult and time consuming because RNA is extremely sensitive to ubiquitous nucleases.

Oligomerne probe lahko vključujejo tudi dodatne modifikacije, kot so modificirani sladkorji in/ali nadomestne vezi, ki napravijo oligomer še posebno nukleazno stabilen in bi bile tako uporabne za teste, izvedene v prisotnosti celičnih ali tkivnih ekstraktov, ki normalno vsebujejo nukleaznoOligomer probes may also include additional modifications, such as modified sugars and / or substitute bonds, that make the oligomer particularly nuclease stable and would thus be useful for tests performed in the presence of cellular or tissue extracts that normally contain nuclease

-69aktivnost. Oligomeri, ki imajo terminalne modifikacije pogosto zadržijo njihovo zmožnost za vezanje na komplementarne sekvence, brez da bi izgubili specifičnost (Uhlmann s sod., Chemical Reviews, 1990, 90, 543584). Kot je razloženo zgoraj, probe tega izuma lahko vsebujejo tudi linkerje, ki dopuščajo specifično vezanje na izmenični DNA verigi z vključevanjem linkerja, ki dopušča tako vezanje (Froehler, B.C. s sod., Biochemistry, 1992, 31, 1603-1609); Horne s sod., J Am Chem Soc., 1990, 112, 2435-2437).-69activity. Oligomers that have terminal modifications often retain their ability to bind to complementary sequences without losing specificity (Uhlmann et al., Chemical Reviews, 1990, 90, 543584). As explained above, the assays of the present invention may also contain linkers that allow specific binding on the alternating DNA strand by including a linker allowing such binding (Froehler, B.C. et al., Biochemistry, 1992, 31, 1603-1609); Horne et al., J Am Chem Soc., 1990, 112, 2435-2437).

Vključevanje baznih analogov pričujočega izuma v probe, ki vsebujejo tudi kovalentna premreževalna sredstva ima potencial, da poveča občutljivost in zmanjša ozadje pri diagnostičnih ali detekcijskih testih. Dodatno bo uporaba premreževalnih sredstev dovoljevala nove modifikacije testov, kot so (1) uporaba premreženja za povečanje razlikovanja probe, (2) vključevanje stopnje pranja, ki povzroča denaturiranje, za zmanjšanje ozadja in (3) izvajanje hibridizacije in premreževanja pri ali blizu temperature taljenja hibrida za reduciranje sekundarne strukture v tarči in povečanje specifičnosti probe. Modifikacije hibridizacijskih pogojev so bile že opisane (Gamper s sod., Nucleic Acids Res., 1986, 14, 9943).The incorporation of the base analogs of the present invention into samples that also contain covalent crosslinking agents has the potential to increase sensitivity and reduce background in diagnostic or detection tests. Additionally, the use of cross-linking agents will permit new test modifications, such as (1) use of cross-linking to increase sample differentiation, (2) incorporate denaturing wash rate, reduce background, and (3) perform hybridization and cross-linking at or near the melting point of the hybrid to reduce the secondary structure in the target and increase the specificity of the sample. Modifications of hybridization conditions have already been described (Gamper et al., Nucleic Acids Res., 1986, 14, 9943).

Oligomeri izuma so primerni za uporabo pri diagnostičnih testih, ki uporabljajo metode v katerih sta bodisi oligomer ali nukleinska kislina, ki ju je potrebno detektirati, kovalentno pritrjena na trdno podlago, kot je bilo opisano (U.S. patent št. 4,775,619). Oligomeri izuma so primerni tudi za uporabo pri diagnostičnih testih, ki temeljijo na tehnikah polimerazne verižne reakcije za amplificiranje tarčnih sekvenc po opisanih metodah (evropska patentna objava št. 0 393 744). Oligomeri izuma, ki imajo 3’ konec, ki lahko služi kot primer so kompatibilni s polimerazami, uporabljenimi pri metodah polimerazne verižne reakcije, kot sta Tag aliThe oligomers of the invention are suitable for use in diagnostic tests using methods in which either the oligomer or the nucleic acid to be detected is covalently attached to a solid support as described (U.S. Patent No. 4,775,619). The oligomers of the invention are also suitable for use in diagnostic tests based on polymerase chain reaction techniques for amplifying target sequences by the methods described (European Patent Publication No. 0 393 744). The oligomers of the invention having a 3 'end that can serve as an example are compatible with the polymerases used in polymerase chain reaction methods such as Tag or

-70Vent™ (New England Biolabs) polimeraza. Oligomeri izuma so tako lahko uporabljeni kot primerji v PCR protokolih.-70Vent ™ (New England Biolabs) polymerase. The oligomers of the invention can thus be used as primers in PCR protocols.

Oligomeri izuma so uporabni kot primerji, ki so diskretne sekvence ali kot primerji z naključno sekvenco. Primerji z naključnimi sekvencami so splošno lahko dolgi okoli 6, 7 ali 8 nukleomonomerov. Taki primerji so lahko uporabljeni v različnih nukleinsko kislinskih amplifikacijskih protokolih (PCR, ligazna verižna reakcija, itd.) ali v protokolih za kloniranje. Nadomestne vezi izuma splošno ne interferirajo z zmožnostjo oligomera, da deluje kot primer. Oligomeri izuma, ki imajo 2’-modifikacije na drugih mestih in ne na 3’ terminalnem ostanku, ter druge modifikacije, ki naredijo oligomer RNaza H nekompetenten ali drugače nukleazno stabilen, so lahko prednostno uporabljeni kot probe ali primerji za RNA ali DNA sekvence v celičnih ekstraktih aii drugih raztopinah, ki vsebujejo nukleaze. Tako so oligomeri lahko uporabljeni v protokolih za amplificiranje nukleinske kisline v vzorcu, z mešanjem oligomera z vzorcem, ki vsebuje tarčno nukleinsko kislino, čemur sledi hibridizacija oligomera s tarčno nukleinsko kislino in amplificiranje tarčne nukleinske kisline s PCR, LCR ali drugimi primernimi metodami.The oligomers of the invention are useful as primers that are discrete sequences or as primers with random sequences. The primers with random sequences can generally be about 6, 7 or 8 nucleomers long. Such primers can be used in various nucleic acid amplification protocols (PCR, ligase chain reaction, etc.) or in cloning protocols. The substitute bonds of the invention generally do not interfere with the oligomer's ability to act as an example. The oligomers of the invention having 2'-modifications at sites other than the 3 'terminal residue, and other modifications that make the RNase H oligomer incompetent or otherwise nuclease stable, may preferably be used as probes or primers for RNA or DNA sequences in cellular extracts or other solutions containing nuclease. Thus, oligomers can be used in nucleic acid amplification protocols in a sample by mixing the oligomer with a sample containing the target nucleic acid, followed by hybridization of the oligomer with the target nucleic acid and amplification of the target nucleic acid by PCR, LCR or other suitable methods.

Oligomeri, derivatizirani v kelatorje, kot so EDTA, DTPA ali analogi 1,2diaminocikloheksan ocetne kisline, so lahko uporabljeni pri različnih in vitro diagnostičnih testih (U.S. patenti s št. 4,772,548, 4,707,440 in 4,707,352). Alternativno so oligomeri izuma lahko derivatizirani z premreževalnimi sredstvi, kot sta 5-(3-jodoacetamidoprop-1-il) 2’-deoksiuridin ali 5-(3-(4bromobutiramido) prop-1-il)-2’-deoksiuridin in uporabljeni pri različnih testnih metodah ali kitih, kot je bilo opisano (mednarodna objava št. WO 90/14353).Oligomers derivatized into chelators such as EDTA, DTPA or acetic acid 1,2diaminocyclohexane analogues can be used in various in vitro diagnostic tests (U.S. Patent Nos. 4,772,548, 4,707,440 and 4,707,352). Alternatively, the oligomers of the invention may be derivatized by cross-linking agents such as 5- (3-iodoacetamidoprop-1-yl) 2'-deoxyuridine or 5- (3- (4bromobutyramido) prop-1-yl) -2'-deoxyuridine and used in different test methods or kits, as described (International Publication No. WO 90/14353).

-71Dodatno je za prej omenjene uporabe sposobnost oligomerov, da inhibirajo ekspresijo genov, lahko z ustrezno metodo verificirana v in vitro sistemih, z merjenjem nivojev ekspresije v celicah subjekta ali v rekombinantnih sistemih (Graessmann, M s sod., Nucleic Acids Res., 1991, 19, 53-59).-71Additionally, for the aforementioned uses, the ability of oligomers to inhibit gene expression can be verified by appropriate method in in vitro systems, by measuring expression levels in subject cells or in recombinant systems (Graessmann, M et al., Nucleic Acids Res., 1991 , 19, 53-59).

Primeri, ki sledijo so dani za boljšo razlago izuma, ki je bil opisan zgoraj. Primeri so dani, da ponazarjajo izum in se jih ne bi smelo razlagati, kot omejevanje izuma.The following examples are given for a better explanation of the invention described above. Examples are given to illustrate the invention and should not be construed as limiting the invention.

PRIMERIEXAMPLES

Pregled sinteze nukleomonomernega slntona in oligomerov:Synthesis of nucleomonomic slnton synthesis and oligomers:

Oligomeri izuma so lahko sintetizirani z uporabljanjem reakcij, ki so poznane pri delu na področju sinteze oligonukleotidnih derivatov. Glei npr.. Fiandor, J. in Yam, S.Y., Tetrahedron Letts., 1990, 31, 597-600; Mattson, R.J. s sod., J Org Chem., 1990, 55, 2552-2554; Chung, C.K. s sod., J Org Chem., 1989, 54, 2767-2769.The oligomers of the invention can be synthesized using reactions known in the art for the synthesis of oligonucleotide derivatives. Glei e.g. .. Fiandor, J. and Yam, S.Y., Tetrahedron Letts., 1990, 31, 597-600; Mattson, R.J. et al., J Org Chem., 1990, 55, 2552-2554; Chung, C.K. et al., J Org Chem., 1989, 54, 2767-2769.

Kot se lahko vidi iz različnosti nadomestnih vezi, posebno tistih, navedenih v tabeli 1, lahko nadomestne vezi izuma varirajo tako, da imajo v svoji strukturi enega ali več dušikovih, žveplovih in/ali kisikovih atomov. Pozicije teh atomov v nadomestnih vezeh lahko varirajo od “5”’ konca, do “sredine”, do “2’” ali “3’” in “4’” konca. V tej sekciji je pokazana serija reprezentativnih sinteznih reakcijskih slik, ki zagotavljajo poti za različne lokacije in kombinacije dušikovih in kisikovih atomov znotraj nadomestnih vezi.As can be seen from the variety of substituent bonds, especially those listed in Table 1, the substituent bonds of the invention can be varied by having one or more nitrogen, sulfur and / or oxygen atoms in their structure. The positions of these atoms in the alternate bonds can vary from the "5" 'end, to the' middle ', to the' 2 '' or '3' 'and' 4 '' ends. This section shows a series of representative synthesis reaction images that provide pathways for different locations and combinations of nitrogen and oxygen atoms within the substituent bonds.

-72Sinteze, ponazorjene v slikah 1-25 so lahko modificirane, kot je poznano tistim, ki delajo na področju oligonukleotidne kemije. Na primer, čeprav zaščita baze ni vedno ponazorjena v slikah sintez, je taka zaščita lahko zaželena in se jo lahko izvede z uporabljanjem reagentov in tehnik, poznanih pri tem delu. Glej, npr., Protective Groups in Organic Synthesis (Theodora W. Greene, John Wiley and Sons, 1981). Podobno, čeprav je uporaba zaščitnih skupin pokazana, v nekaterih primerih ni vedno potrebno blokirati reaktantov zato, da bi sintetizirali ponazorilne oligomere izuma.-72The syntheses illustrated in Figures 1-25 may be modified as is known to those skilled in the art of oligonucleotide chemistry. For example, although base protection is not always exemplified in synthesis images, such protection may be desirable and may be performed using reagents and techniques known in the art. See, e.g., Protective Groups and Organic Synthesis (Theodora W. Greene, John Wiley and Sons, 1981). Similarly, although the use of protecting groups is demonstrated, in some cases it is not always necessary to block the reactants in order to synthesize the illustrative oligomers of the invention.

Primer 1Example 1

Prvih pet stopenj pokazanih v sliki 1, se nanaša na pripravo z izobutirilom zaščitenega aminokislinskega alkohola serinola. Šesta in naslednje stopnje v sliki 1 so usmerjene v sintezo s serinolom substituiranega timinskega fosforamiditnega gradbenega bloka.The first five steps shown in Figure 1 relate to the preparation of isobutyl protected amino acid alcohol serinol. The sixth and next steps in Figure 1 are directed to the synthesis of serinol-substituted thymine phosphoramidite building block.

V stopnji 1 slike 1 je amino skupina aminokisline serin, zaščitena z reagiranjem 1 z di-terc-butil dikarbonatom, za pridobivanje spojine 2. Uporabljene so lahko tudi druge ekvivalentne zaščitne skupine. V naslednji stopnji je β-hidroksilna skupina spojine 2 blokirana z dihidropiranom, da nastane popolnoma zaščitena aminokislina 3. Aminokislina 3 potem zreagira z diboran-dimetil sulfidnim kompleksom, da nastane alkohol 4, ki je pri izpostavitvi na izobutiril klorid dal 5. Ta redukcijska reakcija je lahko izvedena tudi z uporabljanjem izobutil kloroformata in natrijevega borohidrida (glej: K. Ramasamy, R. K. Olsen in T. Emery, Synthesis, 1982, 42). Reakcija 5 s trifluoroocetno kislino, dolga 30 minut, ki ji sledi pranje z NaHCO3 je dala 6.In step 1 of Figure 1, the amino group of the amino acid serine protected by reaction of 1 with diethyl tert-butyl dicarbonate to obtain compound 2. Other equivalent protecting groups may also be used. In the next step, the β-hydroxyl group of compound 2 is blocked with dihydropyran to form a fully protected amino acid 3. Amino acid 3 then reacts with the diboran-dimethyl sulfide complex to form alcohol 4, which, when exposed to isobutyl chloride, yields 5. This reduction reaction it can also be performed using isobutyl chloroformate and sodium borohydride (see: K. Ramasamy, R. K. Olsen, and T. Emery, Synthesis, 1982, 42). Reaction 5 with trifluoroacetic acid for 30 minutes followed by washing with NaHCO 3 gave 6.

-73Timin ocetna kislina 7 je bila pripravljena tako, kot je opisano v literaturi (glej: L. Kosynkina, W. Wang in T. C. Liang, Tetrahedron Letts., 1994, 35, 5173). Povezovanje 7 z 6 je pod mešanim anhidridnim pogojem zagotovilo 8. Dimetoksitritiliranje 8 z DMTCI je dalo spojino 9, ki je po hidrolizi z bazo dala 10. Fosfitiliranje 10 je pod standardnim pogojem zagotovilo nastanek s serinolom povezanega timinskega gradbenega bloka 11. Ta sinton je potem lahko z uporabljanjem običajne kemije dodan v rastoči oligomer. Vsaka DNA sintezna kemija, kot je fosforamidatna ali fosfonatna kemija, se lahko uporabi za povezovanje monomerov ali dimerov na način, analogen tistemu, ki je pokazan zgoraj.-73Time acetic acid 7 was prepared as described in the literature (see: L. Kosynkina, W. Wang, and T. C. Liang, Tetrahedron Letts., 1994, 35, 5173). Coupling 7 to 6 under mixed anhydride condition provided 8. Dimethoxytritylation 8 with DMTCI gave compound 9 which after hydrolysis with the base gave 10. Phosphylation 10 provided the formation of a serinol-bound thymine building block 11 under standard condition. can be added to the growing oligomer using conventional chemistry. Any DNA synthesis chemistry, such as phosphoramidate or phosphonate chemistry, can be used to bind monomers or dimers in a manner analogous to that shown above.

Primer 2Example 2

V reakcijski sliki 2 je bil timin acetaldehid 13 proizveden z obdelavo timina z bromoacetaldehid dimetilaktalom, čemur je sledila hidroliza spojine 12 z vodno TFA. Aldehid 13 in amin 6 sta bila potem združena in odgovarjajoči intermediat je bil pretvorjen do fosforamidita, gradbenega bloka 17, na analogen način, kot pri stopnjah uporabljenih v sliki 1.In reaction Figure 2, thymine acetaldehyde 13 was produced by treating thymine with bromoacetaldehyde dimethylactal, followed by hydrolysis of compound 12 with aqueous TFA. Aldehyde 13 and amine 6 were then combined and the corresponding intermediate was converted to phosphoramidite, building block 17, in an analogous manner as in the rates used in Figure 1.

Primer 3Example 3

V reakcijski sliki 3 je izhodni material β-substituirana aminokislina 18. Substituirana aminokislina je lahko s tem, da se sledi postopku v stopnjah uporabljenih v slikah 1 in 2, transformirana v fosforamidit, gradbeni blokIn reaction Figure 3, the starting material is a β-substituted amino acid 18. Substituted amino acid can be transformed into phosphoramidite by building a block in the steps used in Figures 1 and 2

27.27.

Primer 4Example 4

-74V sliki 4 je izhodni material amino alkohol 21, oksidiran s CrOs/piridin mešanico, da je proizveden aldehid 28. Aldehid bi moral v reakciji z alkil halidom v prisotnosti baze dati spojino 29. Amino alkohol 29 je potem lahko transformiran do gradbenega bloka 35 na analogen način, kot v stopnjah slik 1 in 2.-74In Figure 4, starting material is amino alcohol 21 oxidized with CrOs / pyridine mixture to produce aldehyde 28. The aldehyde, in reaction with alkyl halide, in the presence of base, should give compound 29. Amino alcohol 29 can then be transformed to building block 35 in an analogous manner as in the stages of Figures 1 and 2.

Primer 5Example 5

Če preidemo na sliko 5, so prve štiri stopnje v bistvu enake stopnjam uporabljenim v sliki 1, namesto serina pa je tu uporabljena aspartinska kislina. Metilester aspartinske kisline 36 je dal popolnoma zaščiten alkohol 40, ki pri selektivnem odstranjevanju zaščite z ocetno kislino zagotavlja 41. Oksidacija 41 s CrO^piridin mešanico je dala odgovarjajoči aldehid 42. Reduktivna aminacija aldehida 42 z o-benzilhidroksil aminom v prisotnosti natrijevega triacetoksiborohidrida, bi morala dati 43 (glej: T. Kolasa in M. J. Miller, J. Org. Chem., 1990, 55, 1711). Alkohol 39 je potem pretvorjen do aldehida 46, ob uporabljanju v bistvu enakih reakcijskih pogojev, kot je bilo navedeno zgoraj, toda z alilno zaščitno skupino za hidroksilno skupino spojine 39. Povezovanje aldehida 46 in hidroksilamina 43, v prisotnosti natrijevega triacetoksiborohidrida, čemur sledi odstranjevanje amino zaščitnih skupin, bi moralo omogočiti nastanek bisamina 48. S sledenjem stopnjam, uporabljenim v sliki 1, bi bil bisamin 48 potem lahko konvertiran do dimera 53.Turning to Figure 5, the first four stages are essentially the same as those used in Figure 1, and aspartic acid is used instead of serine. Aspartic acid methyl ester 36 gave a fully protected alcohol 40 which, on selective deprotection of acetic acid, provided 41. Oxidation 41 with a CrO ^ pyridine mixture gave the corresponding aldehyde 42. Reductive amination of aldehyde 42 with o-benzylhydroxyl amine in the presence of sodium triacetoxide, triacetoxide sodium had to give 43 (see: T. Kolasa and MJ Miller, J. Org. Chem. 1990, 55, 1711). Alcohol 39 is then converted to aldehyde 46, using essentially the same reaction conditions as above, but with an allyl protecting group for the hydroxyl group of compound 39. Coupling of aldehyde 46 and hydroxylamine 43, in the presence of sodium triacetoxyborohydride, followed by amino removal of protecting groups should allow for the formation of bisamine 48. By following the steps used in Figure 1, the bisamine 48 could then be converted to dimer 53.

Primer 6Example 6

V sliki 6, povezovanje alkohola 54 z O-benzilhidroksilaminom 55, podIn Figure 6, the coupling of alcohol 54 with O-benzylhydroxylamine 55, sub

Mitsunobujevim reakcijskim pogojem (glej: O. Mitsunobu, Synthesis, 1981,Mitsunobu reaction conditions (see: O. Mitsunobu, Synthesis, 1981,

-751), zagotavlja spojino 56. Intermediat 56 bi po hidrogeniranju, ki mu je sledilo acetiliranje moral dati 57. Izpostavitev 57 na TFA deblokira “TBDMSi” zaščitno skupino in daje 58. Povezovanje 58 s 7, ki mu sledi dimetoksitritiliranje, bi lahko zagotovilo 60. Končni gradbeni blok 62, bi moral biti narejen iz 60 po hidrolizi baze, ki ji je sledilo fosfitiliranje.-751) provides compound 56. Intermediate 56, after hydrogenation followed by acetylation, should give 57. Exposure 57 to TFA unblocks the “TBDMSi” protecting group and gives 58. Coupling 58 to 7, followed by dimethoxytritylation, could provide 60. The final building block 62, should be made of 60 after hydrolysis of the base followed by phospho- fylation.

Primer 7Example 7

V sliki 7 je serinol 4 pretvorjen v halid 59 in alkiliran s timinom, da nastane 63. Zaščitne skupine v 63 so odstranjene, povezane z DMTzaščiteno hidroksiocetno kislino in fosfitilirane, da nastane 66.In Figure 7, serinol 4 is converted to halide 59 and alkylated with thymine to form 63. The protecting groups in 63 are removed, bound to DMT protected hydroxyacetic acid and phosphitylated to form 66.

Primer 8Example 8

V sliki 8 je alkohol 64 povezan z N-hidroksilaminopropanojno kislino 69, da nastane 70. Alkiliranje timina s halidom 73 daje 74, ki po odstranitvi zaščite in povezovanju s 76, čemur sledi hidroliza, lahko daje 78. Kondenzacija 78 s 70, ki ji sledi fosfitilacija, bi morala dati hidroksamatni dimer 80.In Figure 8, alcohol 64 is coupled to N-hydroxylaminopropanoic acid 69 to form 70. Alkylation of thymine with halide 73 yields 74 which, after removal of the protection and coupling with 76, followed by hydrolysis, can give 78. Condensation 78 with 70, which followed by phosphitillation, should yield a hydroxamate dimer 80.

Primer 9Example 9

V sliki 9 je N-hidroksilamino propanojni aldehid 81 uporabljen za povezovanje alkohola 64. Dimer 88 je pripravljen iz 83 in 86 z izvajanjem stopenj, uporabljenih v sliki 8.In Figure 9, the N-hydroxylamino propanoic aldehyde 81 is used to bind alcohol 64. The dimer 88 is prepared from 83 and 86 by performing the steps used in Figure 8.

Primer 10Example 10

-76V sliki 10 bi alkiliranje (glej: T. Kolasa in M. J. Miller, J. Org. Chem., 1990, 55, 4246) a-bromo-p-aminopropanojno kislinskega metilestra 89 s timinom dalo 90. Intermediat 90 po hidrolizi z natrijevim hidroksidom daje kislino 91, ki je povezana s 6, da zagotovi 92. Spojina 92 je potem pretvorjena v fosforamidit, gradbeni blok 95 z uporabljanjem stopenj, ki so opisane v sliki 1.-76In Figure 10, alkylation (see T. T. Kolasa and M. J. Miller, J. Org. Chem., 1990, 55, 4246) of? -Bromo-p-aminopropanoic acid methyl ester 89 with thymine would give 90. Intermediate 90 after hydrolysis with sodium hydroxides give acid 91, which is linked to 6 to provide 92. Compound 92 is then converted to phosphoramidite, building block 95 using the steps described in Figure 1.

Primer 11Example 11

V sliki 11 je timin alkiliran z alkilaminskim halidom 96 (glej: R. K. Olsen,In Figure 11, thymine is alkylated with alkylamine halide 96 (see: R. K. Olsen,

K. Ramasamy in T. Emery, J. Org. Chem., 1984, 49, 3527 in Islam s sod., J. Med. Chem., 1994, 37, 293-304 za pripravo aminoalkil halida), da daje 97. Izpostavitev spojine 97 na TFA, ki ji sledi alkiliranje bi dala 100. Gradbeni blok 103 je dobljen iz 100 z dimetoksitritilacijo in hidrolizo, ki jima sledi fosfitiliranje.K. Ramasamy and T. Emery, J. Org. Chem., 1984, 49, 3527 and Islam et al., J. Med. Chem., 1994, 37, 293-304 for the preparation of aminoalkyl halide) to give 97. Exposure of compound 97 to TFA followed by alkylation would give 100. Building block 103 is obtained from 100 by dimethoxytritylation and hydrolysis followed by phosphitylation .

Primer 12Example 12

Slika 12 je alternativna pot do dimera 111, ki ima hidroksamatno hrbtenico in je narejen iz N-hidroksilamina 43 in aldehida 107, od katerih je zadnji pripravljen iz aspartinske kisline.12 is an alternative route to dimer 111 having a hydroxamate backbone and is made of N-hydroxylamine 43 and aldehyde 107, the latter of which is prepared from aspartic acid.

Primer 13Example 13

V sliki 13 je dimer 115 pripravljen iz intermediatov 108 in 13, s sledenjem enakim reakcijskim stopnjam, kot so bile opisane v sliki 2.In Figure 13, dimer 115 is prepared from intermediates 108 and 13, following the same reaction rates as described in Figure 2.

Primer 14Example 14

-77V sliki 14 je pripravljen N-hidroksiltimin (glej: Kim, C. U., s sod., Tetrahedron Letts., 1992, 33, 25-28) in povezan z N-hidroksiftalimidom, da nastane 117, ki bi po izpostavljanju hidrazinu in etanolu moral dati 118. Obdelava 118 z DMT-zaščitenim glicerolnim epoksidom 119, zagotavlja 120. Intermediat 120 je potem z uporabljanjem standardnega postopka pretvorjen v fosforamidit 121. V drugi sintezi je spojina 118 pod pogoji reduktivnega aminiranja povezana z aminokislinskim aldehidom 122, da nastane 123. Zaščita sekundarne amino skupine s FMOCCI, ki ji sledi hidroliza, bi morala dati 125.-77In Figure 14, N-hydroxylthymine is prepared (see: Kim, CU, et al., Tetrahedron Letts., 1992, 33, 25-28) and linked to N-hydroxyphthalimide to form 117 which, upon exposure to hydrazine and ethanol had to give 118. Treatment with DMT-protected glycerol epoxide 119, provides 120. Intermediate 120 was then converted to phosphoramidite 121. using a standard procedure. In the second synthesis, compound 118, under reductive amination conditions, is linked to amino acid aldehyde 122 to form 123. Protection of the secondary amino group by FMOCCI followed by hydrolysis should give 125.

Primer 15Example 15

V sliki 15 je 1,2-dihidroksipropanojna kislina 126 povezana z Nhidroksilamin timinom 118, da nastane 127, ki je potem pod standardnimi pogoji transformiran v fosforamiditni sinton 129. Spojina 118 je povezana tudi z adipinsko kislino in transformirana v nukleinsko kislinski gradbeni blok 133.In Figure 15, 1,2-dihydroxypropanoic acid 126 is linked to Nhydroxylamine thymine 118 to form 127, which is then transformed into phosphoramidite synth 129. Under standard conditions, Compound 118 is also linked to adipic acid and transformed to nucleic acid building block 133.

Primer 16Example 16

V sliki 16 je prvi gradbeni blok 136 sintetiziran iz 118 in 134, na podoben način, kot je bilo opisano v sliki 1. Povezovanje 139 s 118 je zagotovilo 140. Obdelava 137 s 118 bi morala zagotoviti 138, ki po kondenziranju s 140 daje dimer 141.In Figure 16, the first building block 136 is synthesized from 118 and 134 in a similar manner to that described in Figure 1. Linking 139 to 118 provided 140. Processing 137 to 118 should provide 138 which, after condensing with 140, gives a dimer 141.

Primer 17Example 17

-78V sliki 17 sta povezana aldehid 142 in glicin benzilester, da nastane 143. Obdelava 143 s 7, bi morala zagotoviti 145, ki po izpostavljanju ocetni kislini daje 148. Mitsunobujevo alkiliranje spojine 148 z Boc-NH-Oacetilhidroksi,aminom bi moralo dati 147, po hidrogeniranju te spojine pa je lahko dobljen gradbeni blok 150. Podobno bi povezovanje 143 s 13 in sledenje enakim reakcijam, kot so navedene zgoraj, moralo dati sinton-78In Figure 17, the aldehyde 142 and glycine benzyl ester are linked to form 143. Treatment 143 with 7 should provide 145 which, after exposure to acetic acid, gives 148. Mitsunobu alkylation of compound 148 with Boc-NH-Oacetylhydroxy, amine should give 147 , and building block 150 may be obtained after hydrogenation of this compound. Similarly, coupling 143 to 13 and following the same reactions as above should give sinton

149.149.

Primer 18Example 18

V sliki 18 je reduktivno aminiranje aldehida 142 in Boc-NH-Obenzilhidroksilamina dalo 151. Hidrogeniranje 151, ki mu sledi alkiliranje 152 z glikolno kislino 153 (B. C. Borer in D. C. Balogh, Tetrahedron Letts., 1991, 32, 1039), bi moralo dati 154. Obdelava 154 s TFA bo odstranila Boc zaščitno skupino, ki bi po povezovanju rezultirala v 155. Hidroksilna zaščitna skupina spojine 155 bi bila lahko selektivno odstranjena z ocetno kislino do nastanka 156. Spojina 156 bo potem pretvorjena v gradbeni blok 157 z uporabljanjem standardnih reakcijskih pogojev. Podobno bo gradbeni blok 158 narejen s povezovanjem 154 s 13 in sledenjem reakcijskim stopnjam, uporabljenim za pripravo 157.In Figure 18, reductive amination of aldehyde 142 and Boc-NH-Obenzylhydroxylamine gave 151. Hydrogenation 151 followed by alkylation 152 with glycolic acid 153 (BC Borer and DC Balogh, Tetrahedron Letts. 1991, 32, 1039) should yield 154. Treatment with TFA will remove the Boc protecting group, which, after coupling, will result in 155. The hydroxyl protecting group of compound 155 could be selectively removed with acetic acid to form 156. Compound 156 will then be converted to building block 157 using standard reaction conditions. Similarly, building block 158 will be made by connecting 154 with 13 and tracking the reaction rates used to prepare 157.

Primer 19Example 19

V sliki 19 bo alkiliranje timin-N-hidroksilamina 160 z alkoholom 162 dalo 163. Spojina 163 je lahko transformirana v fosforamidit, gradbeni blok 166, s sledenjem stopnjam, uporabljenim v sliki 1.In Figure 19, alkylation of thymine-N-hydroxylamine 160 with alcohol 162 will give 163. Compound 163 can be transformed into phosphoramidite, building block 166, by following the steps used in Figure 1.

Primer 20Example 20

-79V sliki 20 je prvi intermediat 169 sintetiziran iz glutaminske kisline z uporabljanjem standardnih reakcijskih pogojev. Alkiliranje timina s 169 bi dalo 170, ki bi po obdelavi s TFA moral dati 171. Intermediat 171 bi bil lahko povezan z Boc-glicinom, za zagotovitev 173, ki bi ob hidrolizi lahko dal monomerni sinton 174. Podobno bi bil intermediat 172 lahko pripravljen s povezovanjem 118 in Boc-aminoocetnega aldehida, čemur je sledila hidroliza benzilestra.-79 In Figure 20, the first intermediate 169 is synthesized from glutamic acid using standard reaction conditions. Alkylation of thymine with 169 would give 170, which after treatment with TFA should give 171. Intermediate 171 could be linked to Boc-glycine to provide 173 which, upon hydrolysis, could give monomeric sintone 174. Similarly, intermediate 172 could be prepared by coupling 118 and Boc-aminoacetic aldehyde, followed by hydrolysis of benzyl ester.

Primer 21Example 21

V sliki 21 je intermediat 177 pripravljen iz Boc-NH-O-benzilhidroksilamina in 175 ob uporabljanju standardnih reakcijskih pogojev. Hidrogeniranje spojine 177, ki mu je sledilo povezovanje z N-hidroksitiminom 116 bi dalo 178. Odstranitev THP zaščitne skupine, ki sta ji sledila dimetoksitritiliranje in fosfitiliranje, bi morali dati sintonski gradbeni blok 181. Podobno bi 182 lahko bila pripravljena s sledenjem vsem zgornjim reakcijam in uporabljanjem THP-hidroksiocetnega aldehida, namesto THP-hidroksiocetne kisline.In Figure 21, intermediate 177 is prepared from Boc-NH-O-benzylhydroxylamine and 175 using standard reaction conditions. Hydrogenation of compound 177, followed by coupling with N-hydroxytymine 116 would give 178. Removal of the THP protecting group followed by dimethoxytrityl and phosphitillation should give a synthon block 181. Similarly, 182 could be prepared by following all the above reactions. and using THP-hydroxyacetic aldehyde instead of THP-hydroxyacetic acid.

Primer 22Example 22

V sliki 22 je gradbeni blok 191 lahko pripravljen ob uporabljanju poznanega izhodnega materiala 183 in sledenju reakcijskim pogojem, predstavljenim v spodnjem delu slike 22.In Figure 22, building block 191 may be prepared using known starting material 183 and following the reaction conditions presented in the lower portion of Figure 22.

Primer 23Example 23

-80V sliki 23 se sinteza gradbenega bloka 199 lahko izvede z uporabljanjem izhodnega materiala 183 in sledenjem reakcijskim pogojem, predstavljenim v spodnjem delu slike 23.-80In Figure 23, synthesis of building block 199 can be performed using starting material 183 and following the reaction conditions presented in the lower portion of Figure 23.

Primer 24Example 24

V sliki 24 je izhodni material 200 transformiran do gradbenega bloka 207, s sledenjem reakcijskim pogojem, predstavljenim v spodnjem delu slike 24.In Figure 24, the starting material 200 is transformed to the building block 207, following the reaction conditions presented in the lower part of Figure 24.

Primer 25Example 25

Spojine, ki so uporabljene in izdelane v tem primeru, so pokazane v sliki 1.The compounds used and made in this example are shown in Figure 1.

Serin (1): Timin (37.8 g, 300 mmol) smo raztopili v raztopini kalijevega hidroksida (64.5 g, 1150 mmol) v 200 ml vode. Medtem ko smo to raztopino segrevali v vodni kopeli pri 40°C smo, v časovnem intervalu več kot 1 h, dodali raztopino bromoocetne kisline (62.5 g, 450 mmol) v 100 ml vode. Pri tej temperaturi smo reakcijsko mešanico mešali še 1 h. Nato smo jo lahko ohladili na sobno temperaturo in ji s koncentrirano HCI naravnali pH na 5.5. Raztopina se je potem v hladilniku hladila 2 h. Vso nastalo oborino (nezreagiran timin) smo odstranili s filtriranjem. Raztopino smo potem naravnali na pH 2 s koncentrirano HCI in jo za 2 h postavili v zamrzovalnik. Belo oborino smo zbrali s filtritanjem in jo 6 h sušili v vakuumskem sušilniku pri 40°C. Dobili smo 44g (88%).Serine (1): Thymine (37.8 g, 300 mmol) was dissolved in a solution of potassium hydroxide (64.5 g, 1150 mmol) in 200 ml of water. While this solution was heated in a water bath at 40 ° C, a solution of bromoacetic acid (62.5 g, 450 mmol) in 100 ml of water was added over a period of more than 1 hour. At this temperature, the reaction mixture was stirred for 1 h. It was then allowed to cool to room temperature and adjusted to pH 5.5 with concentrated HCl. The solution was then refrigerated in the refrigerator for 2 h. All precipitate (unreacted thymine) was removed by filtration. The solution was then adjusted to pH 2 with concentrated HCl and placed in the freezer for 2 h. The white precipitate was collected by filtration and dried in a vacuum oven at 40 ° C for 6 h. We got 44g (88%).

N-Boc-L-serin metil ester (2): L-Serin metil ester (15.6 g, 100 mmol) smo pri sobni temperaturi suspendirali v THF/DMF(vsakega 100 ml)N-Boc-L-serine methyl ester (2): L-Serine methyl ester (15.6 g, 100 mmol) was suspended at THF / DMF (100 ml each) at room temperature.

-81mešanici. K tej premešani mešanici smo dodali trietilamin (11.13 g, 110 mmol), čemur je sledil dodatek di-terc-butil bikarbonata (24.0 g, 110 mmol) in mešanje se je pri sobni temperaturi nadaljevalo nadaljnih 30 minut. Dodali smo vodo (20 ml) in raztopino pri sobni temperaturi mešali 8 h. Raztopino smo evaporirali do suhega. Ostanek smo suspendirali v etil acetatu (250 ml) in obdelali s kalijevim hidrogen sulfatom (0.25 N raztopina, 100 ml). Produkt smo takoj ekstrahirali z raztopino etil acetata. Organski ekstrakt smo sprali z vodo (100 ml), slano vodo (100 ml) in ga posušili preko brezvodnega natrijevega sulfata. Evaporacija organskega topila je zagotovila 26g (90%) oljnatega ostanka .-81mixers. Triethylamine (11.13 g, 110 mmol) was added to this stirred mixture, followed by the addition of di-tert-butyl bicarbonate (24.0 g, 110 mmol) and stirring was continued at room temperature for a further 30 minutes. Water (20 ml) was added and the solution was stirred at room temperature for 8 h. The solution was evaporated to dryness. The residue was suspended in ethyl acetate (250 ml) and treated with potassium hydrogen sulfate (0.25 N solution, 100 ml). The product was immediately extracted with ethyl acetate solution. The organic extract was washed with water (100 ml), brine (100 ml) and dried over anhydrous sodium sulfate. Evaporation of the organic solvent provided 26g (90%) of the oily residue.

N-Boc-L-serin(OTHP) metil ester (3): Spojino 2 (15 g, 68.49 mmol) smo raztopili v suhem CH2CI2 (100 ml) in pri sobni temperaturi obdelali s 3,4dihidro-2H-piranom (8.4 g, 100 mmol) in katalitsko količino p-toluen sulfonske kisline (100 mg). Reakcijsko mešanico smo pri sobni temperaturi pustili mešati 12 h in evaporirali do suhega. Ostanek smo raztopili v etil acetatu (200 ml), sprali s 5% NaHCO3 raztopino (100 ml), vodo (50 ml) in slano vodo (50 ml). Organski ekstrakt smo posušili preko brezvodnega Na2SO4 in evaporirali do suhega. Ostanek je bil dovolj čist za naslednjo stopnjo in uporabljen kot tak. Dobili smo 15g (72%).N-Boc-L-serine (OTHP) methyl ester (3): Compound 2 (15 g, 68.49 mmol) was dissolved in dry CH 2 Cl 2 (100 ml) and treated with 3,4dihydro-2H-pyran at room temperature. (8.4 g, 100 mmol) and a catalytic amount of p-toluene sulfonic acid (100 mg). The reaction mixture was allowed to stir at room temperature for 12 h and evaporated to dryness. The residue was dissolved in ethyl acetate (200 ml), washed with 5% NaHCO 3 solution (100 ml), water (50 ml) and brine (50 ml). The organic extract was dried over anhydrous Na 2 SO 4 and evaporated to dryness. The residue was clean enough for the next level and used as such. We gained 15g (72%).

N-Boc-L-serinol(OTHP) (4): Serin(OTHP) metil ester (10 g, 33 mmol) smo raztopili v suhem THF (100 ml) in ohladili na 0°C v ledeni kopeli v atmosferi argona. K tej hladni premešani raztopini smo v časovnem intervalu 1 h pri 0°C dodali boran-metil sulfidni kompleks (2 M raztopina v THF, 100 ml, 200 mmol). Po dodatku borana smo reakcijsko mešanico segreli na sobno temperaturo in jo pri 40°C segrevali 6 h. Reakcijsko mešanico smo ohladili na 0°C, nevtralizirali z vodo in ocetno kislino na pH 6-7 in ekstrahirali z etrom (3x100 ml). Eterski ekstrakt smo sprali zN-Boc-L-serinol (OTHP) (4): Serine (OTHP) methyl ester (10 g, 33 mmol) was dissolved in dry THF (100 ml) and cooled to 0 ° C in an argon ice bath. To this cold stirred solution, a borane-methyl sulfide complex (2 M solution in THF, 100 ml, 200 mmol) was added over a period of 1 h at 0 ° C. After the addition of borane, the reaction mixture was warmed to room temperature and heated at 40 ° C for 6 h. The reaction mixture was cooled to 0 ° C, neutralized with water and acetic acid to pH 6-7 and extracted with ether (3x100 ml). The ether extract was washed with

-82vodo (2x100 ml) in slano vodo (100 ml), posušili preko brezvodnega Na2SO4 in evaporirali do suhega, da smo dobili surovi produkt, kot olje. Po čiščenju s flash kolono silikagela, z uporabljanjem heksan -> aceton mešanice kot eluenta, smo dobili 8g (88%) čistega produkta.-82 water (2x100 ml) and brine (100 ml), dried over anhydrous Na 2 SO 4 and evaporated to dryness to give the crude product as an oil. Purification by flash column silica gel using hexane -> acetone mixture as eluent gave 8g (88%) of the pure product.

N-Boc-L-serin(OTHP) Olb (5): K premešani raztopini spojine 4 (8 g, 29.09 mmol) v suhem CH2CI2 (100 ml) smo pri 0°C dodali TEA (3.54 g, 35 mmol) in med 30 minutnim časovnim intervalom smo dodali še izobutiril klorid (3.71 g, 35 mmol). Potem smo reakcijsko mešanico 4 ure mešali pri sobni temperaturi in jo evaporirali do suhega. Ostanek smo raztopili v EtOAc (200 ml), sprali s 5% NaHCO3 raztopino (50 ml), vodo (50 ml) in slano vodo (50 ml). Organski ekstrakt smo posušili preko brezvodnega Na2SO4 in evaporirali do suhega, da smo dobili surovi produkt, kot olje. Po čiščenju s flash kolono silikagela, z uporabljanjem heksan -> aceton mešanice kot eluenta, smo iz olja dobili 7.9g (79%) čistega produkta.N-Boc-L-serine (OTHP) Olb (5): TEA (3.54 g, 35 mmol) was added to a stirred solution of compound 4 (8 g, 29.09 mmol) in dry CH 2 Cl 2 (100 ml) at 0 ° C. ) and isobutyl chloride (3.71 g, 35 mmol) was added over a 30 minute time interval. The reaction mixture was then stirred at room temperature for 4 hours and evaporated to dryness. The residue was dissolved in EtOAc (200 ml), washed with 5% NaHCO 3 solution (50 ml), water (50 ml) and brine (50 ml). The organic extract was dried over anhydrous Na 2 SO 4 and evaporated to dryness to give the crude product as an oil. After purification with a silica gel flash column using hexane -> acetone mixture as eluent, 7.9g (79%) of the pure product was obtained from the oil.

L-Serinol(Olb) (6): Spojino § (10 g, 28.98 mmol) smo raztopili v CH2OI2 (100 ml) in nato smo jo pri sobni temperaturi pustili 1 h mešati s TFA (50 ml), ter jo evaporirali do suhega. Ostanek smo raztopili v metanolu (50 ml) in zopet evaporirali. Ostanek smo raztopili v CH2CI2 (200 ml), sprali z nasičeno NaHCO3 raztopino (2x200 ml), vodo (100 ml) in slano vodo (50 ml). Organski ekstrakt smo posušili preko brezvodnega Na2SO4 in evaporirali do suhega, da smo dobili 4.5g (96%) produkta, kot olje.L-Serinol (Olb) (6): Dissolve compound § (10 g, 28.98 mmol) in CH 2 OI 2 (100 ml) and then stirred at room temperature for 1 h with TFA (50 ml), and evaporated to dryness. The residue was dissolved in methanol (50 ml) and evaporated again. The residue was dissolved in CH 2 Cl 2 (200 ml), washed with saturated NaHCO 3 solution (2x200 ml), water (100 ml) and brine (50 ml). The organic extract was dried over anhydrous Na 2 SO 4 and evaporated to dryness to give 4.5g (96%) of the product as an oil.

N-{Tfminilacetil)-L-serinol(Olb) (8): Timin ocetno kislino 7 (7.3 g, 40 mmol) in N-metilmorfolin (4.4 ml, 40 mmol) smo raztopili v 100 ml DMF.N- {Tfminylacetyl) -L-serinol (Olb) (8): Thymine acetic acid 7 (7.3 g, 40 mmol) and N-methylmorpholine (4.4 ml, 40 mmol) were dissolved in 100 ml DMF.

Raztopino smo v atmosferi argona pustili ohladiti na -20°C. K tej hladni premešani raztopini smo v celoti dodali izobutil kloroformat (5.2 ml, 40The solution was allowed to cool to -20 ° C in an argon atmosphere. Isobutyl chloroformate (5.2 ml, 40 ml) was completely added to this cold stirred solution

-83mmol). Po 15 minutah smo dodali raztopino 6 (6.44 g, 40 mmol) v 30 ml DMF (ohlajeno na enako temperaturo). Reakcijsko mešanico smo pri -20°C mešali 30 minut, segreli na sobno temperaturo in 1 h nadaljevali z mešanjem. Reakcijsko mešanico smo evaporirali do suhega in ostanek raztopili v CH2CI2 (200 ml). Organsko raztopino smo sprali s 5% NaHCO3 raztopino (100 ml), vodo (100 ml) in slano vodo (50 ml). Organski ekstrakt smo posušili preko brezvodnega Na2SO4 in evaporirali do suhega, da smo dobili surovi produkt kot peno. Surovi produkt smo očistili s flash kolono silikagela, z uporabljanjem CH2CI2 -> acetona, kot eluenta, da smo dobili 12g (92%) čistega produkta.-83mmol). After 15 minutes, a solution of 6 (6.44 g, 40 mmol) in 30 ml of DMF (cooled to the same temperature) was added. The reaction mixture was stirred at -20 ° C for 30 minutes, warmed to room temperature, and stirred for 1 h. The reaction mixture was evaporated to dryness and the residue was dissolved in CH 2 Cl 2 (200 ml). The organic solution was washed with 5% NaHCO 3 solution (100 ml), water (100 ml) and brine (50 ml). The organic extract was dried over anhydrous Na 2 SO 4 and evaporated to dryness to give the crude product as a foam. The crude product was purified by flash column of silica gel using CH 2 Cl 2 -> acetone as eluent to give 12 g (92%) of the pure product.

4,4’-Dimetoksitritil-N-(timinilacetil)-L-serinol(Olb) (9): Spojino 8 (10 g, 30.58 mmol) smo evaporirali skupaj s suhim piridinom (3x50 ml) in raztopili v suhem piridinu (100 ml). K tej raztopini smo dodali TEA (3.54 g, 35 mmol), nato je pri sobni temperaturi v atmosferi argona sledil dodatek DMTCI (11.83 g, 35 mmol). Reakcijsko mešanico smo mešali 12 h, udušili z metanolom (20 ml) in mešali še 30 minut. Raztopino smo evaporirali do suhega in raztopili v CH2CI2 (200 ml). Organski ekstrakt smo sprali s 5% NaHCO3 raztopino (100 ml), vodo (100 ml) in slano vodo (50 ml). CH2CI2 plast smo posušili preko brezvodnega Na2SO4 in evaporirali do suhega, da smo dobili surovi produkt, kot peno. Surovi produkt smo očistili s flash silikagelno kolono z uporabljanjem CH2CI2-> acetona, kot eluenta, da smo dobili 17g (88%) čistega produkta.4,4'-Dimethoxytrityl-N- (thyminylacetyl) -L-serinol (Olb) (9): Compound 8 (10 g, 30.58 mmol) was evaporated together with dry pyridine (3x50 ml) and dissolved in dry pyridine (100 ml ). TEA (3.54 g, 35 mmol) was added to this solution, followed by addition of DMTCI (11.83 g, 35 mmol) at room temperature under argon. The reaction mixture was stirred for 12 h, quenched with methanol (20 ml) and stirred for a further 30 minutes. The solution was evaporated to dryness and dissolved in CH 2 Cl 2 (200 ml). The organic extract was washed with 5% NaHCO 3 solution (100 ml), water (100 ml) and brine (50 ml). The CH 2 Cl 2 layer was dried over anhydrous Na 2 SO 4 and evaporated to dryness to give the crude product as a foam. The crude product was purified by flash silica gel column using CH 2 Cl 2 -> acetone as eluent to give 17 g (88%) of pure product.

1-0-(4,4’-Dimetoksitritil)-2-[amino(timinilacetil)]-L-propan-1,3-diol (10):1-0- (4,4'-Dimethoxytrityl) -2- [amino (thyminylacetyl)] - L-propane-1,3-diol (10):

Spojino 9 (10 g, 15.89 mmol) smo raztopili v metanolu (20 ml). K tej raztopini smo pri temperaturi 0°C dodali 1N NaOH raztopino (20 ml, 20 mmol). Reakcijsko mešanico smo mešali 1 h in z ocetno kislino udušili na pH 7. Raztopino smo ekstrahirali z EtOAc (2x100 ml). Organski ekstraktCompound 9 (10 g, 15.89 mmol) was dissolved in methanol (20 ml). To this solution, a 1N NaOH solution (20 ml, 20 mmol) was added at 0 ° C. The reaction mixture was stirred for 1 h and quenched with acetic acid to pH 7. The solution was extracted with EtOAc (2x100 ml). Organic extract

-84smo sprali s 5% NaHCO3 raztopino (100 ml), vodo (100 ml) in slano vodo (50 ml). EtOAc plast smo posušili preko brezvodnega Na2SO4 in evaporirali do suhega, da smo dobili surovi produkt v obliki pene. Surovi produkt smo očistili s flash silikagelno kolono z uporabljanjem CH2CI2-> acetona kot eluenta, da smo dobili 8.2g (92%) čistega produkta.-84 We were washed with 5% NaHCO 3 solution (100 ml), water (100 ml) and brine (50 ml). The EtOAc layer was dried over anhydrous Na 2 SO 4 and evaporated to dryness to give a crude foam product. The crude product was purified by flash silica gel column using CH 2 Cl 2 -> acetone as eluent to give 8.2 g (92%) of the pure product.

1’-O-(4,4’-Dimetoksitritil)-2-[amino(timinilacetil)-L-propan-3’-O-(N,Ndiizopropil)-p-cianoetilfosforamidit (11): Spojino 10 (8.00 g, 14.31 mmol) smo evaporirali skupaj s suhim piridinom (3x50 ml) in čez noč sušili v vakuumu preko trdnega NaOH. Posušeni material smo raztopili v suhem CH2CI2 (100 ml) in v atmosferi argona ohladili na 0°C. K tej hladni raztopini smo dodali N,N-diizopropiletilamin (5.23 g, 25 mmol), čemur je v atmosferi argona sledil dodatek 2-cianoetil-N,N-diizopropilklorofosforamidita (4.72 g, 20.00 mmol). Reakcijsko mešanico smo 1 h mešali pri 0°C in 1 h pri sobni temperaturi. Reakcijsko mešanico smo razredčili s CH2CI2 (100 ml). Raztopino CH2CI2 smo sprali s 5% NaHCO3 raztopino (100 ml), vodo (100 ml) in slano vodo (50 ml). CH2CI2 plast smo posušili preko brezvodnega Na2SO4 in evaporirali do suhega, da smo dobili surovi produkt, kot peno. Surovi produkt smo očistili s flash silikagelno kolono z uporabljanjem CH2CI2-> acetona, ki je vseboval 0.1% TEA, kot eluenta, da smo dobili 10g (x%) čistega produkta. Peno smo čez noč v vakuumu sušili preko trdnega NaOH. Peno smo raztopili v CH2CI2 (15 ml) in jo v atmosferi argona 1 h kapljali v premešano raztopino suhega heksana (2000 ml). Po dodatku CH2CI2 raztopine smo nastalo oborino mešali še 1 uro in jo filtrirali, sprali s suhim heksanom (200 ml) in jo čez noč posušili preko trdnega NaOH. Dobitek: 9.5g (87%).1'-O- (4,4'-Dimethoxytrityl) -2- [amino (thyminylacetyl) -L-propane-3'-O- (N, Ndiisopropyl) -p-cyanoethylphosphoramidite (11): Compound 10 (8.00 g. 14.31 mmol) was evaporated along with dry pyridine (3x50 ml) and dried under vacuum over solid NaOH overnight. The dried material was dissolved in dry CH 2 Cl 2 (100 ml) and cooled to 0 ° C under argon. To this cold solution was added N, N-diisopropylethylamine (5.23 g, 25 mmol), followed by addition of 2-cyanoethyl-N, N-diisopropylchlorophosphoramidite (4.72 g, 20.00 mmol) under argon. The reaction mixture was stirred at 0 ° C for 1 h and at room temperature for 1 h. The reaction mixture was diluted with CH 2 Cl 2 (100 ml). The CH 2 Cl 2 solution was washed with 5% NaHCO 3 solution (100 ml), water (100 ml) and brine (50 ml). The CH 2 Cl 2 layer was dried over anhydrous Na 2 SO 4 and evaporated to dryness to give the crude product as a foam. The crude product was purified by flash silica gel column using CH 2 Cl 2 -> acetone containing 0.1% TEA as eluent to give 10 g (x%) of pure product. The foam was vacuum dried over solid NaOH overnight. The foam was dissolved in CH 2 Cl 2 (15 ml) and was dropped into a stirred solution of dry hexane (2000 ml) under argon for 1 h. After the addition of the CH 2 Cl 2 solution, the resulting precipitate was stirred for another 1 hour and filtered, washed with dry hexane (200 ml) and dried overnight over solid NaOH. Yield: 9.5g (87%).

Primer 26 (Glej sliko 26)Example 26 (See Figure 26)

-85N-(Terc-butiloksikarbonil)-O-benzil-L-serin (2): O-Benzil-L-serin 1 (10 g, 51.28 mmol) smo pri sobni temperaturi suspendirali v THF/H2O (8:2, 100 ml) mešanici. K tej premešani mešanici smo dodali trietilamin (6.06 g, 60 mmol), sledil je dodatek di-terc-butil dikarbonata (13.08 g, 60 mmol) in z mešanjem smo čez noč nadaljevali pri sobni temperaturi. Homogeno raztopino smo evaporirali do suhega in ostanek raztopili v etil acetatu (300 ml). Organski ekstrakt smo sprali z 0.5N raztopino kalijevega hidrogen sulfata (100 ml), vodo (100 ml) in slano vodo (50 ml). Etil acetatni ekstrakt smo posušili preko brezvodnega natrijevega sulfata in evaporirali do suhega, da smo dobili 14 g (93%) oljnatega ostanka.-85N- (Tert-butyloxycarbonyl) -O-benzyl-L-serine (2): O-Benzyl-L-serine 1 (10 g, 51.28 mmol) was suspended at room temperature in THF / H 2 O (8: 2 , 100 ml) to the mixture. Triethylamine (6.06 g, 60 mmol) was added to this stirred mixture, followed by the addition of di-tert-butyl dicarbonate (13.08 g, 60 mmol) and stirring was continued at room temperature overnight. The homogeneous solution was evaporated to dryness and the residue was dissolved in ethyl acetate (300 ml). The organic extract was washed with 0.5N potassium hydrogen sulfate solution (100 ml), water (100 ml) and brine (50 ml). The ethyl acetate extract was dried over anhydrous sodium sulfate and evaporated to dryness to give 14 g (93%) of an oily residue.

N-CTerc-butiloksikarbonilj-O-benzil-L-serinol (3): N-(Terc-butiloksikarbonil)O-benzil-L-serin 2 (6.0 g, 20.34 mmol) smo raztopili v suhem THF in ga v atmosferi argona ohladili na -20°C. K tej hladni premešani raztopini smo dodali TEA (2.32g, 23 mmol) in izobutil kloroformat (3.13 g, 23 mmol). Z mešanjem smo v atmosferi argona nadaljevali pri -20°C 30 minut. Reakcijsko mešanico smo nato takoj filtrirali pod odejo argona, oborino pa smo sprali s suhim THF (50 ml). Združen filtrat smo počasi dodali v hladno (0°C) raztopino NaBH4 (7.4 g, 200 mmol) v THF/voda (80:20, 200 ml) v 10 minutnem časovnem intervalu. Po tem dodatku smo reakcijsko mešanico mešali 2 h pri 0°C in pH naravnanem na 7 z ocetno kislino. Raztopino smo evaporirali do suhega in porazdelili med mešanico etil acetat/voda (300:150 ml) in ekstrahirali v etil acetat. Organski ekstrakt smo sprali s slano vodo (100 ml), posušili preko brezvodnega natrijevega sulfata in evaporirali do suhega. Surovi produkt smo očistili s flash kolonsko kromatografijo preko silikagela z uporabljanjem CH2CI2--> EtOAc, kot eluenta. Čisti produkt je bil zbran skupaj in evaporiran do suhega, da smo dobili 4.7 g (82%) čistega produkta v obliki olja. 1HNMR (CDCI3): δN-CTert-butyloxycarbonyl-O-benzyl-L-serinol (3): N- (Tert-butyloxycarbonyl) O-benzyl-L-serine 2 (6.0 g, 20.34 mmol) was dissolved in dry THF and cooled in argon atmosphere. at -20 ° C. To this cold stirred solution was added TEA (2.32g, 23 mmol) and isobutyl chloroformate (3.13 g, 23 mmol). Stirring was continued at -20 ° C for 30 minutes in an argon atmosphere. The reaction mixture was then filtered immediately under an argon blanket and the precipitate was washed with dry THF (50 ml). The combined filtrate was slowly added to a cold (0 ° C) solution of NaBH 4 (7.4 g, 200 mmol) in THF / water (80:20, 200 ml) over a 10 minute time interval. After this addition, the reaction mixture was stirred for 2 h at 0 ° C and the pH adjusted to 7 with acetic acid. The solution was evaporated to dryness and partitioned between ethyl acetate / water (300: 150 ml) and extracted into ethyl acetate. The organic extract was washed with brine (100 ml), dried over anhydrous sodium sulfate and evaporated to dryness. The crude product was purified by flash column chromatography over silica gel using CH 2 Cl 2 -> EtOAc as eluent. The pure product was combined and evaporated to dryness to give 4.7 g (82%) of the pure product as an oil. 1 HNMR (CDCI 3 ): δ

-861.41 (s, 9H, Boc), 3.60 - 3.70 (m, 4H), 3.82 (d, 2H), 4.53 (s, 2H, OCH2Ph), 5.20 (bs, 1H, NH) in 7.30 - 7.40 (m, 5H, Ph).-861.41 (s, 9H, Boc), 3.60 - 3.70 (m, 4H), 3.82 (d, 2H), 4.53 (s, 2H, OCH 2 Ph), 5.20 (bs, 1H, NH), and 7.30 - 7.40 ( m, 5H, Ph).

N-fTerc-butiloksikarbonilj-O-benzil-L-serinol-O-lb (4): K posušeni raztopini N-(terc-butiloksikarbonil)-O-benzil-L-serinola 3 (4.3 g, 14.3 mmol) v suhem piridinu (50 ml) smo pri sobni temperaturi dodali TEA (2.02 g, 20 mmol). K tej premešani raztopini smo dodali izobutirni anhidrid (3.16 g, 20 mmol) in v atmosferi argona se je čez noč mešanje nadaljevalo. Reakcijsko mešanico smo evaporirali do suhega, ostanek smo porazdelili med EtOAc (100 ml) in NaHCO3 (5% raztopina, 100 ml) in ga ekstrahirali v EtOAc. Organski ekstrakt smo sprali z vodo (100 ml), slano vodo (50 ml) in posušili preko brezvodnega Na2SO4. Posušeno raztopino smo evaporirali do suhega, da smo dobili surovi ostanek. Ostanek smo očistili s flash kromatografijo preko silikagela z uporabljanjem heksan-> EtOAc, kot eluenta. Čiste frakcije smo zbrali skupaj in jih evaporirali, da smo dobili oljnat produkt 4.5 g (84%). 1HNMR (CDCI3): 8 1.04 (d, 6H, lbCH3), 1.39 (s, 9H, Boc), 2.46 (m, 1H, IbCH), 3.40 (m, 2H), 3.92 (m, 2H), 4.12 (m, 1H), 4.46 (s, 2H, OCH2Ph), 6.84 (d, 1H, NH) in 7.24 - 7.40 (m, 5H, Ph).N-tert-butyloxycarbonyl-O-benzyl-L-serinol-O-1b (4): To a dried solution of N- (tert-butyloxycarbonyl) -O-benzyl-L-serinol 3 (4.3 g, 14.3 mmol) in dry pyridine (50 ml) was added TEA (2.02 g, 20 mmol) at room temperature. Isobutyric anhydride (3.16 g, 20 mmol) was added to this stirred solution and stirring was continued under argon atmosphere overnight. The reaction mixture was evaporated to dryness, the residue was partitioned between EtOAc (100 ml) and NaHCO 3 (5% solution, 100 ml) and extracted into EtOAc. The organic extract was washed with water (100 ml), brine (50 ml) and dried over anhydrous Na 2 SO 4 . The dried solution was evaporated to dryness to give a crude residue. The residue was purified by flash chromatography over silica gel using hexane-> EtOAc as eluent. The pure fractions were combined and evaporated to give an oily product of 4.5 g (84%). 1 HNMR (CDCl 3 ): δ 1.04 (d, 6H, 1bCH 3 ), 1.39 (s, 9H, Boc), 2.46 (m, 1H, IbCH), 3.40 (m, 2H), 3.92 (m, 2H). 4.12 (m, 1H), 4.46 (s, 2H, OCH 2 Ph), 6.84 (d, 1H, NH) and 7.24 - 7.40 (m, 5H, Ph).

N-(Timinilacetil)-O-benzil-L-serinol-O-lb (6): N-(Terc-butiloksikarbonil-Obenzil-L-serinol-O-lb 4 (4.3 g, 12.25 mmol) smo pri sobni temperaturi 30 minut pustili mešati v trifluorocetni kislini (20 ml) in CH2CI2 (20 ml). Reakcijsko mešanico smo evaporirali do suhega, raztopili v suhem CH3OH (10 ml) in zopet evaporirali do suhega. Ostanek smo v vakuumu 12 h sušili preko trdnega KOH. Posušen ostanek smo kot tak uporabili za nadaljnjo reakcijo brez karakterizacije.N- (Thinylacetyl) -O-benzyl-L-serinol-O-1b (6): N- (Tert-butyloxycarbonyl-Obenzyl-L-serinol-O-1b 4 (4.3 g, 12.25 mmol) was kept at room temperature 30 minutes was allowed to stir in trifluoroacetic acid (20 ml) and CH 2 Cl 2 (20 ml). the reaction mixture was evaporated to dryness, dissolved in dry CH 3 OH (10 ml) and again evaporated to dryness. the residue was under vacuum for 12 h dried The solid residue was used as such for further reaction without characterization.

Timin ocetno kislino 5 (2.76 g, 15 mmol) smo raztopili v suhem DMF (75 ml) in v argonu ohladili na -20°C. K tej hladni premešani raztopini smoThymine acetic acid 5 (2.76 g, 15 mmol) was dissolved in dry DMF (75 ml) and cooled to -20 ° C in argon. We are in to this cold stirred solution

-87dodali N-metilmorfolin (1.72 g, 17 mmol), temu pa je sledil dodatek izobutil kloroformata (2.31 g, 17 mmol). Po 15 minutnem mešanju smo raztopino zgornje TFA soli v suhem DMF (50 ml) nevtralizirali z Nmetilmorfolinom (1.72 g, 17 mmol) in jo naenkrat dodali v hladno premešano raztopino timin ocetne kisline. Reakcijsko mešanico smo pri 20°C mešali 1h, segreli na sobno temperaturo in preko noči nadaljevali z mešanjem. Raztopino smo evaporirali do suhega in ostanek raztopili v CH2CI2 (250 ml) in vodi (100 ml) in ga ekstrahirali v CH2CI2. Organski ekstrakt smo sprali s 5% NaHCO3 raztopino (100 ml), vodo (100 ml) in slano vodo (50 ml). CH2CI2 ekstrakt smo posušili in evaporirali do suhega, da smo dobili surovi produkt. Surovi produkt smo očistili s flash kromatografijo preko silikagela z uporabljanjem CH2CI2 --> acetona, kot eluenta. Potrebne frakcije smo zbrali in evaporirali, da smo dobili 4.8 g (94%) čistega produkta. Čisti produkt smo kristalizirali iz CH2CI2/heksan mešanice. Tališče: 122-124°C. 1HNMR (CDCI3): δ 1.04 (d, 6H, lbCH3), 1.72 (s, 3H, CH3), 2.44 (m, 1H, IbCH), 3.42 (m, 2H), 4.06 (m, 2H), 4.18 (m, 1H), 4.30 (s, 2H), 4.46 (s, 2H, OCH2Ph), 7.24 -7.40 (m, 6H, C6H in Ph), 8.22 (d, 1H, NH) in 11.22 (s, 1H, NH).-87 N-methylmorpholine (1.72 g, 17 mmol) was added followed by the addition of isobutyl chloroformate (2.31 g, 17 mmol). After stirring for 15 minutes, the solution of the above TFA salt in dry DMF (50 ml) was neutralized with Nmethylmorpholine (1.72 g, 17 mmol) and added at once to a cold stirred solution of acetic acid thymine. The reaction mixture was stirred at 20 ° C for 1h, warmed to room temperature and stirred overnight. The solution was evaporated to dryness and the residue was dissolved in CH 2 Cl 2 (250 ml) and water (100 ml) and extracted into CH 2 Cl 2 . The organic extract was washed with 5% NaHCO 3 solution (100 ml), water (100 ml) and brine (50 ml). The CH 2 Cl 2 extract was dried and evaporated to dryness to give the crude product. The crude product was purified by flash chromatography over silica gel using CH 2 Cl 2 -> acetone as eluent. The necessary fractions were collected and evaporated to give 4.8 g (94%) of pure product. The pure product was crystallized from CH 2 Cl 2 / hexane mixture. Melting point: 122-124 ° C. 1 HNMR (CDCI 3 ): δ 1.04 (d, 6H, 1bCH 3 ), 1.72 (s, 3H, CH 3 ), 2.44 (m, 1H, IbCH), 3.42 (m, 2H), 4.06 (m, 2H) , 4.18 (m, 1H), 4.30 (s, 2H), 4.46 (s, 2H, OCH 2 Ph), 7.24 -7.40 (m, 6H, C 6 H and Ph), 8.22 (d, 1H, NH) and 11.22 (s, 1H, NH).

N-(Timinllacetil)-L-serinol-O-lb (7): N-(Timinilacetil)-O-benzil-L-serinol-O-lb 6 (2.08 g, 5 mmol) smo raztopili v etanolu (50 ml). K tej raztopini smo pri sobni temperaturi dodali Pd(OH)2 (0.6 g) in cikloheksan (5 ml). Reakcijsko mešanico smo 12 h segrevali pri 70°C. Katalizator smo filtrirali in sprali z metanolom (20 ml). Filtrat smo evaporirali do suhega, da smo dobili belo trdno snov. Belo trdno snov smo raztopili v minimalni količini MeOH in ohladili na sobno temperaturo. Produkt je kristaliziral kot fin prašek. Tališče: 196-198°C. Dobitek: 1.48 g (91%). 1HNMR (Me2SO-d6): δ 1.04 (d, 6H, lbCH3), 1.72 (s, 3H, CH3), 2.42 (m, 1H, IbCH), 3.40 (m, 2H), 3.94 (m,N- (Thinylacetyl) -L-serinol-O-1b (7): N- (Thinylacetyl) -O-benzyl-L-serinol-O-1b 6 (2.08 g, 5 mmol) was dissolved in ethanol (50 ml). . To this solution, Pd (OH) 2 (0.6 g) and cyclohexane (5 ml) were added at room temperature. The reaction mixture was heated at 70 ° C for 12 h. The catalyst was filtered off and washed with methanol (20 ml). The filtrate was evaporated to dryness to give a white solid. The white solid was dissolved in a minimal amount of MeOH and cooled to room temperature. The product crystallized as a fine powder. Melting point: 196-198 ° C. Yield: 1.48 g (91%). 1 HNMR (Me 2 SO-d 6 ): δ 1.04 (d, 6H, 1bCH 3 ), 1.72 (s, 3H, CH 3 ), 2.42 (m, 1H, IbCH), 3.40 (m, 2H), 3.94 ( m,

-882Η), 4.06 (m, 1H), 4.28 (s, 2H), 4.90 (t, 1H, OH), 7.20 (s, 1H, C6H), 8.12 (d, 1H, NH) in 11.22 (s, 1H, NH).-882Η), 4.06 (m, 1H), 4.28 (s, 2H), 4.90 (t, 1H, OH), 7.20 (s, 1H, C 6 H), 8.12 (d, 1H, NH) and 11.22 (s , 1H, NH).

A^-Dimetoksitrltil-N-CtiminilacetfO-L-serinol-O-lb (8): N-(Timinilacetil)-Lserinol-O-lb 7 (1.48 g, 4.5 mmol) smo raztopili v suhem piridinu (50 ml) v atmosferi argona. K tej premešani raztopini smo dodali TEA (0.51 g, 5 mmol) in Ν,Ν-dimetilamino piridin (0.10 g). Po 10 min smo dodali 4,4’dimetoksitritil klorid (1.69 g, 5 mmol) in preko noči se je mešanje nadaljevalo pri sobni temperaturi v atmosferi argona. Reakcijsko mešanico smo udušili z MeOH (10 ml), jo mešali 10 min in evaporirali do suhega. Ostanek smo raztopili v EtOAc (200 ml), sprali s 5% NaHCO3 raztopino (100 ml), vodo (100 ml) in slano vodo (50 ml). Organski ekstrakt smo posušili preko brezvodnega Na2SO4 in ga evaporirali do suhega. Surovi produkt smo očistili s flash kolonsko kromatografijo preko silikagela z uporabljanjem CH2CI2-> EtOAc, kot eluenta. Čiste frakcije smo zbrali in jih evaporirali, da smo dobili 2,5 g (88%) pene. 1HNMR (CDCI3): δ 1.04 (d, 6H, lbCH3), 1.72 (s, 3H, CH3), 2.40 (m, 1H, IbCH), 3.38 (m, 2H), 3.72 (s, 6H, 2.0CH3), 4.12 (m, 2H), 4.20 (m, 1H), 4.32 (d, 2H), 6.84 (m, 4H, Ph), 7.20 - 7.40 (m, 12 H, C6H in Ph), 8.30 (d, 1H, NH) in 11.28 (s, 1H, NH).N, N-Dimethoxytrityl-N-trimethylacetyl-0-L-serinol-O-1b (8): N- (Thyminylacetyl) -Lserinol-O-1b 7 (1.48 g, 4.5 mmol) was dissolved in dry pyridine (50 ml) in the atmosphere argon. TEA (0.51 g, 5 mmol) and N, N-dimethylamino pyridine (0.10 g) were added to this stirred solution. After 10 min, 4,4'-dimethoxytrityl chloride (1.69 g, 5 mmol) was added and stirring was continued at room temperature under argon overnight. The reaction mixture was quenched with MeOH (10 ml), stirred for 10 min and evaporated to dryness. The residue was dissolved in EtOAc (200 ml), washed with 5% NaHCO 3 solution (100 ml), water (100 ml) and brine (50 ml). The organic extract was dried over anhydrous Na 2 SO 4 and evaporated to dryness. The crude product was purified by flash column chromatography over silica gel using CH 2 Cl 2 -> EtOAc as eluent. The pure fractions were collected and evaporated to give 2.5 g (88%) of foam. 1 HNMR (CDCl 3 ): δ 1.04 (d, 6H, 1bCH 3 ), 1.72 (s, 3H, CH 3 ), 2.40 (m, 1H, IbCH), 3.38 (m, 2H), 3.72 (s, 6H. 2.0CH 3 ), 4.12 (m, 2H), 4.20 (m, 1H), 4.32 (d, 2H), 6.84 (m, 4H, Ph), 7.20 - 7.40 (m, 12 H, C 6 H and Ph) , 8.30 (d, 1H, NH) and 11.28 (s, 1H, NH).

-0-(4,4’-Dimetoksltritll)-2-[amino(timlnilacetil)]-L-propan-1,3-diol (9):-0- (4,4'-Dimethoxytrityl) -2- [amino (thymnylacetyl)] - L-propane-1,3-diol (9):

4,4’-Dimetoksitritil-N- (timinilacetil)-L-serinol-O-lb 8 (3.4 g, 5.41 mmol) smo raztopili v MeOH (30 ml) in v ledeni kopeli ohladili na 0°C. K tej hladni premešani raztopini smo dodali 2N NaOH (10 ml, 20 mmol) in pri 0°C 30 min nadaljevali z mešanjem. Raztopini smo z ocetno kislino naravnali pH na 7 in jo evaporirali do suhega. Ostanek smo porazdelili med vodo (50 ml) in CH2CI2 (150 ml) in ekstrahirali v CH2CI2. Vodno plast smo ponovno ekstrahirali s CH2CI2 (50 ml). Združen organski ekstrakt smo sprali s slano4,4'-Dimethoxytrityl-N- (thyminylacetyl) -L-serinol-O-1b 8 (3.4 g, 5.41 mmol) was dissolved in MeOH (30 ml) and cooled to 0 ° C in an ice bath. To this cold stirred solution was added 2N NaOH (10 ml, 20 mmol) and stirring continued at 0 ° C for 30 min. The solution was adjusted to pH 7 with acetic acid and evaporated to dryness. The residue was partitioned between water (50 ml) and CH 2 Cl 2 (150 ml) and extracted into CH 2 Cl 2 . The aqueous layer was re-extracted with CH 2 Cl 2 (50 ml). The combined organic extract was washed with brine

-89vodo (50 ml), posušili in evaporirali do suhega. Ostanek smo očistili s flash kolonsko kromatografijo preko silikagela z uporabljanjem CH2CI2 -> acetona, kot eluenta. Dobitek: 3.0 g (99%). 1HNMR (CDCI3) : 1.72 (s, 3H, CH3), 3.0 (m, 2H), 3.42 (m, 2H), 3.72 (s, 6H, 2.0CH3), 3.94 (m, 1H), 4.32 (d, 2H), 4.68 (m, 1H, OH), 6.84 (m, 4H, Ph), 7.20 - 7.40 (m, 12H, C6H in Ph), 8.06 (d, 1H, NH) in 11.28 (bs, 1H, NH).-89 water (50 ml), dried and evaporated to dryness. The residue was purified by flash column chromatography over silica gel using CH 2 Cl 2 -> acetone as eluent. Yield: 3.0 g (99%). 1 HNMR (CDCl 3 ): 1.72 (s, 3H, CH 3 ), 3.0 (m, 2H), 3.42 (m, 2H), 3.72 (s, 6H, 2.0CH 3 ), 3.94 (m, 1H), 4.32 (d, 2H), 4.68 (m, 1H, OH), 6.84 (m, 4H, Ph), 7.20 - 7.40 (m, 12H, C 6 H and Ph), 8.06 (d, 1H, NH) and 11.28 ( bs, 1H, NH).

1- O-(4,4’-Dlmetoksitrltll)-2-[amlno(tlminilacetll)]-L-propan-3-O-(N,Ndiizopropil)-p-cianoetilfosforamidit (10): 1 -0-(4,4’-Dimetoksitritil)-2[amino(timinilacetil)]-L-propan-1,3-diol 9 (3.1 g, 5.55 mmol) smo v vakuumu čez noč sušili preko trdnega NaOH in raztopili v suhem CH2CI2 (100 ml). Raztopino smo v atmosferi argona ohladili na 0°C. K tej hladni premešani raztopini smo dodali N,N-diizopropiletilamin (1.29 g, 10 mmol), nato pa še1- O- (4,4'-Dimethoxytrityl) -2- [amino (tminylacetyl)] - L-propane-3-O- (N, Ndiisopropyl) -p-cyanoethylphosphoramidite (10): 1- 0- (4, 4'-Dimethoxytrityl) -2 [amino (thyminylacetyl)] - L-propane-1,3-diol 9 (3.1 g, 5.55 mmol) was dried in vacuo overnight over solid NaOH and dissolved in dry CH 2 Cl 2 (100 ml). The solution was cooled to 0 ° C in an argon atmosphere. To this cold stirred solution was added N, N-diisopropylethylamine (1.29 g, 10 mmol) and then

2- cianoetil-N,N-diizopropil-klorofosforamidit (1.96 g, 8.3 mmol). Reakcijsko mešanico smo 1 h mešali pri 0°C in 2 h pri sobni temperaturi. Reakcijo smo razredčili s CH2CH2 (100 ml) in organsko plast sprali s 5% NaHCO3 raztopino (100 ml), vodo (100 ml) in slano vodo (50 ml). CH2CI2 ekstrakt smo posušili in evaporirali do suhega, da smo dobili oljnat ostanek. Ostanek smo očistili s flash kromatografijo preko silikagela z uporabljanjem CH2CI2~>EtOAc mešanice z 0.1% TEA, kot eluenta. Čiste frakcije so bile zbrane skupaj in evaporirane do nastanka pene. Peno smo preko noči v vakuumu sušili preko trdnega NaOH. Posušeno peno smo raztopili v suhem CH2CI2 (20 ml) in jo v atmosferi argona v časovnem intervalu 1 h nakapljali v premešano raztopino suhega heksana (2000 ml). Po dodatku smo nastalo oborino mešali nadaljnjo 1 h in jo filtrirali, sprali s suhim heksanom (100 ml) in trdno snov v vakuumu 4 h sušili preko trdnega NaOH. Dobitek: 3.5 g (83%).2- cyanoethyl-N, N-diisopropyl-chlorophosphoramidite (1.96 g, 8.3 mmol). The reaction mixture was stirred at 0 ° C for 1 h and at room temperature for 2 h. The reaction was diluted with CH 2 CH 2 (100 ml) and the organic layer was washed with 5% NaHCO 3 solution (100 ml), water (100 ml) and brine (50 ml). The CH 2 CI 2 extract was dried and evaporated to dryness to give an oily residue. The residue was purified by flash chromatography over silica gel using CH 2 Cl 2 ~> EtOAc mixture with 0.1% TEA as eluent. The pure fractions were collected together and evaporated to give a foam. The foam was dried in vacuo overnight over solid NaOH. The dried foam was dissolved in dry CH 2 Cl 2 (20 ml) and added to a stirred solution of dry hexane (2000 ml) under an argon atmosphere for 1 h. After the addition, the resulting precipitate was stirred for a further 1 h and filtered, washed with dry hexane (100 ml) and the solid in vacuo dried for 4 h over solid NaOH. Yield: 3.5 g (83%).

Primer 27Example 27

-90(Glej sliko 27)-90 (See Figure 27)

N-(Terc-butiloksikarbonil)-O-benzil-D-serin (12): O-Benzil-D-serin U (5 g, 25.64 mmol) smo pri sobni temperaturi suspendirali v THF/H2O (8:2, 70 ml) mešanici. K tej premešani mešanici smo dodali trietilamin (4.04 g, 40 mmol), nato pa še di-terc-butil dikarbonat (6.54 g, 30 mmol) in preko noči pri sobni temperaturi nadaljevali z mešanjem. Homogeno raztopino smo evaporirali do suhega in ostanek raztopili v etil acetatu (150 ml). Organski ekstrakt smo sprali z 0.5N raztopino kalijevega hidrogen sulfata (100 ml), vodo (100 ml) in slano vodo (50 ml). Etil acetatni ekstrakt smo posušili preko brezvodnega natrijevega sulfata in ga evaporirali do suhega, da smo dobili 7.56 g (100%) oljnatega ostanka.N- (Tert-butyloxycarbonyl) -O-benzyl-D-serine (12): O-Benzyl-D-serine U (5 g, 25.64 mmol) was suspended at THF / H 2 O (8: 2, at room temperature). 70 ml) to the mixture. To this stirred mixture was added triethylamine (4.04 g, 40 mmol) followed by di-tert-butyl dicarbonate (6.54 g, 30 mmol) and stirring was continued overnight at room temperature. The homogeneous solution was evaporated to dryness and the residue was dissolved in ethyl acetate (150 ml). The organic extract was washed with 0.5N potassium hydrogen sulfate solution (100 ml), water (100 ml) and brine (50 ml). The ethyl acetate extract was dried over anhydrous sodium sulfate and evaporated to dryness to give 7.56 g (100%) of an oily residue.

N-(Terc-butiloksikarboni!)-O-benzil-D-serinol (13): N-(Tercbutiloksikarbonil)-O-benzil-D-serin 10 (7.56 g, 25.63 mmol) smo raztopili v suhem THF in v atmosferi argona ohladili do -20°C. K tej hladni premešani raztopini smo dodali TEA (3.03 g, 30 mmol) in izobutil kloroformat (4.08 g, 30 mmol). Pri -20°C smo v atmosferi argona z mešanjem nadaljevali 30 min. Reakcijsko mešanico smo takoj filtrirali pod odejo argona, oborino smo sprali s suhim THF (50 ml). Združen filtrat smo počasi dodali v hladno (0°C) raztopino NaBH4 (7.4 g, 200 mmol) v THF/voda (80:20, 200 ml) med 10 min intervalom. Po dodatku smo reakcijsko mešanico 2 h mešali pri 0°C in pH naravnanim na 7 z ocetno kislino. Raztopino smo evaporirali do suhega, porazdelili med etil acetat/voda mešanico (300:150 ml) in ekstrahirali v etil acetat. Organski ekstrakt smo sprali s slano vodo (100 ml), ga posušili preko brezvodnega natrijevega sulfata in evaporirali do suhega. Surovi produkt smo očistili s flash kolonsko kromatografijo preko silikagela z uporabljanjem CH2CI2-> EtOAc, kot eluenta. Čisti produkt smo zbrali skupaj in evaporirali doN- (Tert-Butyloxycarbonyl) - O-benzyl-D-serinol (13): N- (Tert-Butyloxycarbonyl) -O-benzyl-D-serine 10 (7.56 g, 25.63 mmol) was dissolved in dry THF and argon atmosphere. cooled to -20 ° C. To this cold stirred solution was added TEA (3.03 g, 30 mmol) and isobutyl chloroformate (4.08 g, 30 mmol). At -20 ° C, stirring was continued for 30 min in an argon atmosphere. The reaction mixture was immediately filtered under an argon blanket, and the precipitate was washed with dry THF (50 ml). The combined filtrate was slowly added to a cold (0 ° C) solution of NaBH 4 (7.4 g, 200 mmol) in THF / water (80:20, 200 ml) over a 10 min interval. After the addition, the reaction mixture was stirred at 0 ° C for 2 h and the pH adjusted to 7 with acetic acid. The solution was evaporated to dryness, partitioned between ethyl acetate / water mixture (300: 150 ml) and extracted into ethyl acetate. The organic extract was washed with brine (100 ml), dried over anhydrous sodium sulfate and evaporated to dryness. The crude product was purified by flash column chromatography over silica gel using CH 2 Cl 2 -> EtOAc as eluent. The pure product was collected together and evaporated to

-91suhega, da smo dobili 6.68 g (92%) čistega produkta, kot olje. 1HNMR (CDCI3): δ 1.41 (s, 9H, Boc), 3.60 - 3.70 (m, 4H), 3.82 (d, 2H), 4.53 (s, 2H, OCH2Ph), 5.20 (bs, 1H, NH) in 7.30 - 7.40 (m, 5H, Ph).-91 dry to give 6.68 g (92%) of the pure product as an oil. 1 HNMR (CDCl 3 ): δ 1.41 (s, 9H, Boc), 3.60 - 3.70 (m, 4H), 3.82 (d, 2H), 4.53 (s, 2H, OCH 2 Ph), 5.20 (bs, 1H. NH) and 7.30 - 7.40 (m, 5H, Ph).

N-(Terc-butiloksikarbonil)-O-benzil-D-serinol-O-lb (14): K posušeni raztopini N-(terc-butiloksikarbonil)-O-benzil-D-serinola 13 (6.6 g, 23.5 mmol) v suhem piridinu (50 ml) smo pri sobni temperaturi dodali TEA (3.03 g, 30 mmol). K tej premešani raztopini smo dodali izobutirični anhidrid (4.74 g, 30 mmol) in v atmosferi argona preko noči nadaljevali z mešanjem. Reakcijsko mešanico smo evaporirali do suhega, jo porazdelili med EtOAc (200 ml) in NaHCO3 (5% raztopina, 100 ml) in ekstrahirali v EtOAc. Organski ekstrakt smo sprali z vodo (100 ml), slano vodo (50 ml) in ga posušili preko brezvodnega Na2SO4. Posušeno raztopino smo evaporirali do suhega, da smo dobili surovi ostanek. Ostanek smo očistili s flash kromatografijo preko silikagela z uporabo heksan -> EtOAc, kot eluenta. Čiste frakcije smo zbrali skupaj in evaporirali, da smo dobili oljnat produkt 8.0 g (97%). 1HNMR (CDCI3) : δ 1.04 (d, 6H, lbCH3), 1.39 (s, 9H, Boc), 2.46 (m, 1H, IbCH), 3.40 (m, 2H), 3.92 (m, 2H), 4.12 (m, 1H), 4.46 (s, 2H, OCH2Ph), 6.84 (d, 1H, NH) in 7.24 - 7.40 (m, 5H, Ph).N- (Tert-butyloxycarbonyl) -O-benzyl-D-serinol-O-1b (14): To a dried solution of N- (tert-butyloxycarbonyl) -O-benzyl-D-serinol 13 (6.6 g, 23.5 mmol) in TEA (3.03 g, 30 mmol) was added at room temperature to dry pyridine (50 ml). Isobutyric anhydride (4.74 g, 30 mmol) was added to this stirred solution and stirring was continued overnight under argon. The reaction mixture was evaporated to dryness, partitioned between EtOAc (200 ml) and NaHCO 3 (5% solution, 100 ml) and extracted into EtOAc. The organic extract was washed with water (100 ml), brine (50 ml) and dried over anhydrous Na 2 SO 4 . The dried solution was evaporated to dryness to give a crude residue. The residue was purified by flash chromatography over silica gel using hexane -> EtOAc as eluent. The pure fractions were combined and evaporated to give an oily product of 8.0 g (97%). 1 HNMR (CDCl 3 ): δ 1.04 (d, 6H, 1bCH 3 ), 1.39 (s, 9H, Boc), 2.46 (m, 1H, IbCH), 3.40 (m, 2H), 3.92 (m, 2H). 4.12 (m, 1H), 4.46 (s, 2H, OCH 2 Ph), 6.84 (d, 1H, NH) and 7.24 - 7.40 (m, 5H, Ph).

N-(Timinilacetil)-O-benzil-D-serinol-O-lb (15): N-(Terc-butiloksikarbonil)-Obenzil-D-serinol-O-lb 14 (5.0 g, 14.25 mmol) smo pri sobni temperaturi pustili 30 min mešati v trifluoro ocetni kislini (20 ml) in CH2CI2 (20 ml). Reakcijsko mešanico smo evaporirali do suhega, raztopili v suhem CH3OH (10 ml) in jo ponovno evaporirali do suhega. Ostanek smo raztopili v CH2CI2 (150 ml), pH smo naravnali na 7 s 5% NaHCO3 raztopino in ga ekstrahirali v CH2CI2. Organsko plast smo sprali z vodo (50 ml) in slano vodo (50 ml). CH2CI2 ekstrakt smo posušili in evaporirali do suhega. TakoN- (Thinylacetyl) -O-benzyl-D-serinol-O-1b (15): N- (Tert-butyloxycarbonyl) -Obenzyl-D-serinol-O-1b 14 (5.0 g, 14.25 mmol) was kept at room temperature. allowed to stir in trifluoro acetic acid (20 ml) and CH 2 Cl 2 (20 ml) for 30 min. The reaction mixture was evaporated to dryness, dissolved in dry CH 3 OH (10 ml) and evaporated again to dryness. The residue was dissolved in CH 2 Cl 2 (150 ml), the pH was adjusted to 7 with 5% NaHCO 3 solution and extracted into CH 2 Cl 2 . The organic layer was washed with water (50 ml) and brine (50 ml). The CH 2 Cl 2 extract was dried and evaporated to dryness. So

-92dobljeni ostanek smo v vakuumu 12 h sušili preko trdnega KOH. Posušeni ostanek smo kot tak uporabili za nadaljnjo reakcijo brez karakterizacije.-92 The residue obtained was dried under solid KOH in vacuo for 12 h. The dried residue was used as such for further reaction without characterization.

Timin ocetno kislino 5 (2.57 g, 14 mmol) smo raztopili v suhem DMF (50 ml) in v argonu ohladili na -20°C. K tej hladni premešani raztopini smo dodali N-metilmorfolin (1.52 g, 15 mmol), nato pa še izobutil kloroformat (2.04 g, 15 mmol). Po 15 minutah mešanja smo raztopino zgornjega amina v suhem DMF (50 ml) naenkrat dodali v hladno premešano raztopino timin ocetne kisline. Reakcijsko mešanico smo pri -20°C mešali 1 h, jo segreli na sobno temperaturo in preko noči nadaljevali z mešanjem. Raztopino smo evaporirali do suhega in ostanek raztopili v CH2Ci2 (250 ml) in vodi (100 ml) in ekstrahirali v CH2CI2. Organski ekstrakt smo sprali s 5% NaHCO3 raztopino (100 ml), vodo (100 ml) in slano vodo (50 ml). CH2CI2 ekstrakt smo posušili in evaporirali do suhega, da smo dobili surovi produkt. Surovi produkt smo očistili s flash kromatografijo preko silikagela z uporabo CH2CI2-> aceton mešanice, kot eluenta. Potrebne frakcije smo zbrali in evaporirali, da smo dobili 2.8 g (54%) čistega produkta. 1HNMR (CDCl3): δ 1.04 (d, 6H, lbCH3), 1.72 (s, 3H, CH3), 2.44 (m, 1H, IbCH), 3.42 (m, 2H), 4.06 (m, 2H), 4.18 (m, 1H), 4.30 (s, 2H), 4.46 (s, 2H, OCH2Ph), 7.24-7.40 (m, 6H, C6H in Ph), 8.22 (d, 1H, NH) in 11.22 (s, 1H, NH).Thymine acetic acid 5 (2.57 g, 14 mmol) was dissolved in dry DMF (50 ml) and cooled to -20 ° C in argon. To this cold stirred solution was added N-methylmorpholine (1.52 g, 15 mmol) followed by isobutyl chloroformate (2.04 g, 15 mmol). After stirring for 15 minutes, a solution of the above amine in dry DMF (50 ml) was added at once to a cold stirred solution of acetic acid thymine. The reaction mixture was stirred at -20 ° C for 1 h, warmed to room temperature and stirred overnight. The solution was evaporated to dryness and the residue was dissolved in CH 2 Cl 2 (250 ml) and water (100 ml) and extracted into CH 2 Cl 2 . The organic extract was washed with 5% NaHCO 3 solution (100 ml), water (100 ml) and brine (50 ml). The CH 2 Cl 2 extract was dried and evaporated to dryness to give the crude product. The crude product was purified by flash chromatography over silica gel using CH 2 Cl 2 -> acetone mixture as eluent. The necessary fractions were collected and evaporated to give 2.8 g (54%) of pure product. 1 HNMR (CDCl 3 ): δ 1.04 (d, 6H, 1bCH 3 ), 1.72 (s, 3H, CH 3 ), 2.44 (m, 1H, IbCH), 3.42 (m, 2H), 4.06 (m, 2H) , 4.18 (m, 1H), 4.30 (s, 2H), 4.46 (s, 2H, OCH 2 Ph), 7.24-7.40 (m, 6H, C 6 H and Ph), 8.22 (d, 1H, NH) and 11.22 (s, 1H, NH).

Naslovno spojino smo pripravili tudi z uporabo metode, ki je bila opisana za pripravo L izomere. Uporabljeni reagenti so: timin ocetna kislina (2.2 g, 12 mmol); izobutil kloroformat (1.77 g, 13 mmol); N-metilmorfolin (1.52 g, 15 mmol); TFA sol (3.65 g, 10 mmol); N-metilmorfolin (1.5 g, 15 mmol) in suh DMF (100 ml). Dobitek: 3.5 g (84%).The title compound was also prepared using the method described for the preparation of the L isomer. The reagents used are: thymine acetic acid (2.2 g, 12 mmol); isobutyl chloroformate (1.77 g, 13 mmol); N-methylmorpholine (1.52 g, 15 mmol); TFA salt (3.65 g, 10 mmol); N-methylmorpholine (1.5 g, 15 mmol) and dry DMF (100 ml). Yield: 3.5 g (84%).

-93N-(Timinilacetil)-D-serinol-O-lb (16): N-(Timinilacetil)-O-benzil-D-serinol-O-lb 15 (3.5 g, 8.39 mmol) smo raztopili v etanolu (50 ml). K tej raztopini smo pri sobni temperaturi dodali Pd(OH)2 (1.00 g) in cikloheksan (10 ml). Reakcijsko mešanico smo segrevali pri 70°C 12h. Katalizator smo filtrirali in sprali z metanolom (20 ml). Filtrat smo evaporirali do suhega, da smo dobili belo trdno snov. Dobitek: 2.7 g (98%). 1HNMR (Me2SO-d6): δ 1.04 (d, 6H, lbCH3), 1.72 (s, 3H, CH3), 2.42 (m, 1H, IbCH), 3.40 (m, 2H), 3.94 (m, 2H), 4.06 (m, 1H), 4.28 (s, 2H), 4.90 (t, 1H, OH), 7.20 (s, 1H, C6H), 8.12 (d, 1H, NH) in 11.22 (s, 1H, NH).-93N- (Thinylacetyl) -D-serinol-O-1b (16): N- (Thinylacetyl) -O-benzyl-D-serinol-O-1b 15 (3.5 g, 8.39 mmol) was dissolved in ethanol (50 ml ). To this solution was added Pd (OH) 2 (1.00 g) and cyclohexane (10 ml) at room temperature. The reaction mixture was heated at 70 ° C for 12 h. The catalyst was filtered off and washed with methanol (20 ml). The filtrate was evaporated to dryness to give a white solid. Yield: 2.7 g (98%). 1 HNMR (Me 2 SO-d 6 ): δ 1.04 (d, 6H, 1bCH 3 ), 1.72 (s, 3H, CH 3 ), 2.42 (m, 1H, IbCH), 3.40 (m, 2H), 3.94 ( m, 2H), 4.06 (m, 1H), 4.28 (s, 2H), 4.90 (t, 1H, OH), 7.20 (s, 1H, C 6 H), 8.12 (d, 1H, NH) and 11.22 ( s, 1H, NH).

4,4’-Οίιτΐ6ΐοΙ(8ηι1ΙΗ-Ν-(ϋιηΙηΗ3θβϋΙ)-0-8θΐ1ηοΙ-0-^ (17): N-(Timinilacetil)-Dserinol-O-lb 16 (2.7 g, 8.26 mmol) smo v atmosferi argona raztopili v suhem piridinu (50 ml). K tej premešani raztopini smo dodali TEA (1.01 g, 10 mmol), nato pa še 4,4’-dimetoksitritil klorid (3.38 g, 10 mmol) in pri sobni temperaturi v argonu čez noč nadaljevali z mešanjem. Reakcijsko mešanico smo udušili z MeOH (10 ml), jo mešali 10 min in evaporirali do suhega. Ostanek smo raztopili v EtOAc (250 ml), sprali s 5% NaHCO3 raztopino (100 ml), vodo (100 ml) in slano vodo (50 ml). Organski ekstrakt smo posušili preko brezvodnega Na2SO4 in ostanek evaporirali do suhega. Surovi produkt smo očistili s flash kolonsko kromatografijo z uporabljanjem CH2CI2 -> EtOAc, kot eluenta. Čiste frakcije smo zbrali in evaporirali, da smo dobili 5.0 g (96%) pene. 1HNMR (CDCI3): δ 1.04 (d, 6H, lbCH3), 1.72 (s, 3H, CH3), 2.40 (m, 1H, IbCH), 3.38 (m, 2H), 3.72 (s, 6H, 2.OCH3), 4.12 (m, 2H), 4.20 (m, 1H), 4.32 (d, 2H), 6.84 (m, 4H, Ph),4,4'-Οίιτΐ6ΐοΙ (8ηι1ΙΗ-Ν- (ϋιηΙηΗ3θβϋΙ) -0-8θΐ1ηοΙ-0- ^ (17): N- (Thinylacetyl) -Dserinol-O-lb 16 (2.7 g, 8.26 mmol) was dissolved in an argon atmosphere in dry pyridine (50 ml) TEA (1.01 g, 10 mmol) was added to this stirred solution, followed by 4,4'-dimethoxytrityl chloride (3.38 g, 10 mmol) and continued at room temperature in argon overnight. The reaction mixture was quenched with MeOH (10 ml), stirred for 10 min and evaporated to dryness, the residue was dissolved in EtOAc (250 ml), washed with 5% NaHCO 3 solution (100 ml), water (100 ml) and brine (50 ml) The organic extract was dried over anhydrous Na 2 SO 4 and the residue was evaporated to dryness The crude product was purified by flash column chromatography using CH 2 Cl 2 -> EtOAc as eluent The pure fractions were collected and evaporated to give 5.0 g (96%) of foam. 1 HNMR (CDCl 3 ): δ 1.04 (d, 6H, 1bCH 3 ), 1.72 (s, 3H, CH 3 ), 2.40 (m, 1H, IbCH), 3.38 (m, 2H), 3.72 (s, 6H, 2.OCH3), 4. 12 (m, 2H), 4.20 (m, 1H), 4.32 (d, 2H), 6.84 (m, 4H, Ph),

7.20 - 7.40 (m, 12H, C6H in Ph), 8.30 (d, 1H, NH) in 11.28 (s, 1H, NH).7.20 - 7.40 (m, 12H, C 6 H and Ph), 8.30 (d, 1H, NH) and 11.28 (s, 1H, NH).

-0-(4,4’-Dimetoksftritil)-2-[amino(timinilacetil)]-D-propan-1,3-diol (18):-0- (4,4'-Dimethoxyphthyl) -2- [amino (thyminylacetyl)] - D-propane-1,3-diol (18):

4,4’-Dimetoksitritil-N-(timinilacetil)-D-serinol-O-lb 17 (5.0 g, 7.95 mmol) smo raztopili v MeOH (30 ml) in v ledeni kopeli ohladili na 0°C. K tej hladni4,4′-Dimethoxytrityl-N- (thyminylacetyl) -D-serinol-O-lb 17 (5.0 g, 7.95 mmol) was dissolved in MeOH (30 ml) and cooled to 0 ° C in an ice bath. To this cold

-94premešani raztopini smo dodali 2N NaOH (10 ml, 20 mmol) in pri 0°C nadaljevali z mešanjem 30 min. Raztopini smo z ocetno kislino naravnali pH na 7 in jo evaporirali do suhega. Ostanek smo porazdelili med vodo (50 ml) in CH2CI2 (250 ml) in ga ekstrahirali v CH2CI2. Vodno plast smo ponovno ekstrahirali s CH2CI2 (50 ml). Združen organski ekstrakt smo sprali s slano vodo (50 ml), posušili in evaporirali do suhega. Ostanek smo očistili s flash kolonsko kromatografijo preko silikagela z uporabo CH2CI2 -> aceton mešanice kot eluenta. Dobitek: 4.0 g (90%). 1HNMR (CDCI3): 1.72 (s, 3H, CH3), 3.0 (m, 2H), 3.42 (m, 2H), 3.72 (s, 6H, 2.0CH3), 3.94 (m, 1H), 4.32 (d, 2H), 4.68 (m, 1H, OH), 6.84 (m, 4H, Ph),-94 To the stirred solution was added 2N NaOH (10 ml, 20 mmol) and stirred at 0 ° C for 30 min. The solution was adjusted to pH 7 with acetic acid and evaporated to dryness. The residue was partitioned between water (50 ml) and CH 2 Cl 2 (250 ml) and extracted into CH 2 Cl 2 . The aqueous layer was re-extracted with CH 2 Cl 2 (50 ml). The combined organic extract was washed with brine (50 ml), dried and evaporated to dryness. The residue was purified by flash column chromatography over silica gel using CH 2 Cl 2 -> acetone mixture as eluent. Yield: 4.0 g (90%). 1 HNMR (CDCl 3 ): 1.72 (s, 3H, CH 3 ), 3.0 (m, 2H), 3.42 (m, 2H), 3.72 (s, 6H, 2.0CH 3 ), 3.94 (m, 1H), 4.32 (d, 2H), 4.68 (m, 1H, OH), 6.84 (m, 4H, Ph),

7.20 - 7.40 (m, 12H, C6H in Ph), 8.06 (d, 1H, NH) in 11.28 (bs, 1H, NH).7.20 - 7.40 (m, 12H, C 6 H and Ph), 8.06 (d, 1H, NH) and 11.28 (bs, 1H, NH).

1-0-(4,4’-Dimetoksitritil)-2-[amino(timinilacetil)]-D-propan-3-O-(N,Ndlizopropil)-p-cianoetilfosforamidit (19): 1 -O-(4,4’-Dimetoksitritil)-2[amino(timinilacetil)]-D-propan-1,3-diol 18 (2.79 g, 5.0 mmol) smo čez noč v vakuumu sušili preko trdnega NaOH in raztopili v suhem CH2CI2 (100 ml). Raztopino smo v atmosferi argona ohladili na 0°C. K tej hladni premešani raztopini smo dodali N,N-diizopropiletilamin (1.29 g, 10 mmol), nato pa še 2-cianoetil-N,N-diizopropilklorofosforamidit (1.96 g, 8.3 mmol). Reakcijsko mešanico smo pri 0°C mešali 1 h in pri sobni temperaturi 2 h. Reakcijo smo razredčili s CH2CI2 (100 ml) in organsko plast sprali s 5%1-0- (4,4'-Dimethoxytrityl) -2- [amino (thyminylacetyl)] - D-propane-3-O- (N, N-lisopropyl) -p-cyanoethylphosphoramidite (19): 1-O- (4, 4'-Dimethoxytrityl) -2 [amino (thyminylacetyl)] - D-propane-1,3-diol 18 (2.79 g, 5.0 mmol) was dried in vacuo overnight over solid NaOH and dissolved in dry CH 2 Cl 2 (100 ml). The solution was cooled to 0 ° C in an argon atmosphere. To this cold stirred solution was added N, N-diisopropylethylamine (1.29 g, 10 mmol) followed by 2-cyanoethyl-N, N-diisopropylchlorophosphoramidite (1.96 g, 8.3 mmol). The reaction mixture was stirred at 0 ° C for 1 h and at room temperature for 2 h. The reaction was diluted with CH 2 Cl 2 (100 ml) and the organic layer was washed with 5%

NaHCO3 raztopino (100 ml), vodo (100 ml) in slano vodo (50 ml). CH2CI2 ekstrakt smo posušili in evaporirali do suhega, da smo dobili oljnat ostanek. Ostanek smo očistili s flash kromatografijo preko silikagela z uporabo CH2CI2 --> EtOAc mešanice z 0.1% TEA, kot eluenta. Čiste frakcije smo zbrali skupaj in jih evaporirali, da smo dobili peno. Peno smo čez noč v vakuumu sušili preko trdnega NaOH. Posušeno peno smo raztopili v suhem CH2CI2 (20 ml) in jo v argonu v časovnem intervalu 1 h nakapljali v premešano raztopino suhega heksana (2000 ml). Po dodatkuNaHCO 3 solution (100 ml), water (100 ml) and brine (50 ml). The CH 2 CI 2 extract was dried and evaporated to dryness to give an oily residue. The residue was purified by flash chromatography over silica gel using CH 2 Cl 2 -> EtOAc mixture with 0.1% TEA as eluent. The pure fractions were collected together and evaporated to give a foam. The foam was vacuum dried over solid NaOH overnight. The dried foam was dissolved in dry CH 2 Cl 2 (20 ml) and added to argon in a stirring solution for one hour in a dry solution of dry hexane (2000 ml). After the addition

-95smo nastalo oborino mešali še 1 h in jo filtrirali, sprali s suhim heksanom (100 ml) in trdno snov v vakuumu 4 h sušili preko trdnega NaOH. Dobitek: 3.3 g, (87%).-95 The resulting precipitate was stirred for a further 1 h and filtered, washed with dry hexane (100 ml) and the solid dried in vacuo for 4 h over solid NaOH. Yield: 3.3 g, (87%).

Primer 28 (Slika 28)Example 28 (Figure 28)

1- O-Benzil-2-[(terc-butiloksikarbonil)amino]-3-[N3-benzoil(timinil)-Lpropanol (21): K premešani raztopini N2-benzoiltimina 20 (5.75 g, 25 mmol) v suhem THF (200 mi) smo pri sobni temperaturi v argonu dodali trifenil fosfin (10.48 g, 40 mmol) in Na-terc-butiloksikarbonil-p-benziloksi-Lserinol 3 (5.3 g, 18.86 mmol). Po 15 min smo počasi, v časovnem intervalu 30 min, dodali dietilazodikarboksilat (6.96 g, 40 mmol). Reakcijsko mešanico smo pokrili z aluminijevo folijo in jo pri sobni temperaturi v argonu pustili mešati 24 h. Topilo smo evaporirali do suhega in ostanek raztopili v EtOAc (300 ml). Organski ekstrakt smo sprali s 5% NaHCO3 raztopino (100 ml), vodo (100 ml) in slano vodo (100 ml) in ga posušili preko brezvodnega Na2SO4. Posušen EtOAc ekstrakt smo evaporirali do suhega, da smo dobili oranžno olje. Surovi produkt smo očistili s flash kromatografijo preko silikagela z uporabo heksan --> EtOAc mešanice, kot eluenta. Frakcijo s potrebnim produktom smo zbrali in evaporirali, da smo dobili olje, bledo roza barve. Dobitek: 8.0 g (86%). 1HNMR (CDCI3): 1.41 (s, 9H, Boc), 1.72 (s, 3H, CH3), 3.56 (m, 2H), 4.20 (m, 2H), 4.32 (m, 1H), 4.52 (d, 2H, OCH2Ph), 5.20 (d, 1H, NH), 7.06 (s, 1 H, C6H) in 7.20 - 7.60 (m, 10H, Ph).1- O-Benzyl-2 - [(tert-butyloxycarbonyl) amino] -3- [N 3 -benzoyl (thyminyl) -Lpropanol (21): To a dry solution of N 2 -benzoylthymine 20 (5.75 g, 25 mmol) in dry THF (200 mi) was stirred at room temperature under argon was added triphenyl phosphine (10:48 g, 40 mmol) and N a -tert-butyloxycarbonyl-ss-benzyloxy-Lserinol 3 (5.3 g, 18.86 mmol). After 15 min, diethyl azodicarboxylate (6.96 g, 40 mmol) was added slowly over a 30 min interval. The reaction mixture was covered with aluminum foil and allowed to stir at room temperature in argon for 24 h. The solvent was evaporated to dryness and the residue was dissolved in EtOAc (300 ml). The organic extract was washed with 5% NaHCO 3 solution (100 ml), water (100 ml) and brine (100 ml) and dried over anhydrous Na 2 SO 4 . The dried EtOAc extract was evaporated to dryness to give an orange oil. The crude product was purified by flash chromatography over silica gel using hexane -> EtOAc mixtures as eluent. The fraction with the desired product was collected and evaporated to give an oil a pale pink color. Yield: 8.0 g (86%). 1 HNMR (CDCl 3 ): 1.41 (s, 9H, Boc), 1.72 (s, 3H, CH 3 ), 3.56 (m, 2H), 4.20 (m, 2H), 4.32 (m, 1H), 4.52 (d , 2H, OCH 2 Ph), 5.20 (d, 1H, NH), 7.06 (s, 1H, C 6 H), and 7.20 - 7.60 (m, 10H, Ph).

2- [(Τθπ;-5υϋΙοΚ8ίΚ3ΓόοηΙΙ)3ηΊΐηο]-3-[Ν3-56ηζοίΙ(ΝιηίηΙΙ)-1.-ρΓορ3η-1-οΙ (22):2- [(Τθπ; -5υϋΙοΚ8ίΚ3ΓόοηΙΙ) 3ηΊΐηο] -3- [Ν 3 -56ηζοίΙ (ΝιηίηΙΙ) -1.-ρΓορ3η-1-οΙ (22):

1-O-Benzil-2-[(terc-butiloksikarbonil)amino]-3-[N3-benzoil(timinil)-L-propanol 21 (4.93 g, 10 mmol) smo raztopili v MeOH (100 ml) in obdelali § Pd/C1-O-Benzyl-2 - [(tert-butyloxycarbonyl) amino] -3- [N 3 -benzoyl (thyminyl) -L-propanol 21 (4.93 g, 10 mmol) was dissolved in MeOH (100 ml) and treated with §. Pd / C

-96(10%, 1 g). Reakcijsko mešanico smo hidrogenirali pri 3.44 bar vodika 12 h. Katalizator smo filtrirali, sprali z MeOH (50 ml) in filtrat evaporirali do suhega. Ostanek smo kristalizirali iz acetona/heksana, da smo dobili 3.70 g (92%) čistega produkta. Tališče: 156-159°C. 1HNMR (CDCI3): 1.42 (s, 9H, Boc), 1.94 (s, 3H, CH3), 3.64 (m, 4H), 3.84 (m, 1H), 4.14 (m, 1H), 5.22 (d, 1H, NH), 7.18 (s, 1H, C6H), 7.48 (t, 2H, Ph), 7.62 (t, 1H, Ph) in 7.98 (d, 2H, Ph).-96 (10%, 1 g). The reaction mixture was hydrogenated at 3.44 bar of hydrogen for 12 h. The catalyst was filtered, washed with MeOH (50 ml) and the filtrate evaporated to dryness. The residue was crystallized from acetone / hexane to give 3.70 g (92%) of pure product. Melting point: 156-159 ° C. 1 HNMR (CDCl 3 ): 1.42 (s, 9H, Boc), 1.94 (s, 3H, CH 3 ), 3.64 (m, 4H), 3.84 (m, 1H), 4.14 (m, 1H), 5.22 (d , 1H, NH), 7.18 (s, 1H, C 6 H), 7.48 (t, 2H, Ph), 7.62 (t, 1H, Ph) and 7.98 (d, 2H, Ph).

1-O-lzobutiril-2-[(terc-butiloksikarbonil)amino]-3-[N3-benzoil(timinil)-L· propanol (23): 2-[(Terc-butiloksikarbonil)amino]-3-[N3-benzoil(timinil)-Lpropan-1-ol 22 (1.60 g, 3.97 mmol) smo raztopili v suhem piridinu (30 ml) in raztopino pustili mešati v argonu pri sobni temperaturi. K tej premešani raztopini smo dodali TEA (0.51 g, 5 mmol) in izobutirni anhidrid (0.79 g, 5 mmol). Reakcijsko mešanico smo pri sobni temperaturi mešali 12 h in jo evaporirali do suhega. Ostanek smo raztopili v EtOAc (150 ml) in sprali s 5% NaHCO3 raztopino (100 ml), vodo (100 ml) in slano vodo (50 ml). Organski ekstrakt smo posušili in evaporirali do suhega. Ostanek smo očistili s flash kromatografijo preko silikagela z uporabo CH2CI2 --> EtOAc, kot eluenta. Čiste frakcije smo zbrali skupaj in evaporirali, da smo dobili1-O-Isobutyryl-2 - [(tert-butyloxycarbonyl) amino] -3- [N 3 -benzoyl (thyminyl) -L · propanol (23): 2 - [(Tert-butyloxycarbonyl) amino] -3- [N 3- Benzoyl (thymynyl) -Lpropan-1-ol 22 (1.60 g, 3.97 mmol) was dissolved in dry pyridine (30 ml) and the solution was allowed to stir in argon at room temperature. TEA (0.51 g, 5 mmol) and isobutyric anhydride (0.79 g, 5 mmol) were added to this stirred solution. The reaction mixture was stirred at room temperature for 12 h and evaporated to dryness. The residue was dissolved in EtOAc (150 ml) and washed with 5% NaHCO 3 solution (100 ml), water (100 ml) and brine (50 ml). The organic extract was dried and evaporated to dryness. The residue was purified by flash chromatography over silica gel using CH 2 Cl 2 -> EtOAc as eluent. The pure fractions were collected together and evaporated to give

1.6 g (85%) pene. Čisti produkt smo kristalizirali iz acetona/heksana. Tališče: 165-167°C. 1HNMR (CDCI3): 1.16 (d, 6H, lbCH3), 1.42 (s, 9H, Boc), 1.94 (s, 3H, CH3), 2.52 (m, 1H), 3.64 (m, 4H), 3.84 (m, 1H), 4.14 (m, 1H), 5.22 (d, 1H, NH), 7.18 (s, 1H, C6H), 7.48 (t, 2H, Ph), 7.62 (t, 1H, Ph) in 7.98 (d, 2H, Ph).1.6 g (85%) of the foam. The pure product was crystallized from acetone / hexane. Melting point: 165-167 ° C. 1 HNMR (CDCl 3 ): 1.16 (d, 6H, 1bCH 3 ), 1.42 (s, 9H, Boc), 1.94 (s, 3H, CH 3 ), 2.52 (m, 1H), 3.64 (m, 4H). 3.84 (m, 1H), 4.14 (m, 1H), 5.22 (d, 1H, NH), 7.18 (s, 1H, C 6 H), 7.48 (t, 2H, Ph), 7.62 (t, 1H, Ph) ) and 7.98 (d, 2H, Ph).

1-0-lzobutiril-2-[(p-hidroksiacetil)amino]-3-[N3-benzoil(timinil)-L-propanol (24): 1-0-lzobutiril-2-[(terc-butiloksikarbonil)amino]-3-[N3-benzoil(timinil)-Lpropanol 23 (1.6 g, 3.38 mmol) smo pri sobni temperaturi 30 min pustili mešati v mešanici TFA (5 ml) in CH2CI2 (10 ml) in nato evaporirali do1-0-Isobutyryl-2 - [(p-hydroxyacetyl) amino] -3- [N3-benzoyl (thyminyl) -L-propanol (24): 1-0-Isobutyryl-2 - [(tert-butyloxycarbonyl) amino] -3- [N 3 -benzoyl (thyminyl) -Lpropanol 23 (1.6 g, 3.38 mmol) was allowed to stir in a mixture of TFA (5 ml) and CH 2 Cl 2 (10 ml) at room temperature for 30 min and then evaporated to

-97suhega. Ostanek smo raztopili v suhem MeOH (10 ml) in ponovno evaporirali. Dobljeni ostanek smo čez noč v vakuumu sušili preko trdnega NaOH. Posušeni material smo kot tak uporabili za naslednjo reakcijo.-97dry. The residue was dissolved in dry MeOH (10 ml) and evaporated again. The resulting residue was dried in vacuo overnight over solid NaOH. The dried material was used as such for the next reaction.

K premešani raztopini glikolne kisline (0.53 g, 7 mmol) v suhem DMF (50 ml) smo dodali 1-hidroksibenzotriazol (0.67 g, 5 mmol) in 1-etil-3-(3dimetilaminopropil)-karbodiimidni hidroklorid (EDC) (1.91 g, 10 mmol). Po 15 min mešanja sta bila pri sobni temperaturi dodana TEA (1.01 g, 10 mmol) in zgornja TFA sol v DMF (20 ml). Reakcijsko mešanico smo mešali 12 h in jo evaporirali do suhega. Ostanek smo porazdelili med CH2CI2 (150 ml) in vodo (100 ml) in ekstrahirali v CH2CI2. Organski ekstrakt smo sprali s slano vodo (50 ml), posušili in evaporirali do suhega. Ostanek smo očistili s flash kromatografijo preko silikagela z uporabo CH2CI2 --> aceton mešanice, kot eluenta. Frakcije s potrebnim produktom smo zbrali in evaporirali, da smo dobili 1.35 g (92%) pene.To a stirred solution of glycolic acid (0.53 g, 7 mmol) in dry DMF (50 ml) was added 1-hydroxybenzotriazole (0.67 g, 5 mmol) and 1-ethyl-3- (3dimethylaminopropyl) -carbodiimide hydrochloride (EDC) (1.91 g , 10 mmol). After stirring for 15 min, TEA (1.01 g, 10 mmol) and the above TFA salt in DMF (20 ml) were added at room temperature. The reaction mixture was stirred for 12 h and evaporated to dryness. The residue was partitioned between CH 2 Cl 2 (150 ml) and water (100 ml) and extracted into CH 2 Cl 2 . The organic extract was washed with brine (50 ml), dried and evaporated to dryness. The residue was purified by flash chromatography over silica gel using CH 2 Cl 2 -> acetone mixture as eluent. The fractions with the desired product were collected and evaporated to give 1.35 g (92%) of foam.

1HNMR (CDCI3): 1.16 (d, 6H, lbCH3), 1.94 (s, 3H, CH3), 2.52 (m, 1H), 1 HNMR (CDCl 3 ): 1.16 (d, 6H, 1bCH 3 ), 1.94 (s, 3H, CH 3 ), 2.52 (m, 1H),

3.20 (bs, 1H), 3.80 - 4.30 (m, 6H), 4.56 (m, 1H), 7.14 (d, 2H, C6H in3.20 (bs, 1H), 3.80 - 4.30 (m, 6H), 4.56 (m, 1H), 7.14 (d, 2H, C 6 H and

NH), 7.50 (t, 2H, Ph), 7.64 (t, 1H, Ph) in 7.94 (d, 2H, Ph).NH), 7.50 (t, 2H, Ph), 7.64 (t, 1H, Ph) and 7.94 (d, 2H, Ph).

1-0-!zobutiril-2-[(p-(4,4’-dimetoksitritil)-0-acetil)amino]-3-[N3benzoil(timinil)-L-propanol (25): 1 -O-lzobutiril-2-[(p-hidroksiacetil)amino]-3[N3-benzoil(timinil)-L-propanol 24 (1.2 g, 2.78 mmol) smo raztopili v suhem piridinu (50 ml) in pustili mešati pri sobni temperaturi v atmosferi argona. K tej premešani raztopini smo dodali TEA (0.35 g, 3.5 mmol) in 4,4’dimetoksitritil klorid (1.18 g, 3.5 mmol). Reakcijsko mešanico smo mešali pri sobni temperaturi 12 h, udušili z MeOH (10 ml) in evaporirali do suhega. Ostanek smo raztopili v EtOAc (150 ml), sprali s 5% NaHCO3 raztopino (100 ml), vodo (100 ml) in slano vodo (50 ml). Organski ekstrakt smo posušili preko Na2SO4 in evaporirali do suhega. Ostanek1-0- Isobutyryl-2 - [(p- (4,4'-dimethoxytrityl) -0-acetyl) amino] -3- [N 3 benzoyl (thyminyl) -L-propanol (25): 1 -O- Isobutyryl-2 - [(p-hydroxyacetyl) amino] -3 [N 3 -benzoyl (thyminyl) -L-propanol 24 (1.2 g, 2.78 mmol) was dissolved in dry pyridine (50 ml) and allowed to stir at room temperature. argon atmosphere. To this stirred solution was added TEA (0.35 g, 3.5 mmol) and 4,4'-dimethoxytrityl chloride (1.18 g, 3.5 mmol). The reaction mixture was stirred at room temperature for 12 h, quenched with MeOH (10 ml) and evaporated to dryness. The residue was dissolved in EtOAc (150 ml), washed with 5% NaHCO 3 solution (100 ml), water (100 ml) and brine (50 ml). The organic extract was dried over Na 2 SO 4 and evaporated to dryness. Remainder

-98smo očistili s flash kromatografijo preko silikagela z uporabo CH2CI2 --> EtOAc, kot eluenta. Čiste frakcije smo zbrali in evaporirali, da smo dobiliThe -98 was purified by flash chromatography over silica gel using CH 2 Cl 2 -> EtOAc as eluent. Pure fractions were collected and evaporated to yield

1.7 g (83%) čistega produkta. 1HNMR (CDCI3): 1.16 (d, 6H, lbCH3), 1.94 (s, 3H, CH3), 2.52 (m, 1H), 3.74 (s, 6H, 2.0CH3), 3.80 - 4.30 (m, 6H), 4.56 (m, 1H), 6.82 (d, 4H, Ph), 7.14 (d, 2H, C6H in NH) in 7.26 - 8.00 (m, 14H, Ph).1.7 g (83%) of pure product. 1 HNMR (CDCI 3 ): 1.16 (d, 6H, 1bCH 3 ), 1.94 (s, 3H, CH 3 ), 2.52 (m, 1H), 3.74 (s, 6H, 2.0CH 3 ), 3.80 - 4.30 (m , 6H), 4.56 (m, 1H), 6.82 (d, 4H, Ph), 7.14 (d, 2H, C 6 H and NH) and 7.26 - 8.00 (m, 14H, Ph).

2-[(p-(4,4’-Dimetoksitritil)-O-acetil)amino]-3-timinil-L-propanol (26): 1 -Olzobutiril-2-[(p-(4,4’-dimetoksitritil)-O-acetil)amino]-3-[N3-benzoil(timinil)-Lpropanol 25 (1.55 g, 2.05 mmol) smo raztopili v MeOH (20 ml) in v ledeni kopeli ohladili na 0°C. K tej hladni premešani raztopini smo dodali 2N NaOH (5 ml, 10 mmol) in pri 0°C 30 min nadaljevali z mešanjem. Raztopini smo z ocetno kislino naravnali pH na 7 in jo evaporirali do suhega. Ostanek smo porazdelili med vodo (50 ml) in CH2CI2 (150 ml) in ga ekstrahirali v CH2CI2. Vodno plast smo ponovno ekstrahirali s CH2CI2 (50 ml). Združen organski ekstrakt smo sprali s slano vodo (50 ml), posušili in evaporirali do suhega. Ostanek smo očistili s flash kolonsko kromatografijo preko silikagela z uporabo CH2CI2~> acetona, kot eluenta. Dobitek: 1.0 g (99%). 1HNMR (CDCI3): 1.94 (s, 3H, CH3), 3.74 (s, 6H, 2.OCH3), 3.80 - 4.30 (m, 6H), 4.56 (m, 1H), 6.82 (d, 4H, Ph), 7.14 (d, 2H, C6H in NH) in 7.26 - 8.00 (m, 14H, Ph).2 - [(p- (4,4'-Dimethoxytrityl) -O-acetyl) amino] -3-timinyl-L-propanol (26): 1-Oxobutyryl-2 - [(p- (4,4'-dimethoxytrityl) ) -O-acetyl) amino] -3- [N 3 -benzoyl (thyminyl) -propanol 25 (1.55 g, 2.05 mmol) was dissolved in MeOH (20 ml) and cooled to 0 ° C in an ice bath. To this cold stirred solution was added 2N NaOH (5 ml, 10 mmol) and stirring continued at 0 ° C for 30 min. The solution was adjusted to pH 7 with acetic acid and evaporated to dryness. The residue was partitioned between water (50 ml) and CH 2 Cl 2 (150 ml) and extracted into CH 2 Cl 2 . The aqueous layer was re-extracted with CH 2 Cl 2 (50 ml). The combined organic extract was washed with brine (50 ml), dried and evaporated to dryness. The residue was purified by flash column chromatography over silica gel using CH 2 Cl 2 ~> acetone as eluent. Yield: 1.0 g (99%). 1 HNMR (CDCl 3 ): 1.94 (s, 3H, CH 3 ), 3.74 (s, 6H, 2.OCH3), 3.80 - 4.30 (m, 6H), 4.56 (m, 1H), 6.82 (d, 4H. Ph), 7.14 (d, 2H, C 6 H and NH) and 7.26 - 8.00 (m, 14H, Ph).

2-[(β-(4,4’-0ΙιηβΙοΙ(8ηιΉΙΙ)-0-80βΙΗ)3ΐηΙηο]-3-ϋπιΙηίΙ-Ι.-ρΐΌρ8η-1-Ο-(Ν,Νdiizopropil)-p-cianoetil-fosforamidit (27): 2-[(p-(4,4’-Dimetoksitritil)-Oacetil)amino]-3-timinil-L-propanol 26 (1.00 g, 2.09 mmol) smo čez noč v vakuumu sušili preko trdnega NaOH in raztopili v suhem CH2CI2 (50 ml). Raztopino smo v atmosferi argona ohladili na 0°C. K tej hladni premešani raztopini smo dodali N,N-diizopropiletilamin (0.54 g, 4.2 mmol), nato pa še2 - [(β- (4,4'-0ΙιηβΙοΙ (8ηιΉΙΙ) -0-80βΙΗ) 3ΐηΙηο] -3-ϋπιΙηίΙ-Ι.-ρΐΌρ8η-1-Ο- (Ν, Νdiisopropyl) -p-cyanoethyl-phosphoramidite (27 ): 2 - [(p- (4,4'-Dimethoxytrityl) -Oacetyl) amino] -3-timinyl-L-propanol 26 (1.00 g, 2.09 mmol) was dried in vacuo overnight over solid NaOH and dissolved in dry CH 2 Cl 2 (50 ml) The solution was cooled to 0 DEG C. under argon, to which N, N-diisopropylethylamine (0.54 g, 4.2 mmol) was added to this cold stirred solution.

2-cianoetil-N,N-diizopropil-klorofosforamidit (0.73 g, 3.1 mmol). Reakcijsko2-cyanoethyl-N, N-diisopropyl-chlorophosphoramidite (0.73 g, 3.1 mmol). Reactionary

-99mešanico smo pri O°C mešali 1 h in pri sobni temperaturi 2 h. Reakcijo smo razredčili s CH2CI2 (100 ml) in organsko plast sprali s 5% NaHCO3 raztopino (100 ml), vodo (100 ml) in slano vodo (50 ml). CH2CI2 ekstrakt smo posušili in evaporirali do suhega, da smo dobili oljnat ostanek. Ostanek smo očistili s flash kromatografijo preko silikagela z uporabo CH2CI2 --> EtOAc mešanice z 0.1% TEA, kot eluentom. Čiste frakcije smo zbrali skupaj in evaporirali, da smo dobili peno. Peno smo čez noč sušili v vakuumu preko trdnega NaOH. Posušeno peno smo raztopili v suhem CH2CI2 (10 ml) in jo v argonu, v časovnem intervalu 30 min, nakapljali v premešano raztopino suhega heksana (800 ml). Po dodatku smo nastalo oborino mešali dodatnih 30 min in filtrirali, sprali s suhim heksanom (100 ml) in trdno snov sušili v vakuumu preko trdnega NaOH 4 h. Dobitek: 1.3 g (82%).-99 the mixture was stirred at O ° C for 1 h and at room temperature for 2 h. The reaction was diluted with CH 2 Cl 2 (100 ml) and the organic layer was washed with 5% NaHCO 3 solution (100 ml), water (100 ml) and brine (50 ml). The CH 2 CI 2 extract was dried and evaporated to dryness to give an oily residue. The residue was purified by flash chromatography over silica gel using CH 2 Cl 2 -> EtOAc mixture with 0.1% TEA as eluent. The pure fractions were collected together and evaporated to give a foam. The foam was dried in vacuo overnight over solid NaOH. The dried foam was dissolved in dry CH 2 Cl 2 (10 ml) and dripped in argon, at a time interval of 30 min, into a stirred solution of dry hexane (800 ml). After the addition, the resulting precipitate was stirred for an additional 30 min and filtered, washed with dry hexane (100 ml) and the solid dried in vacuo over solid NaOH for 4 h. Yield: 1.3 g (82%).

Primer 29 (Slika 29)Example 29 (Figure 29)

Na-Terc-butiloksikarbonil-O-benzilhidroksilamin (28): O-Benzil hidroksilamin hidroklorid (15.9 g, 100 mmol) smo suspendirali v mešanici THF (150 ml) in vode (50 ml). K tej premešani raztopini smo dodali TEA (15.15 g, 150 mmol), nato pa še di-terc-butildikarbonat (23.98 g, 110 mmol). Reakcijsko mešanico smo pri sobni temperaturi mešali 12 h in jo evaporirali do suhega. Ostanek smo porazdelili med EtOAc (250 ml) in vodo (200 ml) in ekstrahirali v EtOAc. EtOAc ekstrakt smo sprali s kalijevim hidrogen sulfatom (100 ml) in slano vodo (100 ml), posušili in evaporirali do suhega, da smo dobili 15 g (91%) bistrega olja.N a -tert-butyloxycarbonyl-O-benzylhydroxylamine (28): O-benzyl hydroxylamine hydrochloride (15.9 g, 100 mmol) was suspended in a mixture of THF (150 ml) and water (50 ml). To this stirred solution was added TEA (15.15 g, 150 mmol) followed by di-tert-butyldicarbonate (23.98 g, 110 mmol). The reaction mixture was stirred at room temperature for 12 h and evaporated to dryness. The residue was partitioned between EtOAc (250 ml) and water (200 ml) and extracted into EtOAc. The EtOAc extract was washed with potassium hydrogen sulfate (100 ml) and brine (100 ml), dried and evaporated to dryness to give 15 g (91%) of a clear oil.

1-Kloro-2-(tetrahidropiranil)oksi-etan (29): 1-Kloro etanol (8.06 g, 100 mmol) smo raztopili v suhem CH2CI2 (100 ml) in ohladili na 0°C v ledeni1-Chloro-2- (tetrahydropyranyl) oxy-ethane (29): 1-Chloro ethanol (8.06 g, 100 mmol) was dissolved in dry CH 2 Cl 2 (100 ml) and cooled to 0 ° C in ice

-100kopeli v atmosferi argona. K tej premešani raztopini smo dodali dihidropiran (12.6 g, 150 mmol), nato pa še piridin-p-toluen-4-sulfonat (1.25 g, 5 mmol) in čez noč nadaljevali z mešanjem. Reakcijsko mešanico smo evaporirali do suhega in raztopili v EtOAc (200ml). EtOAc ekstrakt smo sprali s 5% NaHCO3 raztopino (100 ml), vodo (100 ml) in slano vodo (100 ml). Organski ekstrakt smo posušili in evaporirali do suhega. Surovi material smo očistili s flash kromatografijo preko silikagela z uporabo heksan --> CH2CI2, kot eluenta. Čiste frakcije smo zbrali skupaj in evaporirali, da smo dobili 11 g (67%) čistega produkta.-100baths in argon atmosphere. To this stirred solution was added dihydropyran (12.6 g, 150 mmol) followed by pyridine-p-toluene-4-sulfonate (1.25 g, 5 mmol) and stirring overnight. The reaction mixture was evaporated to dryness and dissolved in EtOAc (200ml). The EtOAc extract was washed with 5% NaHCO 3 solution (100 ml), water (100 ml) and brine (100 ml). The organic extract was dried and evaporated to dryness. The crude material was purified by flash chromatography over silica gel using hexane -> CH 2 Cl 2 as eluent. The pure fractions were combined and evaporated to give 11 g (67%) of the pure product.

N-Terc-butiloksikarbonil-N-[(tetrahidropiranil)oksi]etil-Obenzilhidroksilamin (30): K premešani raztopini N-terc-butiloksikarbonil-Obenzilhidroksilamina 28 (5.79 g, 25.96 mmol) v suhem DMF (50 ml) smo počasi v 15 min časovneem intervalu v atmosferi argona pri 0°C dodali NaH (60%, 1.2 g, 30 mmol). Reakcijo smo pri 0°C pustili mešati 30 min in pri sobni temperaturi 1 h. Dodali smo 1-kloro-2-(tetrahidropiranil)oksi-etan 29 (4.95 g, 30 mmol) in reakcijsko mešanico pri 80°C segrevali 12 h. Reakcijo smo ohladili in evaporirali do suhega. Ostanek smo suspendirali v vodi (50 ml), pH raztopine smo naravnali na 7 in ekstrahirali v EtOAc (150 ml). EtOAc ekstrakt smo sprali z vodo in slano vodo, posušili in evaporirali do suhega. Ostanek smo očistili z flash kromatografijo preko silikagela z uporabo heksan -> CH2CI2, kot eluenta. Potrebne frakcije smo zbrali in evaporirali, da smo dobili 6.0 g (66%) oljnatega produkta. 1HNMR (CDCI3): δ 1.48 (s, 9H, Boc), 1.49 - 1.84 (m, 6H, 3.CH2), 3.48 3.70 (m, 4H, 2.CH2), 3.86 (m, 2H, CH2), 4.60 (t, 1H, CH), 4.84 (s, 2H, CH2Ph) in 7.32 - 7.42 (m, 5H, Ph).N-Tert-Butyloxycarbonyl-N - [(tetrahydropyranyl) oxy] ethyl-Obenzylhydroxylamine (30): To a stirred solution of N-tert-butyloxycarbonyl-Obenzylhydroxylamine 28 (5.79 g, 25.96 mmol) in dry DMF (15 ml) was slowly added to dry DMF (15 ml). min at a time interval under argon at 0 ° C, NaH (60%, 1.2 g, 30 mmol) was added. The reaction was allowed to stir at 0 ° C for 30 min and at room temperature for 1 h. 1-Chloro-2- (tetrahydropyranyl) oxy-ethane 29 (4.95 g, 30 mmol) was added and the reaction mixture was heated at 80 ° C for 12 h. The reaction was cooled and evaporated to dryness. The residue was suspended in water (50 ml), the pH of the solution was adjusted to 7 and extracted into EtOAc (150 ml). The EtOAc extract was washed with water and brine, dried and evaporated to dryness. The residue was purified by flash chromatography over silica gel using hexane -> CH 2 Cl 2 as eluent. The necessary fractions were collected and evaporated to give 6.0 g (66%) of the oily product. 1 HNMR (CDCl 3 ): δ 1.48 (s, 9H, Boc), 1.49 - 1.84 (m, 6H, 3.CH 2 ), 3.48 3.70 (m, 4H, 2.CH 2 ), 3.86 (m, 2H. CH 2 ), 4.60 (t, 1H, CH), 4.84 (s, 2H, CH 2 Ph) and 7.32 - 7.42 (m, 5H, Ph).

N-Terc-butilokslkarbonil-N-[(2-hidroksil)etil]-O-benzilhldroksilamin (31):N-Tert-butyloxycarbonyl-N - [(2-hydroxyl) ethyl] -O-benzylhydroxylamine (31):

Premešano raztopino N-terc-butiloksikarbonil-N-[(tetrahidropiranil)oksi]etil-O-101benzilhidroksilamina 30 (3.51 g, 10 mmol) v THF:voda:AcOH (1:1:1, 100 ml) smo pri 70°C segrevali 3 h. Reakcijo smo ohladili na 0°C in pH naravnali na 7 s trdnim NaHCO3. Reakcijsko mešanico smo ekstrahirali z EtOAc (2x75 ml). Združen organski ekstrakt smo sprali z vodo (100 ml) in slano vodo (100 ml), posušili in evaporirali do suhega. Ostanek smo očistili s flash kromatografijo preko silikagela z uprabo CH2CI2 -> EtOAc, kot eluenta. Čiste frakcije smo zbrali in evaporirali, da smo dobili 2.5 g (94%) pene. 1HNMR (CDCI3): δ 1.48 (s, 9H, Boc), 3.60 (t, 2H, CH2), 3.74 (m, 2H, CH^, 4.84 (s, 2H, CH2Ph) in 7.32 - 7.42 (m, 5H, Ph).A stirred solution of N-tert-butyloxycarbonyl-N - [(tetrahydropyranyl) oxy] ethyl-O-101benzylhydroxylamine 30 (3.51 g, 10 mmol) in THF: water: AcOH (1: 1: 1, 100 ml) was kept at 70 ° C. heated for 3 h. The reaction was cooled to 0 ° C and the pH adjusted to 7 with solid NaHCO 3 . The reaction mixture was extracted with EtOAc (2x75 ml). The combined organic extract was washed with water (100 ml) and brine (100 ml), dried and evaporated to dryness. The residue was purified by flash chromatography over silica gel using CH 2 Cl 2 -> EtOAc as eluent. The pure fractions were collected and evaporated to give 2.5 g (94%) of foam. 1 HNMR (CDCl 3 ): δ 1.48 (s, 9H, Boc), 3.60 (t, 2H, CH 2 ), 3.74 (m, 2H, CH 2, 4.84 (s, 2H, CH 2 Ph) and 7.32 - 7.42 (m, 5H, Ph).

N-Terc-butiloksikarbonil-N-[[(2-lzobutiril)oksi]etil]-O-benzilhidroksilamin (32): K premešani raztopini N-terc-butiloksikarbonil-N-[(2-hidroksi)etil]-Obenzilhidroksilamina 31 (4.2 g, 16.6 mmol) v suhem piridinu (50 ml) smo dodali TEA (2.02 g, 20 mmol), nato pa pri sobni temperaturi v atmosferi argona še izobutirni anhidrid (3.16 g, 20 mmol). Reakcijsko mešanico smo pri sobni temperaturi mešali 12 h in jo evaporirali do suhega. Ostanek smo raztopili v EtOAc (200 ml), sprali s 5% NaHCO3 raztopino (100 ml), vodo in slano vodo (50 ml). Organski ekstrakt smo posušili in evaporirali do suhega. Ostanek smo očistili s flash kromatografijo preko silikagela z uporabo CH2CI2 kot eluenta. Čiste frakcije smo zbrali in evaporirali, da smo dobili 4.5 g (80%) čiste spojine. 1HNMR (CDCI3): δ 1.04 (d, 6H, lbCH3), 1.48 (s, 9H, Boc), 2.44 (m, 1H, IbCH), 3.60 (t, 2H, CH^, 3.74 (m, 2H, CH2), 4.84 (s, 2H, CH2Ph) in 7.32 - 7.42 (m, 5H, Ph).N-Tert-butyloxycarbonyl-N - [[(2-isobutyryl) oxy] ethyl] -O-benzylhydroxylamine (32): To a stirred solution of N-tert-butyloxycarbonyl-N - [(2-hydroxy) ethyl] -Obenzylhydroxylamine 31 ( 4.2 g, 16.6 mmol) in dry pyridine (50 ml) was added TEA (2.02 g, 20 mmol) and then isobutyric anhydride (3.16 g, 20 mmol) at room temperature under argon. The reaction mixture was stirred at room temperature for 12 h and evaporated to dryness. The residue was dissolved in EtOAc (200 ml), washed with 5% NaHCO 3 solution (100 ml), water and brine (50 ml). The organic extract was dried and evaporated to dryness. The residue was purified by flash chromatography over silica gel using CH 2 Cl 2 as eluent. The pure fractions were collected and evaporated to give 4.5 g (80%) of the pure compound. 1 HNMR (CDCl 3 ): δ 1.04 (d, 6H, 1bCH 3 ), 1.48 (s, 9H, Boc), 2.44 (m, 1H, IbCH), 3.60 (t, 2H, CH2, 3.74 (m, 2H , CH 2 ), 4.84 (s, 2H, CH 2 Ph) and 7.32 - 7.42 (m, 5H, Ph).

N-(Timinilacetil)-N-[[(2-izobutiril)oksl]etil]-O-benzilhidroksilamin (33): NTerc-butiloksikarbonil-N-[[(2-izobutiril)oksi]etil]-0-benzilhidroksilamin 32 (5.0 g, 14.84 mmol) smo raztopili v CH2CI2 (10 ml) in pustili 30 min mešati v TFA (12 ml). Reakcijsko mešanico smo evaporirali do suhega in raztopili v suhem metanolu (10 ml). Mešanica je bila ponovno evaporirana doN- (Thinylacetyl) -N - [[(2-isobutyryl) oxyl] ethyl] -O-benzylhydroxylamine (33): Nert-butyloxycarbonyl-N - [[(2-isobutyryl) oxy] ethyl] -0-benzylhydroxylamine 32 ( 5.0 g, 14.84 mmol) was dissolved in CH 2 Cl 2 (10 ml) and stirred for 30 min in TFA (12 ml). The reaction mixture was evaporated to dryness and dissolved in dry methanol (10 ml). The mixture was re-evaporated to

-102suhega in čez noč v vakuumu posušena preko trdnega NaOH. Posušeni material smo kot tak uporabili za naslednjo reakcijo brez karakterizacije.-102 dry and vacuum dried over solid NaOH overnight. The dried material was used as such for the next reaction without characterization.

Timin ocetno kislino 5 (3.13 g, 17 mmol) smo raztopili v suhem DMF (75 ml) in v argonu ohladili na -20°C. K tej hladni premešani raztopini smo dodali N-metilmorfolin (2.02 g, 20 mmol), nato pa še izobutil kloroformat (2.72 g, 20 mmol). Po 15 min mešanja smo raztopino zgornje TFA soli v suhem DMF (50 ml), nevtralizirali z N-metilmorfolinom (2.02 g, 20 mmol) in jo takoj, ter naenkrat dodali v hladno premešano raztopino timin ocetne kisline. Reakcijsko mešanico smo pri -20°C mešali 1 h, jo segreli na sobno temperaturo in čez noč nadaljevali z mešanjem. Raztopino smo evaporirali do suhega in ostanek raztopili v CH2CI2 (250 ml) in vodi (100 ml) in ekstrahirali v CH2CI2. Organski ekstrakt smo sprali s 5% NaHCO3 raztopino (100 ml), vodo (100 ml) in slano vodo (50 ml). CH2CI2 ekstrakt smo posušili in evaporirali do suhega, da smo dobili surovi produkt. Surovi produkt smo očistili s flash kromatografijo preko silikagela z uporabo CH2CI2 --> acetona, kot eluenta. Potrebne frakcije smo zbrali in evaporirali, da smo dobili 4.0 g (70%) čistega produkta. Čisti produkt smo kristalizirali iz CH2CI2/heksana. Tališče: 185-188°C. 1HNMR (Me2SO-d6); δ 1.00 (d, 6H, lbCH3), 1.74 (s, 3H, CH3), 2.44 (m, 1H, IbCH), 3.92 (m, 2H), 4.18 (t, 2H), 4.68 (bs, 2H), 4.98 (s, 2H), 7.34 (s, 1H, C6H), 7.40 - 7.50 (m, 5H, Ph) in 11.32 (bs, 1H, NH).Thymine acetic acid 5 (3.13 g, 17 mmol) was dissolved in dry DMF (75 ml) and cooled to -20 ° C in argon. To this cold stirred solution was added N-methylmorpholine (2.02 g, 20 mmol) followed by isobutyl chloroformate (2.72 g, 20 mmol). After stirring for 15 min, a solution of the above TFA salt in dry DMF (50 ml) was neutralized with N-methylmorpholine (2.02 g, 20 mmol) and immediately added to a cold stirred solution of acetic acid thymine. The reaction mixture was stirred at -20 ° C for 1 h, warmed to room temperature and stirred overnight. The solution was evaporated to dryness and the residue was dissolved in CH 2 Cl 2 (250 ml) and water (100 ml) and extracted into CH 2 Cl 2 . The organic extract was washed with 5% NaHCO 3 solution (100 ml), water (100 ml) and brine (50 ml). The CH 2 Cl 2 extract was dried and evaporated to dryness to give the crude product. The crude product was purified by flash chromatography over silica gel using CH 2 Cl 2 -> acetone as eluent. The necessary fractions were collected and evaporated to give 4.0 g (70%) of pure product. The pure product was crystallized from CH 2 Cl 2 / hexane. Melting point: 185-188 ° C. 1 HNMR (Me 2 SO-d 6 ); δ 1.00 (d, 6H, 1bCH 3 ), 1.74 (s, 3H, CH 3 ), 2.44 (m, 1H, IbCH), 3.92 (m, 2H), 4.18 (t, 2H), 4.68 (bs, 2H) , 4.98 (s, 2H), 7.34 (s, 1H, C 6 H), 7.40 - 7.50 (m, 5H, Ph) and 11.32 (bs, 1H, NH).

Primer 30 (Slika 30) (2R,4R)-2-Karbometoksi-4-hidroksipirolidin (35): V 250 ml bučko z okroglim dnom, opremljeno z magnetnim mešalom in povratnim kondenzatorjem smo nalili suh metanol (40 ml) in ga ohladili v ledeniExample 30 (Figure 30) (2R, 4R) -2-Carbomethoxy-4-hydroxypyrrolidine (35): Dry methanol (40 ml) was poured into a 250 ml round bottom flask equipped with a magnetic stirrer and a return condenser and cooled to icy

-103kopeli v atmosferi argona. K tej premešani raztopini smo dodali acetil klorid (4.32 g, 55 mmol), nato pa še cis-4-hidroksi-D-prolin 34 (5.00 g, 38.17 mmol). Nastalo raztopino smo pri refluksu segrevali 7-8 min in jo ohladili na sobno temperaturo. Raztopino smo razredčili z etrom in nastalo belo trdno snov zbrali s sukcijo, izprali z etrom in jo posušili v vakuumu preko trdnega NaOH. Dobitek: 6.9 g (100%). 1HNMR (CDCI3): 2.09 (2 dd, 1H), 2.34 (m, 1H), 3.49 - 3.73 (m, 3H), 3,79 (s, 3H, CH3), 4.34 (m, 2H).-103Bars in argon atmosphere. Acetyl chloride (4.32 g, 55 mmol) was added to this stirred solution followed by cis-4-hydroxy-D-proline 34 (5.00 g, 38.17 mmol). The resulting solution was heated at reflux for 7-8 min and cooled to room temperature. The solution was diluted with ether and the resulting white solid was collected by suction, washed with ether and dried in vacuo over solid NaOH. Yield: 6.9 g (100%). 1 HNMR (CDCl 3 ): 2.09 (2 dd, 1H), 2.34 (m, 1H), 3.49 - 3.73 (m, 3H), 3.79 (s, 3H, CH 3 ), 4.34 (m, 2H).

(2R,4R)-1-(Terc-birtiloksikarbonil-2-karbometoksi-4-hidroksipirolidin (361:(2R, 4R) -1- (Tert-Birtyloxycarbonyl-2-carbomethoxy-4-hydroxypyrrolidine (361:

K premešani raztopini (2R,4R)-2-karbometoksi-4-hidroksipirolidina 35 (6.9 g, 38.12 mmol) v THF/voda (8:2, 150 ml) smo dodali TEA (10.1 g, 100 mmol), nato pa pri sobni temperaturi še di-terc-butildikarbonat (10.9 g, 50 mmol). Reakcijo smo pri sobni temperaturi mešali 6 h in evaporirali do suhega. Ostanek smo raztopili v EtOAc (200 ml) in sprali z 0.5N kalijevim hidrogen sulfatom (50 ml), vodo (100 ml) in slano vodo (50 ml). Organski ekstrakt smo posušili preko Na2SO4 in evaporirali do suhega, da smo dobili 7.8 g (84%) oljnatega produkta. Oljnat produkt je pri sušenju dal brezbarvno trdno snov: tališče: 75-77°C. 1HNMR (CDCI3): 1.45 (s, 9H, Boc), 2.09 (2 dd, 1H), 2.34 (m, 1H), 3.49 - 3.73 (m, 3H), 3.79 (s, 3H, CH3), 4.34 (m, 2H).TEA (10.1 g, 100 mmol) was added to a stirred solution of (2R, 4R) -2-carbomethoxy-4-hydroxypyrrolidine 35 (6.9 g, 38.12 mmol) in THF / water (8: 2, 150 ml), and then at di-tert-butyldicarbonate (10.9 g, 50 mmol) was added at room temperature. The reaction was stirred at room temperature for 6 h and evaporated to dryness. The residue was dissolved in EtOAc (200 ml) and washed with 0.5N potassium hydrogen sulfate (50 ml), water (100 ml) and brine (50 ml). The organic extract was dried over Na 2 SO 4 and evaporated to dryness to give 7.8 g (84%) of the oily product. The oily product gave a colorless solid, drying: melting point: 75-77 ° C. 1 HNMR (CDCl 3 ): 1.45 (s, 9H, Boc), 2.09 (2 dd, 1H), 2.34 (m, 1H), 3.49 - 3.73 (m, 3H), 3.79 (s, 3H, CH 3 ). 4.34 (m, 2H).

(2R,4R)-1-(Terc-butiloksikarbonil)-2-hidroksimetil-4-hidroksipirolidin (371:(2R, 4R) -1- (Tert-Butyloxycarbonyl) -2-hydroxymethyl-4-hydroxypyrrolidine (371:

(2R,4R)-1-(Terc-butiloksikarbonil)-2-karbometoksi-4-hidroksipirolidin 36 (7.0 g, 28.6 mmol) smo raztopili v suhem THF (100 ml) in ohladili v ledeni, slani kopeli v atmosferi argona. K tej hladni raztopini smo v majhnih odmerkih v časovnem intervalu 15 min dodali litijev borohidrid (1.88 g, 85.8 mmol). Po dodatku litijevega borohidrida smo reakcijsko mešanico pustili 1 h mešati pri 0°C, nato pa v atmosferi argona še 15 h pri sobni temperaturi. Raztopino smo ohladili na 0°C in razredčili z vodo (50 ml) ter ji naravnali(2R, 4R) -1- (Tert-butyloxycarbonyl) -2-carbomethoxy-4-hydroxypyrrolidine 36 (7.0 g, 28.6 mmol) was dissolved in dry THF (100 ml) and cooled in an ice-salt bath under argon. To this cold solution, lithium borohydride (1.88 g, 85.8 mmol) was added in small doses over a 15 min time interval. After the addition of lithium borohydride, the reaction mixture was allowed to stir at 0 ° C for 1 h and then at room temperature for 15 h under argon. The solution was cooled to 0 ° C and diluted with water (50 ml) and adjusted

-104pH z AcOH na 6. Reakcijo smo evaporirali do suhega in raztopili v EtOAc (200 ml), sprali z vodo (100 ml) in slano vodo (100 ml). EtOAc ekstrakt smo posušili in evaporirali do suhega. Ostanek smo očistili s flash kolonsko kromatografijo preko silikagela z uporabo CH2CI2 --> EtOAc, kot eluenta. Čiste frakcije smo zbrali in evaporirali do suhega, da smo dobili 5.00 g (81%) bistrega olja. Ko je olje stalo je iz njega nastala brezbarvna trdna snov. Tališče: 95-97°C. 1HNMR (CDCI3): 1.45 (s, 9H, Boc), 1.90 (dd, 1H), 2.34 (m, 1H), 3.40 - 3.62 (m, 3H), 4.00 (m, 2H), 4.28 (bs, 1H), 4.44 (m, 1H).-104pH with AcOH at 6. The reaction was evaporated to dryness and dissolved in EtOAc (200 ml), washed with water (100 ml) and brine (100 ml). The EtOAc extract was dried and evaporated to dryness. The residue was purified by flash column chromatography over silica gel using CH 2 Cl 2 -> EtOAc as eluent. The pure fractions were collected and evaporated to dryness to give 5.00 g (81%) of a clear oil. As the oil stood, a colorless solid formed from it. Melting point: 95-97 ° C. 1 HNMR (CDCl 3 ): 1.45 (s, 9H, Boc), 1.90 (dd, 1H), 2.34 (m, 1H), 3.40 - 3.62 (m, 3H), 4.00 (m, 2H), 4.28 (bs. 1H), 4.44 (m, 1H).

(2R,4R)-1-(Terc-butiloksikarbonil)-2-(4,4’-dimetoksitritil) oksimetil-4hidroksipirolidin (38): (2R,4R)-1 -(Terc-butiloksikarbonil)-2-hidroksimetil-4hidroksipirolidin 37 (4.4 g, 20.28 mmol) smo raztopili v suhem piridinu (50 ml) in pustili mešati v atmosferi argona. K tej premešani raztopini smo dodali TEA (2.53 g, 25 mmol), nato pa še 4,4’-dimetoksitritil klorid (7.45 g, 22 mmol). Reakcijsko mešanico smo pri sobni temperaturi mešali 12 h in jo udušili z MeOH (10 ml). Raztopino smo evaporirali do suhega in raztopili v EtOAc (200 ml). EtOAc plast smo sprali s 5% NaHCO3 raztopino (100 ml), vodo (100 ml) in slano vodo. Organski ekstrakt smo posušili preko brezvodnega Na2SO4 in evaporirali do suhega. Ostanek smo očistili s flash kromatografijo preko silikagela z uporabo heksan -> EtOAc, kot eluenta. Potrebne frakcije smo zbrali skupaj in evaporirali, da smo dobili 8.09 g (100%) oranžne pene. 1HNMR (CDCI3): 1.45 (s, 9H, Boc), 1.90 (dd, 1H), 2.34 (m, 1H), 3.40 - 3.62 (m, 3H), 3.74 (s, 6H, 2.OCH3), 4.00 (m, 2H), 4.28 (bs, 1H), 4.44 (m, 1H), 6.82 (d, 4H, Ph) in 7.20 - 8.00 (m, 9H, Ph).(2R, 4R) -1- (Tert-butyloxycarbonyl) -2- (4,4'-dimethoxytrityl) oxymethyl-4hydroxypyrrolidine (38): (2R, 4R) -1- (Tert-butyloxycarbonyl) -2-hydroxymethyl-4hydroxypyrrolidine 37 (4.4 g, 20.28 mmol) was dissolved in dry pyridine (50 ml) and allowed to stir under argon. To this stirred solution was added TEA (2.53 g, 25 mmol) followed by 4,4'-dimethoxytrityl chloride (7.45 g, 22 mmol). The reaction mixture was stirred at room temperature for 12 h and quenched with MeOH (10 ml). The solution was evaporated to dryness and dissolved in EtOAc (200 ml). The EtOAc layer was washed with 5% NaHCO 3 solution (100 ml), water (100 ml) and brine. The organic extract was dried over anhydrous Na 2 SO 4 and evaporated to dryness. The residue was purified by flash chromatography over silica gel using hexane -> EtOAc as eluent. The necessary fractions were combined and evaporated to give 8.09 g (100%) of orange foam. 1 HNMR (CDCl 3 ): 1.45 (s, 9H, Boc), 1.90 (dd, 1H), 2.34 (m, 1H), 3.40 - 3.62 (m, 3H), 3.74 (s, 6H, 2.OCH3). 4.00 (m, 2H), 4.28 (bs, 1H), 4.44 (m, 1H), 6.82 (d, 4H, Ph) and 7.20 - 8.00 (m, 9H, Ph).

(2R,4R)-1-(Terc-butiloksikarbonil)-2-(4,4’-dimetoksitritil)okslmetil-4-[(ptoluensulfonil)oksi]pirolldin (39): (2R,4R)-1 -(Terc-butiloksikarbonil)-2-(4,4-105dimetoksitritil) oksimetil-4-hidroksipirolidin 38 (8.09 g, 20.27 mmol) smo raztopili v suh piridin/CH2CI2 mešanici (2:1, 200 ml) in ohladili na ledeni kopeli v atmosferi argona. K tej hladni raztopini smo dodali TEA (3.03 g, 30 mmol), nato pa še p-toluensulfonil klorid (5.7 g, 30 mmol). Reakcijsko mešanico smo pustili mešati pri 0°C 3h in pod 30°C 8 h. Reakcijsko mešanico smo evaporirali do suhega, porazdelili med EtOAc (200 ml) in 5% NaHCO3 raztopino (100 ml) in jo ekstrahirali v EtOAc. EtOAc ekstrakt smo sprali z vodo (100 ml) in slano vodo (100 ml), posušili in evaporirali do suhega. Surovi produkt smo očistili s flash kromatografijo preko silikagela z uporabo heksan EtOAc, kot eluenta. Čiste frakcije smo zbrali skupaj in evaporirali, da smo dobili 12.2 g (89%) oranžnega olja. 1HNMR (CDCI3): 1.45 (s, 9H, Boc), 1.90 (dd, 1H), 2.34 (m, 1H), 2.40 (s, 3H, CH3), 3.40 -3.62 (m, 3H), 3.74 (s, 6H, 2.0CH3), 4.00 (m, 2H), 4.28 (bs, 1H), 4.44 (m, 1H), 6.82 (d, 4H, Ph) in 7.26 - 8.00 (m, 13 H, Ph).(2R, 4R) -1- (Tert-butyloxycarbonyl) -2- (4,4'-dimethoxytrityl) oxylmethyl-4 - [(ptoluenesulfonyl) oxy] pyrrolidine (39): (2R, 4R) -1- (Tert- butyloxycarbonyl) -2- (4,4-105 dimethoxytrityl) oxymethyl-4-hydroxypyrrolidine 38 (8.09 g, 20.27 mmol) was dissolved in dry pyridine / CH 2 Cl 2 mixture (2: 1, 200 ml) and cooled in an ice bath in argon atmosphere. TEA (3.03 g, 30 mmol) and then p-toluenesulfonyl chloride (5.7 g, 30 mmol) were added to this cold solution. The reaction mixture was allowed to stir at 0 ° C for 3 h and below 30 ° C for 8 h. The reaction mixture was evaporated to dryness, partitioned between EtOAc (200 ml) and 5% NaHCO 3 solution (100 ml) and extracted into EtOAc. The EtOAc extract was washed with water (100 ml) and brine (100 ml), dried and evaporated to dryness. The crude product was purified by flash chromatography over silica gel using hexane EtOAc as eluent. The pure fractions were combined and evaporated to give 12.2 g (89%) of an orange oil. 1 HNMR (CDCl 3 ): 1.45 (s, 9H, Boc), 1.90 (dd, 1H), 2.34 (m, 1H), 2.40 (s, 3H, CH 3 ), 3.40 -3.62 (m, 3H), 3.74 (s, 6H, 2.0CH 3 ), 4.00 (m, 2H), 4.28 (bs, 1H), 4.44 (m, 1H), 6.82 (d, 4H, Ph) and 7.26 - 8.00 (m, 13 H, Ph) ).

(2R,4S)-1-(Terc-butiloksIkarbonil)-2-(4,4’-dlmetoksitritil)oksimetil-4-azidopirolldln (40): (2R,4R)-1 -(Terc-butiloksikarbonil)-2-(4,4’-dimetoksitritil)oksimetil4-[(p-toluensulfonil)oksi-pirolidin 39 (5.1 g, 7.58 mmol) smo raztopili v dimetilformamidu (50 ml) in razredčili z vodo (5 ml). K tej premešani raztopini smo dodali natrijev azid (0.65 g, 10 mmol) in jo pri 80°C segrevali 8 h. Ohladili smo jo in evaporirali do suhega. Ostanek smo porazdelili med CH2CI2 (200 mi) in vodo (100 ml) in ekstrahirali v CH2CI2. Organski ekstrakt smo sprali s slano vodo (50 ml), posušili preko Na2SO4 in evaporirali do suhega. Surovi produkt smo očistili s flash kromatografijo preko silikagela z uporabo heksan --> EtOAc, kot eluenta. Čiste frakcije smo zbrali skupaj in evaporirali, da smo dobili 3.8 g (92%) bistrega olja. 1HNMR (CDCI3): 1.45 (s, 9H, Boc), 1.90 (dd, 1H), 2.34 (m, 1H), 3.40 3.62 (m, 3H), 3.74 (s, 6H, 2.0CH3), 4.00 (m, 2H), 4.28 (bs, 1H), 4.44 (m, 1H), 6.82 (d, 4H, Ph) in 7.26 - 7.80 (m, 9H, Ph).(2R, 4S) -1- (Tert-butyloxycarbonyl) -2- (4,4'-dlmethoxytrityl) oxymethyl-4-azidopyrrolidin (40): (2R, 4R) -1- (Tert-butyloxycarbonyl) -2- ( 4,4'-Dimethoxytrityl) oxymethyl4 - [(p-toluenesulfonyl) oxy-pyrrolidine 39 (5.1 g, 7.58 mmol) was dissolved in dimethylformamide (50 ml) and diluted with water (5 ml). Sodium azide (0.65 g, 10 mmol) was added to this stirred solution and heated at 80 ° C for 8 h. We cooled it and evaporated to dryness. The residue was partitioned between CH 2 Cl 2 (200 mi) and water (100 ml) and extracted into CH 2 Cl 2 . The organic extract was washed with brine (50 ml), dried over Na 2 SO 4 and evaporated to dryness. The crude product was purified by flash chromatography over silica gel using hexane -> EtOAc as eluent. The pure fractions were combined and evaporated to give 3.8 g (92%) of a clear oil. 1 HNMR (CDCl 3 ): 1.45 (s, 9H, Boc), 1.90 (dd, 1H), 2.34 (m, 1H), 3.40 3.62 (m, 3H), 3.74 (s, 6H, 2.0CH 3 ), 4.00 (m, 2H), 4.28 (bs, 1H), 4.44 (m, 1H), 6.82 (d, 4H, Ph) and 7.26 - 7.80 (m, 9H, Ph).

-106(2R,4S)-1-(Terc-butiloksikarbonil)-2-hidroksimetil-4-amino-pirolidin (41):-106 (2R, 4S) -1- (Tert-Butyloxycarbonyl) -2-hydroxymethyl-4-amino-pyrrolidine (41):

(2R,4S)-1-(Terc-butiloksikarbonil)-2-(4,4’-dimetoksitritil)oksimetil-4-azido-pirolidin 40 (2.72 g, 5 mmol) v metanolu (75 ml) smo hidrogenirali v prisotnosti 10% paladija na oglju (0.3 g) pri sobni temperaturi in pritisku 5 barov. Po 12 h smo katalizator filtrirali, sprali z metanolom (20 ml) in topilo odstranili v vakuumu. Dobitek 1.0 g (93%). 1HNMR (CDCI3): 1.45 (s, 9H, Boc), 1.90 (dd, 1H), 2.34 (m, 1H), 3.40 - 3.62 (m, 3H), 4.00 (m, 2H), 4.28 (bs, 1H) in 4.44 (m, 1H).(2R, 4S) -1- (Tert-butyloxycarbonyl) -2- (4,4'-dimethoxytrityl) oxymethyl-4-azido-pyrrolidine 40 (2.72 g, 5 mmol) in methanol (75 ml) was hydrogenated in the presence of 10 % palladium on charcoal (0.3 g) at room temperature and 5 bar pressure. After 12 h, the catalyst was filtered off, washed with methanol (20 ml) and the solvent removed in vacuo. Yield 1.0 g (93%). 1 HNMR (CDCl 3 ): 1.45 (s, 9H, Boc), 1.90 (dd, 1H), 2.34 (m, 1H), 3.40 - 3.62 (m, 3H), 4.00 (m, 2H), 4.28 (bs. 1H) and 4.44 (m, 1H).

(2R,4S)-1-(Terc-butiloksIkarbonil)-2-hidroksimetil-4-ftalimido-pirolidin (42): (2R,4S)-1 -(Terc-butiloksikarbonil)-2-hidroksimetil-4-amino-pirolidin 41 (1.00 g, 4.63 mmol) smo raztopili v suhem metanolu (20 ml) in pri sobni temperaturi obdelali z N-etoksikarbonil ftalimidom (1.09 g, 5 mmol). Reakcijsko mešanico smo mešali 6 h in evaporirali do suhega. Ostanek smo očistili s flash kromatografijo preko silikagela z uporabo CH2CI2 --> EtOAc, kot eluenta. Čiste frakcije smo zbrali in evaporirali, da smo dobili(2R, 4S) -1- (Tert-butyloxycarbonyl) -2-hydroxymethyl-4-phthalimido-pyrrolidine (42): (2R, 4S) -1- (Tert-butyloxycarbonyl) -2-hydroxymethyl-4-amino-pyrrolidine 41 (1.00 g, 4.63 mmol) was dissolved in dry methanol (20 ml) and treated with N-ethoxycarbonyl phthalimide (1.09 g, 5 mmol) at room temperature. The reaction mixture was stirred for 6 h and evaporated to dryness. The residue was purified by flash chromatography over silica gel using CH 2 Cl 2 -> EtOAc as eluent. Pure fractions were collected and evaporated to yield

1.5 g (94%) čiste spojine, kot peno. 1HNMR (CDCI3): 1.45 (s, 9H, Boc), 1.90 (dd, 1H), 2.34 (m, 1H), 3.40 - 3.62 (m, 3H), 4.00 (m, 2H), 4.28 (bs, 1H), 4.44 (m, 1H) in 7.3 - 7.6 (m, 4H, Ph).1.5 g (94%) of pure compound as foam. 1 HNMR (CDCl 3 ): 1.45 (s, 9H, Boc), 1.90 (dd, 1H), 2.34 (m, 1H), 3.40 - 3.62 (m, 3H), 4.00 (m, 2H), 4.28 (bs. 1H), 4.44 (m, 1H) and 7.3-6.6 (m, 4H, Ph).

(2R,4S)-1-(Terc-butiloksikarbonil)-2-[N3-benzoil(tlmin-1-il)]metil-4ftalimido-pirolidin (43): K premešani raztopini N3-benzoiltimina 20 (1.15 g, 5 mmol) v suhem THF (70 ml) smo v argonu pri sobni temperaturi dodali trifenil fosfin (2.62 g, 10 mmol) in (2R,4S)-1-(terc-butiloksikarbonil)-2hidroksimetil-4-ftalimido-pirolidin (1.4 g, 4.05 mmol). Po 15 min smo počasi v časovnem intervalu 10 min dodali dietilazodikarboksilat (1.74 g, 10 mmol). Reakcijsko mešanico smo pokrili z aluminijevo folijo in pustili mešati pri sobni temperaturi v argonu 24 h. Topilo smo evaporirali do(2R, 4S) -1- (Tert-butyloxycarbonyl) -2- [N 3 -benzoyl (tlmin-1-yl)] methyl-4-phthalimido-pyrrolidine (43): To a stirred solution of N 3 -benzoylthymine 20 (1.15 g. 5 mmol) in dry THF (70 ml) was added in argon at room temperature triphenyl phosphine (2.62 g, 10 mmol) and (2R, 4S) -1- (tert-butyloxycarbonyl) -2-hydroxymethyl-4-phthalimido-pyrrolidine (1.4 g, 4.05 mmol). After 15 min, diethyl azodicarboxylate (1.74 g, 10 mmol) was added slowly over a 10 min interval. The reaction mixture was covered with aluminum foil and allowed to stir at room temperature in argon for 24 h. The solvent was evaporated to

-107suhega in ostanek raztopili v EtOAc (150 ml). Organski ekstrakt smo sprali s 5% NaHCO3 raztopino (100 ml), vodo (100 ml) in slano vodo (100 ml) in posušili preko brezvodnega Na2SO4. Posušeni EtOAc ekstrakt smo evaporirali do suhega, da smo dobili oranžno olje. Surovi produkt smo očistili s flash kromatografijo preko silikagela z uporabo heksan -> EtOAc, kot eluenta. Frakcije z zahtevanim produktom smo zbrali skupaj in evaporirali, da smo dobili olje, bledo roza barve. Dobitek: 2.0 g, (89%). 1HNMR (CDCI3): 1.41 (s, 9H, Boc), 1.72 (s, 3H, CH3), 1.90 (dd, 1H), 2.34 (m, 1H), 3.40 - 3.62 (m, 3H), 4.00 (m, 2H), 4.28 (bs, 1H), 4.44 (m, 1H), 7.06 (s, 1H, C6H) in 7.20 - 7.60 (m, 9H, Ph).-107 dry and the residue was dissolved in EtOAc (150 ml). The organic extract was washed with 5% NaHCO 3 solution (100 ml), water (100 ml) and brine (100 ml) and dried over anhydrous Na 2 SO 4 . The dried EtOAc extract was evaporated to dryness to give an orange oil. The crude product was purified by flash chromatography over silica gel using hexane -> EtOAc as eluent. The fractions with the required product were combined and evaporated to give an oil a pale pink color. Yield: 2.0 g, (89%). 1 HNMR (CDCl 3 ): 1.41 (s, 9H, Boc), 1.72 (s, 3H, CH 3 ), 1.90 (dd, 1H), 2.34 (m, 1H), 3.40 - 3.62 (m, 3H), 4.00 (m, 2H), 4.28 (bs, 1H), 4.44 (m, 1H), 7.06 (s, 1H, C 6 H) and 7.20 - 7.60 (m, 9H, Ph).

Primer 31Example 31

Sinteza oligonukleotidov: Oligonukleotide, ki imajo modificirane aminokislinske nukleinsko kislinske hrbtenice smo sintetizirali na avtomatiziranem DNA sintetizatorju (Applied Biosystems model 394) z uporabo standardne fosforamiditne kemije. β-Cianoetil fosforamidite, sintezne reagente in CPG polistirenske kolone smo kupili pri Applied Biosystems (Foster City, CA). Za fosforotioatne oligonukleotide smo standardno oksidacijsko steklenico nadomestili z mešanico tetraetiltiuram disulfid/acetonitril in za postopno tiacijo fosfatnih vezi uporabili standardni ABI fosforotiatni program. Po odcepitvi od steklene kolone s kontrolirano velikostjo por, smo zaščitne skupine odstranili z obdelovanjem oligonukleotidov s koncentriranim amonijevim hidroksidom pri 55°C 8 h. Oligonukleotide (z DMT zaščitno skupino) smo očistili s HPLC, z uporabo semipreparativne C3 kolone (ABI) z reverzno fazo in linearnim gradientom 5% acetonitrila v 0.1 M trietilamonijevem acetatu (pufer A) in acetonitrila (pufer B). DMT zaščitno skupino smo odcepili z obdelavo z 80% ocetno kislino in produkt se je oboril v etanolu. Čistost produktov smo preverili sOligonucleotide Synthesis: Oligonucleotides having modified amino acid nucleic acid backbones were synthesized on an automated DNA synthesizer (Applied Biosystems model 394) using standard phosphoramidite chemistry. β-Cyanoethyl phosphoramidites, synthesis reagents and CPG polystyrene columns were purchased from Applied Biosystems (Foster City, CA). For phosphorothioate oligonucleotides, the standard oxidation bottle was replaced by a tetraethylthiuram disulfide / acetonitrile mixture and a standard ABI phosphorothioate program was used for the gradual titration of the phosphate bonds. After cleavage from the controlled-sized glass column, the protecting groups were removed by treating the oligonucleotides with concentrated ammonium hydroxide at 55 ° C for 8 h. Oligonucleotides (with DMT protecting group) were purified by HPLC using a reversed-phase semipreparative C 3 column (ABI) and a linear gradient of 5% acetonitrile in 0.1 M triethylammonium acetate (buffer A) and acetonitrile (buffer B). The DMT protecting group was cleaved by treatment with 80% acetic acid and the product precipitated in ethanol. The purity of the products was checked with

-108HPLC, z uporabo analitske C18 kolone (Beckman). Aminokislinske nukleinsko kislinske monomere smo vključili na 3’-konec in 5’-konec in v sredino DNA sekvence s povezovalno učinkovitostjo 100%. Brez vsakega problema smo pripravili tudi homo polimer, ki ima s 16 aminokislinami modificiran timin.-108HPLC, using an analytical C18 column (Beckman). Amino acid nucleic acid monomers were incorporated at the 3′-end and 5′-end and in the middle of the DNA sequence with 100% binding efficiency. Without any problem, we also prepared a homo polymer that has 16 amino acids modified thymine.

Primer 32Example 32

Hibridizacijska analiza: Sposobnost, da se aminokislinsko modificirani oligonukleotidi izuma hibridizirajo na njihove komplementarne RNA in DNA sekvence smo določili z analizo termičnega taljenja. RNA komplement smo sintetizirali na sintetizatorju Genset Corporation (La Jolla, CA) in ga očistili z denaturizirajočim sečninskim PAGE. Naravne antisense oligonukleotide ali tiste, ki vsebujejo funkcionalizirane na specifičnih lokacijah, smo dodali bodisi RNA ali DNA komplementu v stehiometričnih koncentracijah, potrebnih za formiranje hibridnih dupleksov. Odvisnost hiperkromičnosti absorbance (260 nm), glede na temperaturo pri tranziciji dupleksa v naključni klobčič, smo beležili z uporabo Varian Cary 1E UV-Visible spektrofotometra. Meritve smo izvedli v pufru 10 mM Na-fosfata, pH 7.4, 0.1 mM EDTA in NaCl, da smo dobili ionsko moč bodisi 0.1 M ali 1.0 M. Podatke smo analizirali z grafično predstavitvijo 1/Tm proti ln[Ct], kjer je [Ct] celotna koncentracija oligonukleotida. Iz te analize smo določili termodinamične parametre. Temelječ na pridobljeni informaciji, ki zadeva stabilnost nastalega dupleksa ali hetero-dupleksa, smo ocenili namestitev modificiranega pirimidina v oligonukleotide, za njegove učinke na stabilnost vijačnice. Modifikacije, ki drastično spremenijo stabilnost hibrida kažejo zmanjšanja ali povečanja v prosti energiji ( delta G) in tako se lahko odločamo o njihovi uporabnosti v antisense oligonukleotidih.Hybridization assay: The ability of the amino acid-modified oligonucleotides of the invention to hybridize to their complementary RNA and DNA sequences was determined by thermal melting analysis. The RNA complement was synthesized on a Genset Corporation synthesizer (La Jolla, CA) and purified by denaturing urea PAGE. Natural antisense oligonucleotides or those containing functionalized at specific sites were added to either RNA or DNA complement at stoichiometric concentrations required for the formation of hybrid duplexes. The dependence of the absorbance hyperchromicity (260 nm) on the temperature at the transition of the duplex to a random ball was recorded using a Varian Cary 1E UV-Visible spectrophotometer. Measurements were taken in 10 mM Na-phosphate buffer, pH 7.4, 0.1 mM EDTA and NaCl to give ionic strength of either 0.1 M or 1.0 M. The data were analyzed by graphically representing 1 / Tm against ln [Ct], where [ Ct] total oligonucleotide concentration. Thermodynamic parameters were determined from this analysis. Based on the information obtained regarding the stability of the resulting duplex or hetero-duplex, we evaluated the placement of modified pyrimidine in oligonucleotides for its effects on helix stability. Modifications that drastically alter the stability of the hybrid show reductions or increases in free energy (delta G), so we can decide on their usefulness in antisense oligonucleotides.

-109Hibridizacijske študije smo izvedli z oligonukleotidi, ki vsebujejo aminokislinsko nukleinsko kislinsko hrbtenico na 3’-koncu kakor tudi na 5’koncu. Pripravljalne študije so pokazale, da modificirani oligonukleotidi tvorijo dupleks z njihovimi komplementarnimi RNA in DNA sekvencami, kakor nemodificirani oligonukleoti.-109Hybridization studies were performed with oligonucleotides containing the amino acid nucleic acid backbone at the 3′-end as well as at the 5′-end. Preparatory studies have shown that modified oligonucleotides form a duplex, with their complementary RNA and DNA sequences, as unmodified oligonucleotides.

Primer 33Example 33

Nukleazna rezistenca. Naravne, fosforotioatne in modificirane oligonukleotide izuma smo ocenili glede na njihovo rezistenco na serumske nukleaze z inkubacijo oligonukleotidov v mediju, ki je vseboval različne koncentracije fetalnega seruma teleta ali seruma odraslega človeka. Označene oligonukleotide smo inkubirali različno dolgo časa, jih obdelali s proteazo K in nato analizirali z gelsko elektroforezo na 20% poliakrilamid-sečnina denaturizirajočih gelih in poznejšo avtoradiografijo ali fosfor-imagingom. Avtoradiograme smo kvantificirali z lasersko denzitometrijo. Na temelju lokacije modifikacij in poznane dolžine oligonukleotida je mogoče določiti učinek določene modifikacije na nukleazno degradacijo. Za citoplazemske nukleaze smo uporabili celično linijo HL60. Post-mitohondrijski supernatant smo pripravili z diferencialno centrifugacijo in označene oligonukleotide v tem supernatantu različno dolgo časa inkubirali. S sledenjem inkubacije smo oligonukleotide ocenili za degradacijo tako, kot je bilo opisano zgoraj za serumsko nukleolitsko degradacijo. Rezultate avtoradiografije smo kvantificirali za primerjavo nemodificiranega, npr. fosforotioata in modificiranih oligonukleotidov.Nuclease resistance. The natural, phosphorothioate and modified oligonucleotides of the invention were evaluated for their resistance to serum nucleases by incubation of oligonucleotides in medium containing different concentrations of fetal calf or adult human serum. The labeled oligonucleotides were incubated for a long time, treated with protease K and then analyzed by gel electrophoresis on 20% polyacrylamide urea denaturing gels and subsequent autoradiography or phospho-imaging. The autoradiograms were quantified by laser densitometry. Based on the location of the modifications and the known length of the oligonucleotide, it is possible to determine the effect of a particular modification on nuclease degradation. HL60 cell line was used for cytoplasmic nuclease. The post-mitochondrial supernatant was prepared by differential centrifugation, and the labeled oligonucleotides in this supernatant were incubated for various periods of time. By following the incubation, the oligonucleotides were evaluated for degradation as described above for serum nucleolytic degradation. The results of autoradiography were quantified to compare unmodified, e.g. phosphorothioate and modified oligonucleotides.

Pripravljalne študije na aminokislinsko modificiranih oligonukleotidih so pokazale, da so odporni na fosfodiesterazo kačjega strupa.Preparatory studies on amino acid-modified oligonucleotides have shown that they are resistant to the phosphodiesterase of snake venom.

-110Vključevanje z referenco-110Inclusion with reference

Vsi citirani patenti, patentne prijave in objave, so tu notri vključeni z referenco.All cited patents, patent applications and publications are incorporated herein by reference.

EkvivalentiEquivalents

Zgornja napisana specifikacija velja za zadovoljivo, da omogoča nekomu, ki je izkušen pri tem delu, izvajati izum. Seveda so znotraj obsega sledečih zahtevkov za izvajanje izuma predvidene različne modifikacije zgoraj opisanih izvedb, ki so zlahka razvidne strokovnjakom na področju molekularne biologije, organske kemije, ali sorodnih področij.The above specification is considered satisfactory to enable one skilled in the art to carry out the invention. Of course, within the scope of the following claims for implementation of the invention, various modifications of the embodiments described above are readily apparent to those skilled in the art of molecular biology, organic chemistry, or related fields.

Claims (8)

ZAHTEVKIREQUIREMENTS 1. Spojina iz spojine 1 v katerikoli od Skupin I - V:1. A compound of compound 1 in any of Groups I - V: W—LW-L Spojina 1Compound 1 Skupina I, kjer:Group I, where: je X CHR2OH, kjer je R2 H, nižji alkil amin ali nižji alkil imidazol; je Y Baza-(CH2)n-, kjer je Baza nehalogenirana variabilna nukleozidna baza, kjer je n 1 do 7;X is CHR 2 OH, where R 2 is H, lower alkyl amine or lower alkyl imidazole; Y is a Base- (CH 2 ) n -, where the Base is a halogenated variable nucleoside base, where n is 1 to 7; je A karbonil;A is carbonyl; je Z H ali OR3, kjer je R3 H, nižji alkil, nižji alkil amin ali nižji alkil imidazol;ZH or OR is 3 , where R 3 is H, lower alkyl, lower alkyl amine or lower alkyl imidazole; je W CHR4OH, kjer je R4 H ali nižji alkil amin ali nižji alkil imidazol;W is CHR 4 OH, where R 4 is H or lower alkyl amine or lower alkyl imidazole; je N N(dušik); in je L nič;N is N (nitrogen); and L is zero; Skupina II, kjer:Group II, where: je X Baza-(CH2)n-, kjer je Baza nehalogenirana variabilna nukleozidna baza, kjer je n 1 do 7;X is Base- (CH 2 ) n -, where Baza is a halogenated variable nucleoside base, where n is 1 to 7; je Y CHR2OH, kjer je R2 H, nižji alkil amin ali nižji alkil imidazol; je A karbonil ali CH2;Y is CHR 2 OH, where R 2 is H, lower alkyl amine or lower alkyl imidazole; A is carbonyl or CH 2 ; je Z H ali OR3, kjer je R3 H, nižji alkil, nižji alkil amin ali nižji alkil imidazol;ZH or OR is 3 , where R 3 is H, lower alkyl, lower alkyl amine or lower alkyl imidazole; -112je W CHR4OH, kjer je R4 H ali nižji alkil amin ali nižji alkil imidazol;-112 is W CHR4OH, where R 4 is H or lower alkyl amine or lower alkyl imidazole; je N N(dušik); in je L nič;N is N (nitrogen); and L is zero; Skupina III, kjer:Group III, where: je X CHR2OH, kjer je R2 H, nižji alkil amin ali nižji alkil imidazol; je Y Baza-(CH2)n-, kjer je Baza nehalogenirana variabilna nukleozidna baza, kjer je n 1 do 7;X is CHR2OH, where R 2 is H, lower alkyl amine or lower alkyl imidazole; Y is a Base- (CH 2 ) n -, where the Base is a halogenated variable nucleoside base, where n is 1 to 7; je A CH2;A is CH 2 ; je Z OH ali OR3 in je R3 H, nižji alkil, nižji alkil amin ali nižji alkil imidazol;Z is OH or OR 3 and R 3 is H, lower alkyl, lower alkyl amine or lower alkyl imidazole; je W CHR4OH, kjer je R4 H ali nižji alkil amin ali nižji alkil imidazol;W is CHR 4 OH, where R 4 is H or lower alkyl amine or lower alkyl imidazole; je N N(dušik); in je L nič;N is N (nitrogen); and L is zero; Skupina IV, kjer:Group IV, where: je X Baza-(CH2)n-, kjer je Baza nehalogenirana variabilna nukleozidna baza, kjer je n 1 do 7;X is Base- (CH 2 ) n -, where Baza is a halogenated variable nucleoside base, where n is 1 to 7; je Y COOH ali CHR2OH, kjer je R2 H, nižji alkil amin ali nižji alkil imidazol;Y is COOH or CHR 2 OH, where R 2 is H, lower alkyl amine or lower alkyl imidazole; je A karbonil ali CH2; je Z CH2; je W CH2; je N N (dušik) ; in je L CHNHR5, kjer je R5 H, OH ali OR3, in je R3 H, nižji alkil, nižji alkil amin ali nižji alkil imidazol;A is carbonyl or CH 2 ; Z is CH 2 ; W is CH 2 ; is NN (nitrogen); and L is CHNHR 5 , where R 5 is H, OH or OR 3 , and R 3 is H, lower alkyl, lower alkyl amine or lower alkyl imidazole; -113Skupina V, kjer:-113Group V, where: je X CH2OH, CH2NH2, CONH2 ali COOH; je Y nič;X is CH 2 OH, CH 2 NH 2 , CONH 2 or COOH; Y is zero; je Z CH2 ali CHO-LrB; je W O, S ali CH2; je N CH; in sta L in A neodvisno COOH, CHCOOH, CHCH2COOH, NH2, CHNH2, L|-NH-L2-B ali CH-LrNH-L2-B; kjer je B H ali nukleozidna baza, in sta L-i in L2 neodvisno (CH2)n, kjer je n=1-3 ali (CH2)nCO, kjer je n=0-2.Z is CH 2 or CHO-L r B; WO, S or CH 2 ; N is CH; and L and A are independently COOH, CHCOOH, CHCH 2 COOH, NH 2 , CHNH 2 , L 1 -NH-L 2 -B or CH-L r NH-L 2 -B; where BH is a nucleoside base, and Li and L 2 are independently (CH 2 ) n , where n = 1-3, or (CH 2 ) n CO, where n = 0-2. 2. Spojina po zahtevku 1 polimerizirana v oligonukleotid označen s tem, da nastanejo internukleotidne vezi med W in X v Skupini I, W in Y v Skupini II, W in Z v Skupini III, L in Y v Skupini IV, in L in A v Skupini V.A compound according to claim 1 polymerized into an oligonucleotide, characterized in that internucleotide bonds are formed between W and X in Group I, W and Y in Group II, W and Z in Group III, L and Y in Group IV, and L and A in Group V. 3. Oligonukleotid po zahtevku 2, označen s tem, da internukleotidna vez obsega fosfodiester.An oligonucleotide according to claim 2, characterized in that the internucleotide bond comprises a phosphodiester. 4. Oligonukleotid po zahtevku 2, označen s tem, da internukleotidna vez obsega fosforotioat.Oligonucleotide according to claim 2, characterized in that the internucleotide bond comprises a phosphorothioate. 5. Oligonukleotid po zahtevku 2, označen s tem, da internukleotidna vez obsega fosforamidat.An oligonucleotide according to claim 2, characterized in that the internucleotide bond comprises phosphoramidate. 6. Oligonukleotid po zahtevku 2, označen s tem, da internukleotidna vez obsega hidroksamat.An oligonucleotide according to claim 2, characterized in that the internucleotide bond comprises hydroxamate. -1147. Oligonukleotid po zahtevku 2, označen s tem, da se oligonukleotid lahko razlikuje v množici monomerov pri čemer vsaj eden od monomerov obsega 2’-deoksiribozni nukleozid, in dalje označen, da obsega vsaj dve različni internukleotidni vezi iz skupine, ki jo sestavljajo fosfodiester, fosforotioat, fosforamidat in hidroksamat.-1147. An oligonucleotide according to claim 2, characterized in that the oligonucleotide can be distinguished in a plurality of monomers wherein at least one of the monomers comprises a 2'-deoxyribose nucleoside and further characterized to comprise at least two different internucleotide bonds from the group consisting of phosphodiester, phosphorothioate , phosphoramidate and hydroxamate. 8. Oligonukleotid po zahtevku 7, označen s tem, da ima oligonukleotid 2’deoksiriboza nukleozid pentafuranozilni obroč pri čemer je kisik v obroču nadomeščen z enim od S, CH2 ali NR6, kjer je R6 acetil, nižji alkil, karbonil, karbonil nižji alkil amin, ali karbonil nižji alkil imidazol.Oligonucleotide according to claim 7, characterized in that the oligonucleotide 2'deoxyribose nucleoside has a pentafuranosyl ring wherein the oxygen in the ring is replaced by one of S, CH 2 or NR 6 , wherein R 6 is acetyl, lower alkyl, carbonyl, carbonyl lower alkyl amine, or carbonyl lower alkyl imidazole. 9. Oligonukleotid po zahtevku 2, označen s tem, da vsaj en monomer ustreza Skupini V zahtevka 1, in je maksimum petdesetih monomerov izbran iz 2’-deoksiribonukleozida, ribonukleozida in 2’-metilribonukleozida.An oligonucleotide according to claim 2, characterized in that at least one monomer corresponds to Group V of claim 1, and a maximum of fifty monomers is selected from 2′-deoxyribonucleoside, ribonucleoside and 2′-methylribonucleoside.
SI9520112A 1994-11-02 1995-11-02 Amino acid nucleic acids SI9520112A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US33389594A 1994-11-02 1994-11-02
PCT/US1995/014599 WO1996014330A1 (en) 1994-11-02 1995-11-02 Amino acid nucleic acids

Publications (1)

Publication Number Publication Date
SI9520112A true SI9520112A (en) 1998-08-31

Family

ID=23304698

Family Applications (1)

Application Number Title Priority Date Filing Date
SI9520112A SI9520112A (en) 1994-11-02 1995-11-02 Amino acid nucleic acids

Country Status (13)

Country Link
EP (1) EP0789707A4 (en)
JP (1) JPH10508312A (en)
KR (1) KR100393336B1 (en)
CN (1) CN1171112A (en)
AU (1) AU693622B2 (en)
CA (1) CA2202274A1 (en)
HU (1) HU218086B (en)
MX (1) MX9703188A (en)
PL (1) PL185852B1 (en)
RU (1) RU2154638C2 (en)
SI (1) SI9520112A (en)
UA (1) UA48150C2 (en)
WO (1) WO1996014330A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840879A (en) * 1996-12-06 1998-11-24 Wang; Edge R. Reagents and solid supports for improved synthesis and labeling of polynucleotides
JP4594588B2 (en) * 2001-04-10 2010-12-08 ザ ボード オブ トラスティーズ オブ ザ リランド スタンフォード ジュニア ユニヴァーシティ Therapeutic and diagnostic uses of antibody-specific profiles
WO2009064471A1 (en) * 2007-11-15 2009-05-22 Avi Biopharma, Inc. Method of synthesis of morpholino oligomers
JP5199519B2 (en) 2010-11-30 2013-05-15 独立行政法人科学技術振興機構 Nucleoside analogs or salts thereof, oligonucleotide analogs, gene expression inhibitors, and nucleic acid probes for gene detection
RU2460721C1 (en) * 2011-02-25 2012-09-10 Учреждение Российской академии наук Институт химической биологии и фундаментальной медицины Сибирского отделения РАН (ИХБФМ СО РАН) Method of producing amidophosphite monomer of achiral non-nucleotide insert for modifying oligonucleotides
DE102014007158A1 (en) * 2014-05-16 2015-11-19 Ugichem Gmbh New peptide-nucleic acid monomers and oligomers
EP3643706B1 (en) * 2017-06-16 2023-11-15 Eisai R&D Management Co., Ltd. Modified nucleic acid monomers and oligonucleic acid analogues, with high biological stability and target gene silencing activity, for use in therapy and diagnosis of cancer and viral diseases
CN113956183B (en) * 2021-10-28 2023-06-20 成都市科隆化学品有限公司 Boc-Ser (Bzl) -OH and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0215942B1 (en) * 1985-03-15 1995-07-12 Antivirals Inc. Polynucleotide assay reagent and method
DK51092D0 (en) * 1991-05-24 1992-04-15 Ole Buchardt OLIGONUCLEOTIDE ANALOGUE DESCRIBED BY PEN, MONOMERIC SYNTHONES AND PROCEDURES FOR PREPARING THEREOF, AND APPLICATIONS THEREOF

Also Published As

Publication number Publication date
EP0789707A4 (en) 1999-02-24
UA48150C2 (en) 2002-08-15
MX9703188A (en) 1997-12-31
RU2154638C2 (en) 2000-08-20
JPH10508312A (en) 1998-08-18
EP0789707A1 (en) 1997-08-20
KR970707144A (en) 1997-12-01
KR100393336B1 (en) 2003-12-24
PL320084A1 (en) 1997-09-15
CA2202274A1 (en) 1996-05-17
CN1171112A (en) 1998-01-21
HUT77435A (en) 1998-04-28
AU693622B2 (en) 1998-07-02
WO1996014330A1 (en) 1996-05-17
PL185852B1 (en) 2003-08-29
AU4234196A (en) 1996-05-31
HU218086B (en) 2000-05-28

Similar Documents

Publication Publication Date Title
US5434257A (en) Binding compentent oligomers containing unsaturated 3&#39;,5&#39; and 2&#39;,5&#39; linkages
US6914148B2 (en) Guanidinium functionalized intermediates
EP0643720B1 (en) Binding competent oligomers containing 2&#39;, 5&#39; linkages
JP3739785B2 (en) Enhanced triple and double helix shaping using oligomers containing modified pyrimidines
US6380368B1 (en) Enhanced triple-helix and double-helix formation with oligomers containing modified pyrimidines
US5830653A (en) Methods of using oligomers containing modified pyrimidines
US5955599A (en) Process for making oligonucleotides containing o- and s- methylphosphotriester internucleoside linkages
US6600032B1 (en) 2′-O-aminoethyloxyethyl-modified oligonucleotides
JP2002543215A (en) Oligonucleotides having A-DNA and B-DNA conformational geometries
US5969135A (en) Oligonucleotide analogs with an amino acid or a modified amino alcohol residue
CA2256765A1 (en) 2&#39;-substituted nucleosides and oligonucleotide derivatives
SI9520112A (en) Amino acid nucleic acids
WO1993012135A1 (en) Nuclease stable and binding competent oligomers and methods for their use
CZ10042U1 (en) Nucleosides with modified sugar
US6673912B1 (en) 2′-O-aminoethyloxyethyl-modified oligonucleotides