SI9400441A - Method and apparatus for introducing a substance into a fibre material, particularly into mineral fibre material - Google Patents

Method and apparatus for introducing a substance into a fibre material, particularly into mineral fibre material Download PDF

Info

Publication number
SI9400441A
SI9400441A SI9400441A SI9400441A SI9400441A SI 9400441 A SI9400441 A SI 9400441A SI 9400441 A SI9400441 A SI 9400441A SI 9400441 A SI9400441 A SI 9400441A SI 9400441 A SI9400441 A SI 9400441A
Authority
SI
Slovenia
Prior art keywords
fibrous material
substance
gas
mixture
temperature
Prior art date
Application number
SI9400441A
Other languages
Slovenian (sl)
Inventor
Frederic Lankar
Hans Furtak
Original Assignee
Saint Gobain Isover
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Isover filed Critical Saint Gobain Isover
Publication of SI9400441A publication Critical patent/SI9400441A/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor
    • C03C25/22Deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • D04H1/645Impregnation followed by a solidification process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nonwoven Fabrics (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Inorganic Fibers (AREA)

Abstract

A method for depositing a substance, or a mixture of substances, on fibres of a fibrous material, in particular of a mineral fibre material, wherein each substance, or a precursor material thereof, in gaseous state at a temperature above the temperature of the fibrous material is made to penetrate into the fibrous material, and which, preferably part thereof, is deposited on the fibres by condensation. The substance or the precursor material thereof may be mixed with a transport gas having a substantially lower dew point temperature than the substance so as to form a polynary gaseous mixture which is made to penetrate into the fibrous material, with the fibrous material being held at a temperature below the dew point temperature of the gaseous mixture so that part of the substance or the precursor material thereof is deposited on the fibres by condensation.

Description

ISOVER SAINT-GOBAINISOVER SAINT-GOBAIN

Postopek in priprava za vnašanje snovi v material za vlakna, predvsem v material za mineralna vlaknaProcess and preparation for introducing the substance into the fiber material, in particular the mineral fiber material

Izum se nanaša na postopek za vnašanje snovi v material za vlakna, predvsem v material za mineralna vlakna, v skladu z uvodnima deloma patentnih zahtevkov 1 oziroma 3 in na pripravo, ki je primerna za izvajanje postopka po uvodnem delu patentnega zahtevka 14.The invention relates to a method for introducing a substance into a fiber material, in particular a mineral fiber material, according to the introductory parts of claims 1 and 3 and to a device suitable for carrying out the process according to the introductory part of claim 14.

Pogosto bo potrebno vnašati snovi v blazino ali vlaknen material, kot je predvsem material iz mineralnih vlaken, ki je namenjen za toplotno izoliranje. Snov se lahko vnaša z različnimi nameni. Lahko gre za snov za zaščito vlaken. Lahko je nadalje vezivno sredstvo, predvsem za izdelovanje vlaknenega materiala za namen izoliranja. Čeprav se lahko izum uporabi za vnašanje drugih snovi, kot so vezivna sredstva, predloženi opis predvsem pojasnjuje primer vnašanja vezivnega sredstva v material iz mineralnih vlaken, predvsem v material, kije namenjen za toplotno izoliranje.It will often be necessary to bring substances into the cushion or fibrous material, such as, in particular, mineral fiber material intended for thermal insulation. The substance can be introduced for various purposes. It can be a fiber protection substance. It can further be a binder, especially for the manufacture of fibrous material for insulation purposes. Although the invention may be used for the introduction of other substances such as binders, the description provided above clarifies in particular the example of the insertion of a binder in a mineral fiber material, in particular in a material intended for thermal insulation.

V takšnem primeru je zaželjeno, da se doseže homogeno vnašanje in porazdelitev vezivnega sredstva, in sicer homogeno porazdelitev po točkah dotika med vlakni, to se pravi po sečiščih mineralnih vlaken, ki tvorijo vlakneni material.In such a case, it is desirable to achieve a homogeneous introduction and distribution of the binder, namely a homogeneous distribution at points of contact between the fibers, that is, at the intersections of the mineral fibers forming the fibrous material.

Homogeno odlaganje zagotavlja dobro notranjo kohezijo končnega izdelka in izboljšane mehanske lastnosti, predvsem elastično sprostitev, ki sledi stiskanju, da se ponovno pridobi toplotno izolacijsko lastnost izdelka.Homogeneous deposition provides good internal cohesion of the finished product and improved mechanical properties, in particular elastic relaxation following compression to re-obtain the thermal insulation property of the product.

Različni postopki, ki so opisani pri stanju tehnike, omogočajo vnašanje vezivnega sredstva.The various procedures described in the prior art allow the insertion of a binder.

Omeniti je treba, da so vlakneni materiali izdelani iz mineralnih vlaken, ki se jih običajno dobi s postopkom vlečenja vlaken, pri čemer se uporabi postopke bodisi notranjega bodisi zunanjega centifugiranja.It is worth noting that fibrous materials are made of mineral fibers, which are usually obtained by the process of drawing fibers, using either internal or external centrifugation procedures.

Vlečenje vlaken s pomočjo postopkov notranjega centrifugiranja obstoji iz dodajanja materiala, ki ga je treba potegniti v vlakna, v raztaljenem stanju v središče spinerja ali rotorja za vlečenje vlaken, ki obsega množico odprtin ali perforacij na svojem obodu, kjer se tvorijo niti. Te niti se nato zadržuje s plinskim tokom visoke hitrosti in se jih odlaga kot strjena vlakna na izdelovalni prenašalnik.Fiber drawing using internal centrifugation processes consists of the addition of a material to be drawn into the fibers in a molten state to the center of a spinner or fiber drawing rotor, comprising a plurality of openings or perforations at its periphery where the filaments are formed. These threads are then retained by high-velocity gas flow and deposited as hardened fibers on the production carrier.

Pri vlečenju vlaken s pomočjo postopkov zunanjega centrifugiranja se dodaja material, ki ga je treba potegniti v vlakna, ko je v raztaljenem stanju, na zunanji obod obroča za vlečenje vlaken, od katerega se ločuje pod vplivom centrifugalne sile in tvori niti. Plinski tokovi prav tako prispevajo k zadrževanju vlaken, ki se morebiti odlagajo na izdelovalni prenašalnik kot strjena vlakna.When pulling fibers by means of external centrifugation, the material to be drawn into the fibers, when in the molten state, is added to the outer circumference of the fiber drawing ring, from which it separates under the influence of centrifugal force and forms filaments. Gas streams also contribute to the retention of fibers, which may be deposited on the production carrier as solidified fibers.

Pri vlečenju vlaken s pomočjo postopkov notranjega centrifugiranja se vezivno sredstvo na splošno prši na vlakna na njihovi poti pred odlaganjem na izdelovalni prenašalnik.When pulling fibers through internal centrifugation processes, the binder is generally sprayed onto the fibers in their path before being deposited on the production carrier.

Patentni spis US-A-2 931 422 opisuje takšno vrsto pršilnega postopka. Vezivno sredstvo, ki je na splošno organski polimer, se atomizira s pomočjo priprave, ki je nameščena v središču vlaknenega torusa, ki se tvori pod spinerjem.US-A-2 931 422 describes this type of spray process. The binder, which is generally an organic polymer, is atomized by means of a device located in the center of the fibrous torus that forms under the spinner.

En izvedbeni primer, ki je naveden kot alternativa, obstoji v tem, da se premakne postopek atomiziranja izven vlakenskega torusa, ki se tvori pod spinerjem, da se tako izvaja atomiziranje vetivnega sredstva izven torusa.One embodiment, cited as an alternative, is to move the atomization process outside the fiber torus formed under the spinner in order to atomize the branching agent outside the torus.

Ena izmed prednosti postopkov atomiziranja je v tem, da potekajo v področju z zelo visoko temperaturo.One of the advantages of atomisation processes is that they take place in a region of very high temperature.

Prisotna visoka temperatura omogoča, da se začne polimeriziranje vezivnega sredstva. Ta pojav je razlog za to, da se vlakna lepijo drugo na drugo, česar se ne želi na tej stopnji izdelovanja, ker ima za posledico pretirano goste vlaknene materiale z nehomogeno zgradbo. Uporaba visokih temperatur pa nadalje izboljšuje pogoje za izparevanje vezivnega sredstva.The high temperature present enables the polymerization of the binder to start. This phenomenon is the reason why the fibers stick to each other, which is not desired at this stage of manufacture, because it results in excessively dense fibrous materials with a non-homogeneous structure. The use of high temperatures further improves the conditions for evaporation of the binder.

Nauk patentnega spisa US-A-3 901 675 omogoča izogniti se tej pomanjkljivosti s pomočjo ohlajanja vlaken, s tem da se dovaja hladilno sredstvo pred vezivnim sredstvom. To preprečuje prezgodnjo polimerizacijo vezivnega sredstva kot tudi nevarnost, da bi hlapno vezivno sredstvo ušlo v atmosfero. Dodatna uporaba hladilnega sredstva pa lahko zaplete postopek in poveča izdelovalne stroške.The doctrine of US patent A-3 901 675 avoids this disadvantage by cooling the fibers by supplying a coolant before the binder. This prevents premature polymerisation of the binder as well as the risk of the volatile binder entering the atmosphere. The additional use of refrigerant can complicate the process and increase manufacturing costs.

Druge pomanjkljivosti, ki se nanašajo predvsem na ta postopek atomiziranja, zadevajo pramene in šope vlaken, ki se tvorijo, ko se vlakna zrastejo v turbulentnih tokovih nad izdelovalnim prenašalnikom. Dejansko se lahko vidi, da se vezivno sredstvo pogosto bodisi ne more odložiti na vlakna, ki tvorijo takšne pramene, ali pa bo prišlo do prekomernega odlaganja, to se pravi prevelika količina vezivnega sredstva se odloži na pramene. V vsakem primeru rezultat vnašanja vezivnega sredstva torej ni zadovoljiv.Other disadvantages that relate primarily to this atomization process concern the strands and tufts of fibers that form as the fibers grow in turbulent flows over the fabrication carrier. In fact, it can be seen that the binder is often either unable to be deposited on the fibers forming such strands or there will be excessive deposition, i.e., too much binder is deposited on the strands. In any case, the result of inserting the binder is therefore not satisfactory.

Patentni spis US-A-2 936 479 razkriva drugačen način vnašanja vezivnega sredstva, pri čemer se ga neprekinjeno vnaša med vlakna v praškasti obliki, preden se odložijo na izdelovalni prenašalnik. Rezultati, ki se jih dobi s tem postopkom so manj ugodni, kar zadeva homogenost, in kažejo iste pomanjkljivosti kot zgoraj navedeni postopki.US-A-2 936 479 discloses a different method of inserting a binder by continuously inserting it between the powdered fibers before being deposited on a manufacturing carrier. The results obtained by this process are less favorable in terms of homogeneity and exhibit the same disadvantages as the above procedures.

Zgoraj navedeni postopki pa po drugi strani vključujejo izgube snovi, npr. vezivnega sredstva, zaradi nepopolnega odlaganja na vlakna. V primeru vezivnega sredstva znaša izguba do 20% atomiziranega vezivnega sredstva. To predstavlja neposredno ekonomsko pomanjkljivost zaradi izgube snovi.The above processes, on the other hand, involve loss of substance, e.g. binder due to incomplete deposition on the fibers. In the case of a binder, the loss is up to 20% of the atomized binder. This represents a direct economic disadvantage from the loss of the substance.

Razen tega se vezivno sredstvo, ki se ni oprijelo vlaken, odstrani skozi preluknjan izdelovalni prenašalnik in je zato vsebovano v izdelovalnem izpušnem plinu. Filtrski sistemi, ki so tako potrebni, da bi se izognilo oddajanju snovi v okolico, zahtevajo dodaten izdatek. V praksi znaša količina izdelovalnega izpušnega plina, ki gaje treba očistiti, okoli 50 000 m3/h na en centrifugirni stroj, tako da ima povečano onesnaževanje za posledico znatne dodatne stroške.In addition, the non-fiber bonding agent is removed through a punctured production carrier and is therefore contained in the manufacturing exhaust gas. The filter systems, which are so necessary to avoid the emission of substances into the environment, require additional expenditure. In practice, the amount of production exhaust gas that needs to be cleaned is about 50,000 m 3 / h per single spinner, resulting in increased pollution resulting in significant additional costs.

V primeru vlečenja vlaken s pomočjo postopkov zunanjega vlečenja pa se vezivno sredstvo pravtako na splošno dodaja z atomiziranjem.However, in the case of fiber drawing by means of external drawing procedures, the binder is also generally added by atomization.

EP-0 059 152 opisuje takšen postopek, po katerem se vezivno sredstvo dodaja vlaknom, preden dospejo do izdelovalnega prenašalnika. V ta namen se vezivno sredstvo meče na vlakna s pomočjo centrifugiranja. Problem, ki se ga tukaj sreča, je v bistvu identičen s problemom, ki se pojavlja pri postopkih notranjega centrifugiranja.EP-0 059 152 describes such a process by which a binder is added to the fibers before they reach the manufacturing carrier. For this purpose, the binder is bonded to the fibers by centrifugation. The problem encountered here is essentially identical to the problem encountered in internal centrifugation processes.

Predvsem so tudi tukaj neizogibne znatne izgube vezivnega sredstva.Above all, significant losses of the binder are inevitable here as well.

Naloga izuma je, da zagotovi postopek in pripravo, s katerima se snov, npr. vezivno sredstvo, lahko odloži na vlakneni material dovolj homogeno, pri čemer se zmanjša nevarnost, da se izgubi del sredstva.It is an object of the invention to provide a process and preparation by which a substance, e.g. the binder may deposit sufficiently homogeneously on the fibrous material, reducing the risk of loss of part of the agent.

Izraženo s procesno tehnologijo, je ta naloga rešena v skladu z izumom s pomočjo označujočih značilnosti patentnega zahtevka 1 oziroma 3.Expressed by process technology, this task is accomplished according to the invention by means of the characterizing features of claims 1 and 3.

Postopek po izumu za odlaganje snovi ali mešanice snovi na vlakneno blazino, predvsem na material iz mineralnih vlaken omogoča, da lahko snov prodre skozi vlaknen material ali pa da se ga prenese skozi vlaknen material, ko je v plinski obliki, in da se hkrati snov odloži na vlaknih znotraj vlaknenega materiala na zelo homogeno porazdeljen in zelo dobro nadzorovan način s pomočjo kondenziranja.The process of the invention for depositing a substance or mixture of substances on a fibrous cushion, in particular on a mineral fiber material, enables the substance to penetrate through the fibrous material or to pass through the fibrous material when in the gas form and simultaneously to dispose of the substance on fibers within the fibrous material in a very homogeneously distributed and very well controlled manner by condensation.

Zaradi vnašanja snovi v vlakneni material, ko je v plinasti obliki, je zagotovljena enakomerna porazdelitev znotraj vlaknenega materiala. Kondenziranje iz te enakomerne porazdelitve plinaste snovi poteka na mestih, kjer so prisotna vlakna, tako da se zagotovi kar se da veliko homogenost vsedanja zaradi kondenziranja.The introduction of the substance into the fibrous material when in gaseous form ensures an even distribution within the fibrous material. Condensation from this uniform distribution of the gaseous substance takes place in the places where the fibers are present, so as to ensure as much homogeneity as possible for the sake of condensation.

Če se snovi ali ustreznega njenega predhodnega proizvoda, ki se pretvori v to snov, ne zagotavlja skupaj z velikimi količinami izpušnega plina, s katerim je treba razpolagati, ponovno pridobivanje snovi ali njenega predhodnega materiala, kolikor se ni odložilo na vlakna, ne predstavlja nikakršnih problemov. V najpreprostejšem primeru se lahko snov, ki uhaja iz vlaknenega materiala, ponovno usmeri k dodajanju snovi v kondenziranem stanju in sejo lahko ponovno pretvori v plinasto fazo skupaj z njo. Na ta način se lahko v celoti odpravi izgube ali odpadke snovi.If the substance or its corresponding precursor product which is converted to this substance is not provided together with the large quantities of exhaust gas to be disposed of, recovery of the substance or its precursor, insofar as it is not deposited on the fibers, does not present any problems . In the simplest case, a substance that escapes from a fibrous material can be re-directed to the addition of the substance in the condensed state and can again be converted to the gaseous phase along with it. In this way the loss or waste of the substance can be completely eliminated.

Do kondenziranja na vlaknenem materialu pride zaradi tega, ker vlakna, ki so sorazmerno hladnejša od snovi, odvzamejo dovolj toplote pari v okolici zadevnih vlaken, da se sproži izločanje v skladu z zakoni kondenzacije. Toplota, ki se sprosti med kondenziranjem pa greje v vlakna. Zato se temperaturna razlika, ki je na razpolago za kondenziranje neprestano zmanjšuje, zaradi česar se lahko dobi vse manj kondenzata iz parnega toka, dokler se postopek kondenzacije ne zaustavi, ko ni več prisotna določena najmanjša temperaturna razlika. Tako temperaturna razlika med plinasto snovjo na eni strani in vlaknenim materialom na drugi strani določa količino kondenzata, ki se lahko izloči v določeni prostornini določenega vlaknenega materiala.Condensation on the fibrous material is due to the fact that the fibers, which are relatively cooler than the substance, absorb enough heat from the vapors around the fibers concerned to initiate separation in accordance with the laws of condensation. The heat released during condensation is heated by the fibers. Therefore, the temperature difference available for condensation decreases continuously, resulting in less and less condensation being obtained from the steam stream until the condensation process is stopped when a certain minimum temperature difference is no longer present. Thus, the temperature difference between a gaseous substance on the one hand and a fibrous material on the other determines the amount of condensate that can be discharged within a given volume of a given fibrous material.

Če je snov, ki jo je treba vnašati, vezivno sredstvo, je njegova naloga, da medsebojno povezuje ali spenja vlakna, ki se križajo v svojih točkah presečišča ali dotika, medtem ko vlakna po dolžini med takšnimi točkami dotika lahko ostanejo brez vezivnega sredstva. V takšnem primeru je torej posebno pomembno, da se uporablja vezivno sredstvo, ki ne omoči vlaknenega materiala in torej tvori na njegovi površini kapljice, in da se vezivno sredstvo prednostno odloži na točkah dotika med vlakni.If the substance to be introduced is a binder, it is its job to interconnect or staple the fibers that intersect at their points of intersection or contact, while the fibers may remain without the binder at length between such points of contact. In such a case, it is therefore particularly important to use a binder that does not wet the fibrous material and thus form a droplet on its surface, and that the binder is preferably deposited at points of contact between the fibers.

Ta cilj je predvsem dobro dosežen s predloženim izumom. Točke dotika med vlakni oblikujejo materialne aglomeracije, ki imajo povečano razmerje med maso in površino in zato sledijo temperaturnemu dvigu vlaknenega materiala, ki ga povzroči kondenzacija, z nekaj zamika. Zato se zdi, da so točke dotika prednostna mesta za kondenziranje, kjer v danem primeru pride do željenega nakopičenja vezivnega sredstva.This object is, in particular, well achieved by the present invention. The points of contact between the fibers form material agglomerations that have an increased mass-to-surface ratio and therefore follow the temperature rise of the fiber material caused by condensation with some delay. Therefore, the touch points appear to be the preferred condensation points where the desired buildup of the binder occurs in the given case.

Zdi se, da je ta postopek nadalje podprt z dejstvom, da so presečišča oziroma odseki tesnega približanja dveh vlaken prednostne lege za kapljice vezivnega sredstva, torej s stališča zmanjševanja površinske napetosti po dotiku med obema površinama vlaken. Zdi se, da je prav iz tega razloga samodejno nameščanje kapljic vezivnega sredstva na presečiščih med vlakni, ki se drugo drugemu približujejo ali se medsebojno dotikajo, v prednosti.This process seems to be further supported by the fact that the intersections or sections of close approximation of the two fibers are the preferred positions for the binder droplets, ie from the point of view of reducing the surface tension after contact between the two fiber surfaces. It is for this reason that the automatic placement of binder droplets at intersections between fibers approaching or in contact with each other appears to be advantageous.

Ko se vnaša druge snovi, npr. snovi za zaščito vlaken, pa je nasprotno lahko priporočljivo uporabiti snovi za omočevanje vlaknenega materiala, ki se kondenzira in tvori film, ki obdaja vlakna, in s tem tudi omoči predele med presečišči.When other substances are introduced, e.g. however, it may be advisable to use a substance for wetting the fibrous material, which condenses to form a film surrounding the fibers, thereby wetting the areas between the intersections.

Namesto da bi se odložila kar para snovi, npr. vezivnega sredstva, se lahko uporabi predhoden material, če je to priporočljivo iz razlogov vodenja postopka, ali pa neizogibno v primeru, ko snov sama ni primerna za transformiranje v primerno uparjeno stanje.Instead of dumping as much substance as possible, e.g. of the binder, the precursor material may be used, if this is advisable for the reasons of conducting the process, or inevitably when the substance itself is not suitable for transformation to a suitably evaporated state.

Postopek se lahko primerno izvaja tako, da se prednostno del snovi vsede na vlaknih vlaknenega materiala s pomočjo kondenzacije. Torej lahko zadostna količina preostale snovi ostane v toku pare in sejo lahko ponovno uvede v postopek, potem ko je odtekla, da se zagotovi dober nadzor ali regulacijo postopka.The process can be conveniently carried out by preferentially placing a portion of the substance on the fibers of the fibrous material by condensation. Therefore, a sufficient amount of residual substance may remain in the steam stream and may be reintroduced to the process after it has drained to ensure good control or regulation of the process.

Če je plinasta snov pri temperaturi nad temperaturo svojega rosišča, mora priti do temperaturnega padca do temperature rosišča, preden se lahko začne kondenzacija.If the gaseous substance is at a temperature above its dew point, it must experience a temperature drop to the dew point before condensation can begin.

V takšnem primeru kondenzacija torej ni možna neposredno po vstopu v vlakneni material. Ko se je plinasta snov ohladila in so se vlakna, ki so nameščena na vhodni strani vlaknenega materiala zato segrela, tam prav tako ni možna kondenzacija zaradi pomanjkanja temperaturne razlike glede na vlakna. Če je torej snov pri temperaturi nad temperaturo rosišča, je kondenzacija znotraj vlaknenega materiala možna le na neki razdalji od vstopne površine, tako da se snov ne more odlagati v področju, ki leži ob vstopni površini. V kolikor do kondenzacije pride navzdolnje glede na vstopno površino, obstoji nevarnost, da se odloženo snov ponovno odstrani s sledečim sušenjem, ker je temperatura pritekajočega plina nad temperaturo rosišča in torej nad temperaturo izparevanja snovi.In such a case, condensation is therefore not possible immediately after entering the fibrous material. When the gaseous substance has cooled and the fibers located on the inlet side of the fibrous material have therefore warmed, there is also no possibility of condensation due to the lack of temperature difference with respect to the fibers. Therefore, if the substance is at a temperature above the dew point, condensation inside the fibrous material is only possible at some distance from the inlet surface so that the substance cannot be deposited in the area adjacent to the inlet surface. If condensation occurs downstream of the inlet surface, there is a risk that the deposited substance is removed again by subsequent drying, because the flowing gas temperature is above the dew point and therefore above the evaporation temperature of the substance.

V skladu s patentnim zahtevkom 2 je torej prednostno, da po enokomponentni in mnogofazni termodinamiki temperatura plinaste zmesi ne preseže temperature vrelišča oziroma rosišča snovi, ko se jo dovede v dotik z vlakni, to se pravi, da temperatura plinaste snovi ne preseže izoterme, ki pripada obstoječemu tlaku med vreliščem in rosiščem znotraj dvofaznega področja, pri čemer je prednostno skoraj 100% snovi sprva prisotnih v dvofaznem področju v obliki pare in temperatura vlaknenega materiala v vsakem trenutku leži pod temperaturo pare snovi. Tako se zagotovi, da pride do kondenziranja na vlaknih že po prvem dotiku po vstopu v vlakneni material, ne da bi se predhodno moralo izvesti ohladitev plinaste snovi do temperature njenega rosišča.According to claim 2, therefore, it is advantageous, according to one-component and multiphase thermodynamics, that the temperature of the gaseous mixture does not exceed the boiling point or dew point of the substance when brought into contact with the fibers, that is, the temperature of the gaseous substance does not exceed the isotherm belonging to it. the existing pressure between the boiling point and the dew point within the two-phase region, with almost 100% of the substance initially present in the two-phase region in the form of vapor, and the temperature of the fibrous material at all times lying below the vapor temperature of the substance. This ensures that condensation occurs on the fibers from the first contact after entering the fiber material without first having to cool the gaseous substance to its dew point temperature.

Majhno znižanje temperature pare snovi, kije ob času vstopa pri temperaturi rosišča, pod to temperaturo rosišča med pretakanjem skozi vlakneni material (po možnosti povzročeno z majhnim zmanjšanjem tlaka zaradi učinka dušenja vlaken) ne povzroča kakršnihkoli težav, dokler temperatura vlaknenega materiala ostane pod tisto temperaturo pare snovi, ki prevladuje na pravkar doseženem mestu.A small decrease in the vapor temperature of a substance which at the time of entry at dew point below this dew point during flow through the fibrous material (preferably caused by a small decrease in pressure due to the effect of the damping of the fibers) does not cause any problems as long as the temperature of the fibrous material remains below that vapor temperature a substance that dominates the site just reached.

Če se v skladu s patentnim zahtevkom 3 uporablja mnogokomponentno plinsko mešanico z namenom, da se uvede plinasto snov (kar je v nadaljnjem vedno treba razumeti, da obsega možno predhodno snov in/ali mešanico več posameznih snovi), lahko to povzroči prednosti v pogledu vodenja postopka. Vzdrževanje določenega toka je npr. lažje in varnejše kljub zmanjševanju prostornine ob hkratnem kondenziranju, če se uporablja transportni plin, ki ostane nespremenjen ob postopkih kondenzacija, če gre za inerten plin. Enakomerna porazdelitev kondenzata v večji razdalji od vstopne površine je torej olajšana s tokom inertnega plina.If a multicomponent gas mixture is used in accordance with claim 3 in order to introduce a gaseous substance (which should always be understood to include a possible precursor and / or a mixture of several individual substances), this may lead to management advantages procedure. Maintaining a certain flow is e.g. easier and safer despite volume reduction with simultaneous condensation if a transport gas is used which remains unchanged during the condensation process in the case of inert gas. The even distribution of the condensate over a greater distance from the inlet surface is thus facilitated by the flow of inert gas.

Če je večkomponentna plinska mešanica pri temperaturi nad temperaturo svojega rosišča za prevladujoč tlak in koncentracijo, potem mora priti do padca temperature do temperature rosišča preden kondenzacija postane možna. V takšnem primeru torej kondenzacija ni možna neposredno po vstopu v vlakneni material. Da se zniža temperaturo plinske mešanice do ustrezne temperature rosišča, je treba plinski mešanici odvzeti toploto. To je možno le. če obstoji temperaturna razlika do hladnejših vlaken, pomeni pa, da se vlakna, ki so nameščena na vhodni strani vlaknenega materiala, segrejejo do temperature plinske mešanice. Kondenzacija torej ne bo možna na tistem mestu zaradi odsotnosti temperaturne razlike glede na vlakna in zaradi odsotnosti komponent, ki imajo temperaturo pod temperaturo rosišča. Sledi, da je v primeru temperature v plinski mešanici nad temperaturo rosišča kondenzacija znotraj vlaknenega materiala možna le v razdalji od vstopne površine plina, kije takšna, da se snov ne more odložiti λ' področju, ki leži ob vstopni površini. V kolikor do kondenzacije pride navzdolnje glede na vstopno površino, obstoji nevarnost, da se odložena snov ponovno odstrani ob sledečem sušenju, ker je temperatura vtekajoče mnogokomponentne plinske mešanice nad temperaturo rosišča in s tem nad temperaturo snovi.If the multicomponent gas mixture is at a temperature above its dew point for the prevailing pressure and concentration, then the dew point must reach a dew point before condensation becomes possible. In such a case, therefore, no condensation is possible immediately after entering the fibrous material. In order to reduce the temperature of the gas mixture to the appropriate dew point, the gas mixture must be removed from heat. This is only possible. if there is a temperature difference to the colder fibers, it means that the fibers, which are located on the inlet side of the fiber material, are heated to the temperature of the gas mixture. Therefore, condensation will not be possible at that location due to the absence of a temperature difference with respect to the fibers and the absence of components having a temperature below the dew point. It follows that in the case of a temperature in the gas mixture above the dew point, condensation within the fibrous material is possible only at a distance from the inlet surface of the gas, such that the substance cannot be deposited in the λ 'region adjacent to the inlet surface. If condensation occurs downstream of the inlet surface, there is a risk that the deposited substance will be removed again on subsequent drying, because the temperature of the flowing multicomponent gas mixture is above the dew point temperature and therefore above the substance temperature.

V skladu s patentnim zahtevkom 4 je torej prednostno, da v skladu z mnogokomponentno in mnogofazno termodinamiko temperatura mnogokomponentne plinske mešanice ne preseže začetne temperature rosišča mnogokomponentne mešanice in s tlakom, kakršen je po začetnem vstopu v vlakeni material.According to claim 4, it is therefore advantageous that, in accordance with multicomponent and multiphase thermodynamics, the temperature of the multicomponent gas mixture does not exceed the initial dew point of the multicomponent mixture and with a pressure such as after initial entry into the fiber material.

V vsakem primeru mora temperatura vlaknega materiala ostati pod temperaturo rosišča, ki ustreza sestavi večkomponentne plinske mešanice po izstopu iz vlakenega materiala.In any case, the temperature of the fiber material must remain below the dew point corresponding to the composition of the multicomponent gas mixture after leaving the fiber material.

Na posebno prednosten način je temperatura mnogokomponentne plinske mešanice po patentnem zahtevku 5 zelo blizu začetne temperature rosišča mnogokomponentne mešanice. S tem je možno, da transporten plin v vlakneni material vnese veliko količino snovi, saj je velika količina snovi topljiva v transportnem plinu v bližini začetne temperature rosišča. Razen tega to daje največjo temperaturno razliko med temperaturo vlaknenega materiala in temperaturo mnogokomponentne plinske mešanice brez pregrevanja le-te in s tem največjo količino snovi, ki sejo lahko odloži.In a particularly preferred manner, the temperature of the multicomponent gas mixture according to claim 5 is very close to the initial dew point of the multicomponent mixture. This makes it possible for the transport gas to inject a large amount of matter into the fibrous material, since a large amount of the substance is soluble in the transport gas near the initial dew point temperature. In addition, this gives the largest temperature difference between the temperature of the fiber material and the temperature of the multicomponent gas mixture without overheating it, and thus the maximum amount of substances that can be deposited.

V skladu s patentnim zahtevkom 6 je transporten plin nasičen s paro snovi in tako vsebuje največjo možno količino snovi v plinasti obliki pri dani temperaturi ali kon8 centraciji.According to claim 6, the transport gas is saturated with the vapor of the substance and thus contains the maximum amount of the substance in gaseous form at a given temperature or concentration.

Po patentnem zahtevku 7 je transporten plin na prav posebno prednosten način zrak. Ker se lahko na zrak gleda kot na inerten plin, saj ne bo pri pogojih, ki nastopajo, kondenziral, je uporaba zraka kot transportnega plina poceni in zelo znatno poenostavlja vodenje postopka.According to claim 7, the transport gas is in a particularly preferred way air. Since air can be regarded as an inert gas, since it will not condense under the conditions that occur, the use of air as a transport gas is inexpensive and greatly simplifies the operation of the process.

V skladu s patentnim zahtevkom 8 se tok plinaste snovi ali mnogokomponentne plinske mešanice doseže s prisilnim obtokom ali tokom. Na ta način se v nasprotju z naravno, toplotno induciranim tokom, ki običajno predstavlja hitrosti pretakanja okoli 1 mm/s, lahko doseže in vzdržuje dobro določene in ponovljive značilnosti toka. Po potrebi se lahko razen tega uporablja višje hitrosti od 0,3 do 0,5 m/s brez težav, prednostno pa ne preko 1 m/s.According to claim 8, the flow of a gaseous substance or a multi-component gas mixture is achieved by forced circulation or flow. In this way, in contrast to the natural, heat-induced current, which typically represents flow rates of about 1 mm / s, the well-defined and reproducible flow characteristics can be achieved and maintained. In addition, higher speeds of 0.3 to 0.5 m / s can be used, if necessary, without difficulty, preferably not exceeding 1 m / s.

Po patentnem zahtevku 9 je uporabljeni predhodni material monomer, ki se polimerizira med odlaganjem ali po odlaganju v vlaknenem materialu. To je prednostno predvsem v primeru, ko se uporablja snov kot vezivno sredstvo, saj je vezivno sredstvo praviloma organska spojina z visoko molekularno maso, ki se je ne da pretvoriti v uporabno plinasto fazo. Na ta način je tako na razpolago uporaba izuma za odlaganje vezivnega sredstva s pomočjo postopka po izumu, čeprav samo vezivno sredstvo ni primerno za obdelavo s postopkom po izumu.According to claim 9, the precursor material used is a monomer that polymerizes during deposition or after deposition in a fibrous material. This is particularly advantageous when the substance is used as a binder, since the binder is generally an organic compound of high molecular weight that cannot be converted into a usable gaseous phase. In this way, the use of the invention is therefore available for depositing a binding agent by the method of the invention, although the binding agent alone is not suitable for treatment by the method of the invention.

Po patentnem zahtevku 10 se odlaganje snovi izvaja v vlaknenem materialu, medtem ko je le-ta še na izdelovalnem prenašalniku. To pomeni, da je treba vnašanje plina izvesti na vlaknenem materialu, ki se je premaknil za položaj obdelave, in preden se doseže sušenje, npr. v sušilni peči. Tukaj je treba paziti, da se uskladi dolžino obdelovalnega področja s hitrostjo gibanja vlaknenega materiala in hitrost plina tako, da lahko pride skozi celotno višino ali debelino vlaknenega materiala, pri čemer se kondenzat tvori, preden vlakneni material zapusti področje obdelovanja, kjer je izpostavljen plinskemu toku. Kjer nezadostne hitrosti izdelovanja izhajajo iz nizkih hitrosti plina in/ali velikih debelin izdelka, se lahko to izravna, s tem da se podaljša dolžino obdelovalnega področja.According to claim 10, the deposition of the substance is carried out in the fibrous material while it is still on the production carrier. This means that gas intake must be carried out on the fibrous material that has moved to the treatment position and before drying, e.g. in a drying oven. Care should be taken here to match the length of the machining area to the velocity of the fibrous material and the velocity of the gas so that it can pass through the entire height or thickness of the fibrous material, with condensate forming before the fibrous material leaves the treatment area where it is exposed to the gas stream . Where insufficient manufacturing speeds result from low gas velocities and / or high product thicknesses, this can be offset by extending the length of the machining area.

Material iz mineralne volne, kije namenjen za izdelovanje oblikovanih izdelkov, kot so odseki cevi, se prav tako lahko obdela na izdelovalnem prenašalniku na ta način, mora pa željena oblika biti podeljena, preden se suši vezivno sredstvo, kar praviloma ni možno na izdelovalnem prenašalniku. V mnogo primerih se neprekinjen iz9 delovalni postopek izdelovanja oblikovanih izdelkov zato prekine pred sušilno pečjo; volneni material se transportira k drugi pripravi za izdelovanje oblikovanih izdelkov in se ga tam ustrezno obdela. To se lahko izvede s surovino, ki je že opremljena z vezivnim sredstvom, celo v primeru dolgih časovnih razdobij pred sušenjem.Mineral wool material intended for the manufacture of molded products such as pipe sections can also be treated on a production conveyor in this manner, but the desired form must be given before the binder dries, which is generally not possible on a production carrier. In many cases, the continuous process of manufacturing molded products is therefore interrupted before the drying oven; the woolen material is transported to another preparation for the manufacture of molded articles and treated accordingly. This can be done with a raw material already equipped with a binder, even in the case of long periods before drying.

V takšnem primeru pa je prednostno, da se po patentnem zahtevku 11 surovi material prenese do priprave za nadaljnje obdelovanje brez vezivnega sredstva, in da se mu šele tam doda vezivno sredstvo. To se lahko izvede v skladu z izumom, s tem da se dele surovega materiala, ki so namenjeni za izdelovanje oblikovanih izdelkov, izpostavi, medtem ko mirujejo, plinskemu toku snovi, ki kondenzira. Po drugi strani to predstavlja prednost nizkih temperatur vlaken, ki prevladujejo zaradi dolgega zamika po izdelavi vlaken, tako da lahko nizka temperatura vlakna in s tem velika temperaturna razlika glede na temperaturo plina nastane brez dodatnega izdatka. Po drugi strani prihaja do prednosti zaradi lažjega vodenja postopka toka skozi vlakneni material, ko le-ta miruje. Če je potrebno, se lahko zato na ta način vnese veliko količino snovi v vlakneni material, kije namenjen izdelovanju oblikovanih izdelkov.In such a case, however, it is preferable to transfer the raw material to the preparation for further treatment without a binder according to claim 11, and to add a binder there only. This can be carried out in accordance with the invention by exposing, while stationary, portions of the raw material intended for the manufacture of the molded articles, while stationary, to the gas stream of the condensing substance. On the other hand, this represents the advantage of low fiber temperatures, which prevail due to the long delay after fiber production, so that the low fiber temperature and thus the large temperature difference with respect to the gas temperature can occur without additional expense. On the other hand, there is an advantage in facilitating the flow of the material through the fibrous material when it is stationary. If necessary, a large amount of the substance may thus be introduced into the fibrous material intended for the manufacture of molded articles.

V skladu s patentnim zahtevkom 12 je lahko prednostno, da se obrne smer toka, ki vstopa v vlakneni material, če je le možno, ponovljivo. S tem se lahko obe veliki površini vlaknenega materiala izpostavi sveži pari in se tako omoči hitro in intenzivno s pomočjo kondenzacije. Nasprotno toku le v eno smer, s čimer v začetku zelo močno zmanjšane količine pare ali znatno osiromašena plinska mešanica dosežejo področje nasprotne površine vlaknenega materiala, dokler segrevanje navzgornjega vlaknenega materiala ne zmanjša kondenziranja, se lahko doseže nadalje izboljšano homogenizacijo odlaganja snovi po višini ali debelini vlaknenega materiala na ta način, kadarkoli je potrebno. Razen tega se lahko doseže pospešeno pronicanje, s tem da plinaste snovi, t.j. pare, ni treba voditi po vsej višini ali debelini vlaknenega materiala od ene strani, da bi odložil snov tudi v področju nasprotne površine, temveč lahko zadoščata sorazmerno kratka sunka pare iz obeh strani. To je predvsem res, če je treba snov, ki se mora odložiti, v skladu z njenimi značilnostmi koncentrirati predvsem na oziroma blizu velikih površin, medtem ko se ista njena koncentracija ne zahteva v središču vlaknenega materiala.According to claim 12, it may be advantageous to reverse the direction of flow entering the fibrous material, if possible, to be reproducible. This allows both large surfaces of the fibrous material to be exposed to fresh steam and thus wetted quickly and intensively by condensation. Contrary to the flow in only one direction, which in the beginning greatly reduces the amount of steam or the significantly depleted gas mixture to reach the area of the opposite surface of the fibrous material, until the heating of the upward fibrous material decreases condensation, further improved homogenization of deposition of the substance by the height or thickness of the fibrous material can be achieved. material in this way whenever necessary. In addition, accelerated seepage can be achieved by gaseous substances, i.e. steam does not need to be guided over the entire height or thickness of the fibrous material from one side to deposit the substance even in the region of the opposite surface, but relatively short gusts of steam from both sides may be sufficient. This is especially true if the substance to be deposited, in accordance with its characteristics, has to be concentrated mainly on or near large surfaces, while the same concentration is not required at the center of the fibrous material.

V skladu s patentnim zahtevkom 13 se dodatno obdelavo zagotovi med vsaj posameznimi izmed teh obratov. S tem se material, ki se je med kondenziranjem snovi nujno segreval, lahko prednostno ponovno ohladi, da se vzdržuje največjo možno temperaturno razliko med paro snovi ali mnogokomponentno plinsko mešanico in vlaknenim materialom.According to claim 13, additional processing is provided between at least some of these plants. In this way, the material which was necessarily heated during condensation of the substance can preferably be re-cooled to maintain the maximum possible temperature difference between the vapor of the substance or the multicomponent gas mixture and the fibrous material.

Izraženo s tehnologijo priprave se ta cilj doseže z značilnostmi patentnega zahtevka 14.Expressed in the preparation technology, this objective is achieved by the features of claim 14.

Potem se binarno mešanico zrak/snov tvori v prenasičenem pogoju v prvi pripravi, pri čemer se nato to mešanico usmeri proti vlaknenemu materialu in uvede v drugo pripravo.The binary air / substance mixture is then formed in a supersaturated condition in the first preparation, then directed to the fiber material and introduced into the second preparation.

Podzahtevki 15 do 19 se nanašajo na prednostne izboljšave priprave po izumu.Sub-claims 15 to 19 relate to preferred improvements to the preparation according to the invention.

Nadaljnje podrobnosti, značilnosti in prednosti izuma so navedene v nadaljnji razlagi izvedbenega primera, sklicujoč se na risbo, na kateri prikazuje:Further details, features and advantages of the invention are set forth in a further explanation of an embodiment, with reference to the drawing showing:

sl. 1 shematsko poenostavljeno predstavitev naprave, ki ponazarja potek postopka pri pripravi mnogokomponentne plinske mešanice in njeno vnašanje v vlakneni material z ene njegove strani in pri ponovnem pridobivanju snovi navzdolnje glede na vlakneni material;FIG. 1 is a schematic simplified representation of an apparatus illustrating the process of preparing a multi-component gas mixture and introducing it into the fibrous material on one side thereof and in recovering the substance downstream of the fibrous material;

sl. 2 v predstavitvi, podobni sl. 1, vnašanje mnogokomponentne plinske mešanice v vlakneni material z obeh strani kot tudi ponovno pridobivanje snovi z obeh strani navzdolnje glede na vlakneni material;FIG. 2 in a representation similar to FIG. 1, introducing the multicomponent gas mixture into the fibrous material on both sides as well as recovering the substance from both sides downstream of the fibrous material;

sl. 3 v predstavitvi, podobni sl. 1 in 2, napravo, ki obsega dodatno izdelovalno pripravo med dvema obdelovalnima postajama;FIG. 3 in a representation similar to FIG. 1 and 2, an apparatus comprising an additional fabrication device between two machining stations;

sl. 4 Pv-diagram, ki prikazuje PvT-obnašanje čiste snovi; in sl. 5 ravnovesen fazni diagram, ki opisuje Tx(y) obnašanje dvokomponentne dvofazne mešanice.FIG. 4 Pv diagram showing the PvT behavior of a pure substance; and FIG. 5 is a balanced phase diagram describing the Tx (y) behavior of a two-component two-phase mixture.

V primeru, ki je prikazan na sl. 1 do 3, je treba vezivno sredstvo v obliki monomera kot predhodnega materiala vnesti v mineralni vlakneni material in kondenzirati na vlaknih vlaknenega materiala.In the example shown in FIG. 1 to 3, the binder in the form of monomer as a precursor material should be introduced into the mineral fiber material and condensed on the fibers of the fiber material.

Posoda 1 ima spodnji predel la, ki obsega tekoči monomer 2, ki s pomočjo črpalke 3, ki je nameščena navzdolnje glede na posodo 1, prehaja skozi sledeči toplotni iz11 menjevalnik 4.The container 1 has a lower compartment comprising a liquid monomer 2 which passes through the following heat exchanger 4 through a pump 3 positioned downstream of the container 1.

Toplotni izmenjevalnik 4 je opremljen z vstopom 5 na svojem navzdolnjem koncu v smislu toka monomera 2 in na svojem navzgornjem koncu z izstopom 6 za tekočino 7 za zamenjevo toplote, ki prihaja iz parnega kotla 7a, ali pa jo segreva segrevalna priprava 7a.The heat exchanger 4 is provided with an inlet 5 at its lower end in terms of the monomer current 2 and at its upper end with an outlet 6 for fluid 7 to replace the heat coming from the steam boiler 7a or heated by the heating device 7a.

Navzdolnje glede na toplotni izmenjevalnik 4, gledano v smislu toka monomera 2, je predviden Venturijev sesalnik 8, katerega izstopno področje 8a se odpira v vod 9, ki vodi do zgornjega predela lb posode 1. Nadalje se sesalni vod 10 za sesanje zraka 11 odpira proti izstopnemu področju 8a Venturijevega sesalnika 8 v točki najnižjega tlaka in s tem najmočnejšega sesalnega učinka.Downstream of the heat exchanger 4, in terms of the monomer current 2, a venturi vacuum cleaner 8 is provided, whose outlet area 8a opens into a conduit 9 leading to the upper portion lb of the container 1. Further, the suction duct 10 for suction of air 11 opens toward the outlet area 8a of the Venturi vacuum cleaner 8 at the lowest pressure point and thus the strongest suction effect.

Posoda 1, črpalka 3, toplotni izmenjevalnik 4, Venturijev sesalnik 8 in vod 9 tvorijo prvi tokokrog A’ za monomer 2.Container 1, pump 3, heat exchanger 4, Venturi vacuum cleaner 8 and conduit 9 form the first circuit A 'for monomer 2.

Separator 12 je nameščen na zgornjem izstopu 13 iz posode 1, kjer plinska mešanica 14 zapušča posodo 1. Plinska mešanica 14 je zrak 11, kije nasičen s paro monomera.The separator 12 is located at the upper outlet 13 of the vessel 1, where the gas mixture 14 leaves the vessel 1. The gas mixture 14 is air 11 saturated with the monomer vapor.

Navzdolnje glede na separator 12 se zgornji izstop 13 posode 1 odpira v vod 15, ki prevaja plinsko mešanico 14 do obdelovalne ostaje 16 za vlakneni material 17 s hitrostjo, kije določena s črpalko 3 za obtok monomera.Downstream of the separator 12, the upper outlet 13 of the container 1 opens into the conduit 15, which conveys the gas mixture 14 to the workpiece 16 for the fiber material 17 at a rate determined by the pump 3 for the monomer circulation.

Obdelovalna postaja 16 v bistvu obstoji iz vstopa 18 za plinsko mešanico 14, ki se jo dovaja po vodu 15, nosilnega ogrodja 19 za vlakneni material 17 in odsesovalne nape 20, ki je opremljena z zunanjo toplotno izolacijo 21. Nosilno ogrodje 19 obsega nosilno površino 19a, na kateri počiva vlakneni material 17 in po kateri se lahko pretaka plinska mešanica 14, in za plin neprepustno površino 19b, ki obdaja podporno površino 19a, da se prepreči obvodni tok plina z obvajanjem vlaknenega materiala.The treatment station 16 essentially consists of an inlet 18 for the gas mixture 14 supplied through the conduit 15, a support frame 19 for fibrous material 17, and a suction hood 20 provided with external thermal insulation 21. The support frame 19 comprises a support surface 19a. , on which the fibrous material 17 rests, and through which the gas mixture 14 can flow, and the gas-tight surface 19b surrounding the support surface 19a to prevent the bypass flow of gas by entangling the fibrous material.

Plinska mešanica 14 prehaja skozi vlakneni material 17 zaradi prisilnega toka ali obtoka in po dotiku z vlakni med svojim prehodom s plinskim monomerom 2 kondenzira zaradi temperaturne razlike med plinsko mešanico 14 in vlaknenim materialom 17.The gas mixture 14 passes through the fibrous material 17 due to forced flow or circulation and condenses after its contact with the fibers during its passage with the gas monomer 2 due to the temperature difference between the gas mixture 14 and the fibrous material 17.

Potem ko zapusti vlakneni material 17, se plinska mešanica, ki je osiromašena monomernih par, ponovno pridobi v odsesovalni napi 20 in se jo vodi v posodo 1 preko voda 22. Toplotna izolacija 21 zmanjšuje toplotne izgube v odsesovalni napi 20, da se prepreči kondenziranje plinskega monomera 2 na strani odsesovalne nape 20 in se s tem prepreči tekočemu monomeru 2, da bi kapljal na vlakneni material 17. Prednostno je vod 22 nagnjen navzdol v smislu toka in povezuje odsesovalno napo 20 s sesalnim vodom 10.After leaving the fibrous material 17, the gas mixture, which is depleted of the monomer pairs, is recovered in the suction hood 20 and fed to the vessel 1 via the duct 22. Thermal insulation 21 reduces the heat losses in the suction hood 20 to prevent condensation of the gas. monomer 2 on the side of the suction hood 20, thereby preventing the liquid monomer 2 from dripping onto the fibrous material 17. Preferably, the duct 22 is tilted downward in terms of current and connects the suction hood 20 with the suction line 10.

Navzgornje glede na odprtino voda 22 v sesalni vod 10 je v vodu 10 nameščena dušilna priprava 23. Dušilna priprava 23 omejuje dovod zraka 11 Ventirujevemu sesalniku 8 in s tem pomaga vzdrževati visoko stopnjo vakuuma, kot se želi v sesalnem vodu 10.Upstream of the opening 22 of the suction line 10, a damping device 23 is installed in the duct 10. The damping device 23 restricts the air supply 11 to the Venturi vacuum cleaner 8, thereby helping to maintain the high vacuum as desired in the suction line 10.

Posoda 1, separator 12, vod 15, obdelovalna postaja 16 z vlaknenim materialom 17 na nosilnem ogrodju 19, odsesovalna napa 20, vod 22 in sesalni vod 10 tvorijo drugi tokokrog B’ za plinsko mešanico 14.Container 1, separator 12, conduit 15, machining station 16 with fibrous material 17 on support frame 19, suction hood 20, conduit 22 and suction conduit 10 form the second circuit B 'for the gas mixture 14.

Da se podpre učinek, ki ga izvaja črpalka 3 na plinsko mešanico 14, se lahko po izbiri namesti dodaten ventilator v vod 15 ali vod 22, kot je prikazano na sliki za vod 22.In order to support the effect exerted by the pump 3 on the gas mixture 14, an additional fan can optionally be installed in line 15 or line 22, as shown in the figure for line 22.

Slika 4 prikazuje Pv-diagram, ki ponazarja obnašanje čiste snovi v odvisnosti od tlaka, specifične prostornine in temperature. Specifična prostornina v in tlak P sistema sta nanesena na osi X oziroma na osi Y. Črtkane linije prikazujejo izoterme T in T s točkami A, B, C, D in E stanja, ki so nanesene na eni izmed teh izoterm. V začetku se obravnava izotermno stiskanje plinaste snovi, izhajajoč iz točke A stanja. V točki B se doseže dvofazno področje plina in tekočine pri liniji V rosišča, pri čemer je snov navzoča v tekoči obliki in v obliki pare. Dvofazno področje plina in tekočine se preide pri stalnem tlaku. V točki C se je sistem popolnoma transformiral v tekoče stanje in je dosegel linijo IV vrelišča. Z nadaljnjim izotermnim stiskanjem se dvofazno področje tekočine in trdne snovi, imenovano talilno področje, doseže v točki D na liniji II strdišča. S snovjo, ki je prisotna v tekoči in trdni obliki, se je tudi skozi talilno področje prešlo pri stalnem tlaku, dokler ni sistem končno v celoti pretvorjen v trdno stanje v točki E na liniji I tališča. Linija IV vrelišča in linija V rosenja se srečujeta v kritični točki III, ki je povezana s kritičnim tlakom Pcr, kritično specifično prostornino vcr in s kritično temperaturo Tcr te snovi. Trojna linija VI ločuje dvofazno področje plina in tekočine, kjer je snov prisotna v tekoči obliki in v obliki pare, od dvofaznega področja tekočine in trdnega telesa, kjer je snov prisotna v obliki pare in v obliki trdne snovi.Figure 4 shows a Pv diagram illustrating the behavior of a pure substance as a function of pressure, specific volume and temperature. The specific volume v and pressure P of the system are plotted on either the X axis or the Y axis. The dashed lines show the isotherms T and T with the points A, B, C, D and E of the state applied to one of these isotherms. The isothermal compression of the gaseous substance starting from point A of the state is initially considered. At point B, a two-phase gas and liquid region is reached at line V of the dew point, with the substance present in both liquid and vapor form. The two-phase gas and liquid region is passed at constant pressure. At point C, the system completely transformed into a liquid state and reached the IV boiling point. By further isothermal compression, the two-phase region of fluid and solid, called the melting region, is reached at point D on the solidification line II. With the substance present in liquid and solid form, it also passed through the melting region at constant pressure until the system was finally fully converted to the solid state at point E on the melting line I. Line IV boiling points and line V of dew meet at critical point III, which is related to the critical pressure P cr , the critical specific volume in cr and the critical temperature T cr of this substance. Triple line VI separates the two-phase region of gas and liquid, where the substance is present in liquid and vapor form, from the two-phase region of liquid and solid, where the substance is present in the form of vapor and in the form of a solid.

Če je takšno snov treba vnesti v vlakneni material 17 v obliki pare, mora biti para pri pogojih, ki ustrezajo stanju točke B na sliki 4, to se pravi pri pogojih rosišča. Na ta način se zagotovi, da bo kakršenkoli hladilni učinek na paro dovedel do takojšnjega izločanja kondenzata, pri čemer se izločanje kondenzata nadaljuje, dokler se nadaljuje hlajenje. Izogne se tudi kakršnemukoli učinku ponovnega sušenja, kar bi sicer povzročilo nevarnost, da bi izločeni kondenzat ponovno izparel po dotiku s paro pri temperaturi, kije še vedno nad temperaturo rosišča.If such a substance is to be introduced into the fibrous material 17 in the form of vapor, the vapor must be at conditions corresponding to the state of point B in Figure 4, that is, under dew conditions. This ensures that any cooling effect on the steam will cause the condensate to be released immediately, leaving the condensate to continue as long as cooling continues. It also avoids any effect of re-drying, which would otherwise cause the recovered condensate to evaporate again after contact with steam at a temperature still above dew point.

Slika 5 prikazuje diagram faznega ravnovesja, ki podaja obnašanje Tx(y) dvokomponentne in dvofazne mešanice. Koncentracija x ene izmed snovi in temperatura T mešanice sta nanešeni na osi X oziroma na osi Y. Diagram je razdeljen v tri področja s pomočjo linije VII rosišča in linije VIII vrelišča. V področju nad linijo VII sta pomešani sestavini obe prisotni v obliki pare. V področju med linijo VII rosišča in linijo VIII vrelišča sta sestavini mešanice lahko prisotni posamič ali kot mešanica v obliki pare in tekočine. V področju pod linijo VII vrelišča sta obe pomešani sestavini lahko prisotni v tekoči obliki.Figure 5 shows a phase equilibrium diagram giving the behavior of Tx (y) two-component and two-phase mixtures. The concentration x of one substance and the temperature T of the mixture are plotted on the X axis or on the Y axis respectively. The diagram is divided into three areas by the dew line VII and the boiling line VIII. In the area above line VII, the mixed components are both present in the form of steam. In the area between dew line VII and boiling line VIII, the constituents of the mixture may be present individually or as a vapor-liquid mixture. In the area under Boiling Line VII, both mixed components may be present in liquid form.

Linija VII rosišča v skladu s temperaturo T in koncentracijo x opisuje krivuljo, vzdolž katere plinska mešanica začenja kondenzirati. Linija VIII vrelišča torej v skladu s temperaturo T in koncentracijo x opisuje krivuljo, vzdolž katere tekoča mešanica začenja vreti. Torej če npr. s padcem temperature zaradi odvzema toplote plinska mešanica koncentracije x doseže točko v na liniji VII rosišča, se bo izločal kondenzat višje koncentracije χ , ki ustreza izotermni točki Lx na liniji VIII vrelišča, medtem ko se bo hkrati preostala plinska mešanica po koncentraciji zniževala in bo zaradi hkratnega odvzema toplote zaradi kondenziranja sledila liniji VII rosišča ter končno dosegla točko v’ na liniji VII rosišča, ki ustreza nižji temperaturi T’. Pri tej temperaturi bo kondenzat imel nižjo koncentracijo x, ki ustreza točki L na liniji VIII vrelišča, ki ustreza začetni koncentraciji plinaste mešanice, in spontana kondenzacija se bo prenehala, pri čemer bo preostala koncentracija plinaste mešanice ustrezala x’.Dew line VII, in accordance with temperature T and concentration x, describes the curve along which the gas mixture begins to condense. Line VIII of boiling point therefore, in accordance with temperature T and concentration x, describes the curve along which the liquid mixture begins to boil. So if e.g. with a decrease in temperature due to heat dissipation, the gas mixture of concentration x reaches a point in line VII of the dew point, the condensate of higher concentration χ corresponding to the isothermal point L x on line VIII of boiling point will be released, while at the same time the remaining gas mixture will decrease after concentration and will due to the simultaneous condensation of heat, it followed the dew point line VII and finally reached the point 'at dew line VII corresponding to a lower temperature T'. At this temperature, the condensate will have a lower concentration x corresponding to point L on boiling line VIII corresponding to the initial concentration of the gaseous mixture, and the spontaneous condensation will cease, with the remaining concentration of the gaseous mixture corresponding to x '.

Med delovanjem priprava po izumu po eni strani služi tvorjenju binarne plinaste mešanice, namreč zraka, kije nasičen s paro monomera, in po drugi strani transportu plinaste mešanice do vlaknenega materiala 17, vnašanju le-tega v vlakneni material 17 in kondenziranju monomera na vlaknih vlaknenega materiala 17 kot tudi ponovnemu pridobivanju teh sestavin plinaste mešanice, ki se lahko kondenzirajo in ki se niso kondenzirale na vlaknih v vlaknenem materialu 17.During operation, the apparatus of the invention, on the one hand, serves to form a binary gas mixture, namely air saturated with monomer vapor, and, on the other, to transport the gas mixture to the fibrous material 17, introducing it into the fibrous material 17, and condensing the monomer on the fibers of the fibrous material 17 as well as the recovery of these condensable and non-condensable gaseous constituents in the fiber material 17.

Preko vhoda 5 se toplotnemu izmenjevalniku 4 dovaja tekočino 7 ta prenos toplote, kot je npr. voda. Monomer 2, ki je prisoten ob vstopu v toplotni izmenjevalnik 4 v tekočem stanju, se segreva do visoke temperature s svojim prehodom skozi toplotni izmenjevalnik 4, ki pa ni dovolj visoka, da bi povzročila fazni prehod.Fluid 7 is supplied to the heat exchanger 4 via the inlet 5 through this heat transfer, such as e.g. water. Monomer 2, which is present at the inlet in the liquid exchanger 4, is heated to high temperature by its passage through the heat exchanger 4, which is not high enough to cause a phase transition.

Segreti tekoči monomer 2 zapušča toplotni izmenjevalnik 4 in teče proti Venturijevemu sesalniku 8, kjer se atomizira v drobne kapljice, ki izparevajo in nasitijo zrak 11, ki se ga sesa po sesalnem vodu 10.The heated liquid monomer 2 exits the heat exchanger 4 and flows towards the Venturi vacuum cleaner 8, where it is atomized into tiny droplets that evaporate and saturate the air 11 sucked by the suction line 10.

Separator 12 je nameščen na zgornjem izstopu 13 posode in omogoča ločevanje neizparelih ali kondenziranih kapljic v posodo 1. Na ta način se doseže plinsko mešanico 14 brez tekoče vsebine. V danem primeru je ta plinska mešanica 14 zrak 11, ki je nasičen s paro monomera.The separator 12 is mounted on the upper outlet 13 of the vessel and allows the separation of unpaired or condensed droplets into the vessel 1. This achieves a gas mixture 14 without liquid content. In the present example, this gas mixture 14 is air 11 saturated with monomer vapor.

Plinsko mešanico se nato transportira skozi vod 15 do postaje 16 za procesiranje. To se izvaja pri hitrosti, kije določena s črpalko 3 za obtok monomera 2.The gas mixture is then transported through conduit 15 to processing station 16. This is carried out at the speed determined by the pump 3 for circulation of monomer 2.

V ta namen črpalka 3 v tokokrogu A’ tvori vakuum v sesalnem vodu 10 s pomočjo Venturijevega sesalnika 8 in povzroča, da se vnaša zadostno količino zraka 11. Primerno dušenje vstopajočega zraka z dušilno pripravo 23 v sesalnem vodu 10 povzroča vakuum v sesalnem vodu 10, da se podpre obtok plinske mešanice 14 v tokokrogu B’.For this purpose, pump 3 in circuit A 'creates a vacuum in the suction line 10 by means of a Venturi vacuum cleaner 8 and causes a sufficient amount of air to be introduced 11. Suitable suppression of the inlet air by a damping device 23 in the suction line 10 causes a vacuum in the suction line 10, to support the circulation of gas mixture 14 in circuit B '.

V obdelovalni postaji 16 plinska mešanica 14 teče mimo vstopa 18 in doseže vlakneni material 17 skozi podporno površino 19a nosilnega ogrodja 19 in nato prodira v vlakneni material 17 zaradi prisilnega obtoka. Plinasti monomer kondenzira med prehodom skozi vlakneni material 17 na stiku z vlakni, ki so pri temperaturi pod temperaturo plinske mešanice 14 in tudi pod temperaturo rosišča monomera 2 tudi pod temperaturo rosišča plinske mešanice 14.In treatment station 16, the gas mixture 14 flows past the inlet 18 and reaches the fibrous material 17 through the support surface 19a of the support frame 19 and then penetrates the fibrous material 17 due to forced circulation. The gas monomer condenses as it passes through the fibrous material 17 in contact with the fibers, which are also below the dew point temperature of the gas mixture 14 at a temperature below the temperature of the gas mixture 14 and also below the dew point of the monomer 2.

Potem ko zapusti vlakneni material 17, se plinasto mešanico 14, ki je osiromašena s paro monomera, posesa v odsesovalno napo 20 in vodi nazaj, da sejo pridobi, s tem da se jo primeša preko voda 22 zraku 11, ki se ga vnaša skozi sesalni vod 10. Primerno izoblikovanje voda 12 ščiti pred težnjo monomera, ki je tam kondenziral, da bi tekel nazaj k vlaknenemu materialu 17, zagotavlja pa njegov tok proti posodi 1.After leaving the fibrous material 17, the gaseous mixture 14, depleted of the monomer vapor, is sucked into the suction hood 20 and guided back to obtain the sowing by mixing it through the duct 22 to the air 11, which is introduced through the suction conduit 10. Adequate formation of conduit 12 protects against the tendency of the monomer, which has condensed there to flow back to the fibrous material 17, ensuring its flow against the vessel 1.

Med primešanjem osiromašene plinaste mešanice 14 hladnemu zraku 11 se lahko nastalo ohlajeno plinsko mešanico prekomerno nasiti s paro monomera 2 pri takšni nizki temperaturi. To omogoči kondenziranje delov monomera, ki se jih nato pridobi v posodi 1 kot kondenzat, ki izteka iz voda 22.While mixing the depleted gas mixture 14 with cold air 11, the resulting cooled gas mixture may be over saturated with steam of monomer 2 at such a low temperature. This allows the monomer parts to condense, which is then obtained in the vessel 1 as condensate flowing out of the ducts 22.

Atomiziranje in izparevanje pri izstopu 8a iz Venturijevega sesalnika 8 se lahko nadzoruje tako, da rezultira v povišanju temperature, ki temelji na vnosu toplote od notranje energije monomera 2, ki je prisoten v Venturijevem sesalniku 8. S tem se tokokrogu B’ dovaja toploto, ki dviguje temperaturo plinske mešanice 14, ki je bila tako stvorjena, do ali preko temperature njenega rosišča. Če je potrebno, se lahko na toplotno ravnovesje vpliva s predgrevanjem zraka 11.Atomization and evaporation at the outlet 8a of the Venturi vacuum cleaner 8 can be controlled to result in a temperature increase based on the heat input from the internal energy of the monomer 2 present in the Venturi vacuum cleaner 8. This supplies heat to the circuit B '. raises the temperature of the gas mixture 14 thus created to or over the temperature of its dew point. If necessary, the thermal balance can be affected by preheating the air 11.

Aparat torej dopušča vnašanje monomera v vlakneni material 17 brez kakršnihkoli izgub vhodnih sestavin, saj se para monomera 2, ki ni kondenzirala v vlaknenem materialu 17, v celoti pridobi nazaj. Segreti tekoči monomer 2, ki mu ni uspelo izpareti po prehodu skozi Venturijev sesalnik 8, in monomer 2, ki je kondenziral navzdolnje glede na vlakneni material 17, se ponovno pridobita v posodi 1 s pomočjo separatorja 12 in se ju dovede za ponovno ogrevanje v toplotnem izmenjevalniku 4.The apparatus therefore permits the introduction of the monomer into the fibrous material 17 without any loss of input components, since the steam of the monomer 2, which has not condensed in the fibrous material 17, is fully recovered. The heated liquid monomer 2, which failed to evaporate after passing through the Venturi vacuum cleaner 8, and the monomer 2, which condensed downwards with respect to the fibrous material 17, are recovered in the vessel 1 by means of a separator 12 and fed to reheat in a thermal exchanger 4.

Kondenzirani del monomera stalno odnaša plinsko prostornino iz tokokroga B’, pri čemer se ta prostornina nadomesti s posesano prostornino zraka IT. Vnešeni zrak 11’ pa tvori svežo plinsko mešanic 14 skupaj s svežim monomerom 2, kije izparel v Venturijevem sesalniku 8.The condensed part of the monomer continuously removes the gas volume from the circuit B ', replacing this volume with the intake air volume IT. The intake air 11 ', however, forms the fresh gas mixture 14 together with the fresh monomer 2 which has evaporated in the Venturi vacuum cleaner 8.

Kar zadeva pridobivanje plinske mešanice 14, ki je nasičena s paro monomera pri določeni temperaturi, je potrebno poznavanje vseh relevantnih podatkov za komponente, ki se jih uporablja.As regards the production of a gas mixture 14 saturated with monomer vapor at a certain temperature, knowledge of all relevant data for the components used is required.

Če so poznani delovni parametri Venturijevega sesalnika 8 kot tudi pretok zraka 11 in tekočega monomera 2, začetni podatki, ki se nanašajo na zrak 11 in monomer 2, skupaj z gostotami, vhodne in izhodne temperature, specifične toplote, parni tlaki in temperature izparevanja in nadalje toplotna prenosna zmožnost tekočine 7 za prenašanje toplote znotraj toplotnega izmenjevalnika 4, potem se lahko, s tem da se uporabi zakone termodinamike, določi vhodno temperaturo segretega tekočega monomera 2 pri vstopu v Venturijev sesalnik 8, kar je potrebno, da se nasiti zrak 11 s paro monomera 2 pri izbrani temperaturi.If the operating parameters of the Venturi vacuum cleaner 8 as well as the airflow 11 and the liquid monomer 2 are known, the initial data relating to the air 11 and the monomer 2, together with the densities, inlet and outlet temperatures, specific heat, vapor pressures and evaporation temperatures and beyond the thermal transfer capacity of the fluid 7 to transfer heat inside the heat exchanger 4, then, by applying the laws of thermodynamics, the inlet temperature of the heated liquid monomer 2 can be determined at the inlet of the Venturi vacuum cleaner 8, which is necessary to saturate the air 11 with steam of monomer 2 at the selected temperature.

Kadar je v danem primeru potrebno, se lahko izvede dodatno prilagoditev temperature na način, ki ni predstavljen, je pa običajen, npr. s toplotnim izmenjevalnikom v zgornjem predelu lb posode 1 ali kjerkoli vzdolž voda 15. Na ta način se lahko v kateremkoli poljubnem primeru prilagodi temperaturo plinske mešanice 14, tako da bo le-ta prisotna pri željeni temperaturi, kot npr. predvsem pri temperaturi, ki ustreza njeni temperaturi rosišča v področju vstopa 18.Where necessary, additional temperature adjustments may be made in a way that is not presented, but is normal, e.g. by means of a heat exchanger in the upper part lb of container 1 or anywhere along the lines 15. In this way, the temperature of the gas mixture 14 may be adjusted in any case so that it is present at the desired temperature, such as e.g. in particular at a temperature corresponding to its dew point temperature in the inlet region 18.

Podporno ogrodje 19 za vlakneni material 17 lahko obstoji iz izdelovalnega prenašalnika izdelovalne priprave za vlakneni material 17, ki je tedaj v enakomernem in neprekinjenem gibanju v smeri pravokotno na ravnino risbe. Podporno ogrodje 19 pa je lahko tudi stacionarno ali miruje, tako da se obdeluje kose surovega materiala za oblikovane izdelke.The support frame 19 for the fibrous material 17 may consist of a fabrication carrier of the fabricating device for the fibrous material 17, which is then in a uniform and continuous motion in a direction perpendicular to the plane of the drawing. The support frame 19 may, however, also be stationary or stationary so that pieces of raw material are processed for molded articles.

Kot je bilo zgoraj opisano, slika 1 predstavlja vnašanje v stacionaren vlaknen material v tokokrogu B’. Kar zadeva tokokrog A’, sliki 2 in 3 ustrezata predstavitvi na sliki 1, medtem ko sta glede na tokokrog B’ prikazana drugačna izvedbena primera. Da se olajša razumevanje, se iste referenčne oznake kot na sliki 1 uporablja tudi na slikah 2 in 3 za identične ali enakovredne dele.As described above, Figure 1 represents insertion into stationary fibrous material in circuit B '. As for circuit A ', Figures 2 and 3 correspond to the representation in Figure 1, while different embodiments are shown with respect to circuit B'. To facilitate understanding, the same reference codes as in Figure 1 are also used in Figures 2 and 3 for identical or equivalent parts.

Na sliki 2 vlakneni material 17 v obliki brezkončne tkanine potuje mimo obdelovalnega okrova 30, ki obsega dva naluknjana prenašalnika 31, ki podpirata tkanino iz vlaknenega materiala 17 med njenim potovanjem znotraj okrova 30. Med potovanjema prenašalnikov 31 je nameščen obdelovalni okrov 32, ki obsega dve zaporedni obdelovalni komori 33 in 34. Obdelovalni komori 33 in 34 sprejmeta potujočo tkanino iz vlaknenega materiala 17 v bistvu na plinotesen način, tako da se izogne pretirani izmenjavi plinov med notranjostjo in zunanjostjo obdelovalnih komor 33 in 34; to v bistvu plinotesno tesnjenje je podprto z ustrezno tesnilno namestitvijo tudi stranskih sten obdelovalnega okrova 30, kot je razvidno iz risb.In Figure 2, the endless fabric fibrous material 17 travels past a machining box 30 comprising two punched carriers 31 which support the fabric of fibrous material 17 during its travel within the box 30. During machining travel 31 a machining box 32 comprising two is mounted. sequential machining chambers 33 and 34. Machining chambers 33 and 34 accept the traveling fabric of fibrous material 17 essentially in a gas-tight manner, avoiding excessive gas exchange between the interior and exterior of the machining chambers 33 and 34; this essentially gas-tight seal is supported by the proper sealing of the side walls of the machining box 30 as shown in the drawings.

Vod 15a, ki se odcepi od voda 15, in vod 22a, ki se odcepi od voda 22, se odpirata v prvo obdelovalno komoro 33, tako da vnašata mnogokomponentno plinsko mešanico iz voda 15 na spodnjo stran tkanine vlaknenega materiala 17 in da sesata plin, ki izhaja iz zgornje strani vlaknenega materiala 17, v vod 22. Vod I5b, ki se odcepi od voda 15, in vod 22b, ki se odcepi od voda 22, se odpirata v drugo obdelovalno komoro 34, tako da se vnaša mnogokomponentno plinsko mešanico iz voda 15 na zgornjo stran tkanine vlaknenega materiala 17 in da se sesa plin, ki izstopa iz spodnje strani vlaknenega materiala 17, v vod 22. Smer plinskega toka skozi vlakneni material in obdelovalni komori 33 in 34 je prikazana s puščicama 35 oziroma 36.The conduit 15a that branches off from the conduit 15 and the duct 22a that branches off from the conduit 22 are opened into the first treatment chamber 33 by introducing a multi-component gas mixture from conduits 15 to the underside of the fabric of fibrous material 17 and sucking gas, emanating from the upper side of the fibrous material 17 into conduit 22. The conduit I5b, which branches off from conduit 15, and conduit 22b, which branches off from conduit 22, are opened into a second treatment chamber 34 by introducing a multi-component gas mixture from water 15 to the upper side of the fabric of the fibrous material 17 and sucking gas exiting the underside of the fibrous material 17 into the duct 22. The direction of the gas flow through the fibrous material and the treatment chambers 33 and 34 is shown by arrows 35 and 36 respectively.

Razporeditev po sliki 2 omogoča, da se povzroči izmenjujoč tok skozi vlakneni material 17 v obeh smereh, tako da se doseže s tem povezane prednosti, kot je izboljšana homogenizacija.The arrangement according to Fig. 2 allows for alternating current to be produced through the fiber material 17 in both directions, so that related advantages such as improved homogenization are achieved.

Na sliki 3 sta dva obdelovalna okrova 30 zaporedno razporejena vzdolž poti potovanja tkanine iz vlaknenega materiala 17 z dodatnim in posebnim obdelovalnim okrovom 14 med njima. V posebnem obdelovalnem okrovu 24 se lahko izvaja poljubno željeno posebno obdelavo, vključujoč vmesno hladilno obdelavo med obdelovalnim okrovom 30, tako da se izogne neprekinjenemu segrevanju vlaknenega materiala 17 med prehodom skozi zaporedne obdelovalne okrove 30. Razporeditev znotraj posebnega obdelovalnega okrova 24 je podobna razporeditvi znotraj obdelovalnega okrova 30, kar je razvidno na sliki 3. Kot je shematsko predstavljeno na sliki 3, se voda 37 za hladilni plin odpirata zgoraj in spodaj glede na tkanino iz vlaknenega materiala 17, tako da se povzroči izmenjujoč pretok hladilnega plina v skladu s puščicama 38 oziroma 39 skozi vlakneni material 17.In Fig. 3, the two machining boxes 30 are arranged in series along the travel path of the fabric of fibrous material 17 with an additional and special machining box 14 between them. Any desired special treatment may be carried out in the special treatment casing 24, including intermediate cooling treatment between the treatment casing 30, so as to avoid continuous heating of the fibrous material 17 during passage through successive treatment cages 30. The arrangement within the special treatment casing 24 is similar to the arrangement within the processing casing 24 30 as shown schematically in Fig. 3, the refrigerant gas water 37 is opened up and down relative to the fabric of fibrous material 17 so as to produce a alternating cooling gas flow in accordance with arrows 38 and 39 through fibrous material 17.

V nadaljnjem so predstavljeni rezultati poskusov, ki so bili izvedeni na stacionarnem mineralnem vlaknenem materialu 17, da se olajša tolmačenje rezultatov.The results of experiments conducted on stationary mineral fiber material 17 are presented below to facilitate interpretation of the results.

Izvedbeni primer 1Example 1

Odlaganje DCPOEMA (diciklo-penteniloksi-etilmetakrilat) v njegovi parni fazi v vlaknenem materialu, ki že vsebuje amonijev persulfat kot katalizator. Zamreženje se tedaj doseže, s tem da se dovede toploto.Deposition of DCPOEMA (dicyclo-pentenyloxy-ethylmethacrylate) in its vapor phase in a fibrous material already containing ammonium persulfate as catalyst. The networking is then achieved by supplying heat.

Prvoten vlakneni material je bil izdelan na poskusni pilotni liniji in amonijev sulfat, v vodi topna trdna snov, je bil na običajen način v vodni raztopini napršen na vlakna s pomočjo pršilne glave, in sicer v razmerju 1,5%.The original fibrous material was made on a pilot pilot line and ammonium sulfate, a water-soluble solid, was sprayed onto the fibers in a conventional manner using a spray head at a ratio of 1.5%.

Vlakneni material je bil nato razrezan na velikost (750 x 750 mm2) vzorcev in se je vanj pustilo pronicati dvokomponentno mešanico zrak/monomer na statično delujoči pilotni napravi, pri čemer se je s parami DCPOEMA monomera impregniralo vlakneni material, s tem daje po izumu prihajalo do kondenziranja na vlaknih. Ker je normalno vrelišče monomera zelo visoko (350°C pri 1 bar), nasičenje zraka pri 100°C (merjeno neposredno pred vstopom v vlakneni material) s parami monomera zah18 teva okoli 20 minut.The fibrous material was then cut to size (750 x 750 mm 2 ), and a two-component air / monomer mixture was allowed to penetrate the static pilot device, impregnating the fibrous material with the DCPOEMA monomer vapors, according to the invention. condensation occurred on the fibers. Since the normal boiling point of the monomer is very high (350 ° C at 1 bar), saturation of air at 100 ° C (measured immediately before entering the fibrous material) with steam of the monomer takes about 20 minutes.

Ploskovna gostota (g/m2) vlaknenega materiala leži med 500 in 600 g/m2 v vseh poskusih.The planar density (g / m 2 ) of the fibrous material lies between 500 and 600 g / m 2 in all experiments.

Št. No. Trajanje vnosa Duration input Srednja temperatura rosišča med poskusom The mean dew point during the experiment Delež kondenzata, polimeriziranega po vnosu (žarilna izguba) Proportion of condensate polymerized after intake (incandescent loss) 1 1 2 min. 2 min. 98°C 98 ° C 9% 9% 2 2 5 min. 5 min. 103°C 103 ° C 23% 23% 3 3 5 min. 5 min. 100°C 100 ° C 18% 18% 4 4 10 min. 10 min. 106°C 106 ° C 34% 34% 5 5 10 min. 10 min. 110°C 110 ° C 40% 40%

Delež kondenzata, ki se je polimeriziral po vnosu, se izračuna na naslednji način:The proportion of condensate that has polymerized after intake is calculated as follows:

Impregniran vlakneni material se 15 minut zadrži v peči pri 150°C, da se omogoči zamreženje monomera.The impregnated fiber material is kept in an oven at 150 ° C for 15 minutes to allow the monomer to cross-link.

Žarilno izgubo pri 550°C se nato meri na dokončanem izdelku na običajen način.The annealing loss at 550 ° C is then measured on the finished product in the usual manner.

Očitno je, da količina vsedlega material narašča s časom prehoda in s temperaturo rosišča.It is obvious that the amount of inert material increases with the passage time and with the dew point.

Končni izdelek je črnkaste barve z zadovoljivo kohezijo in prožnostjo.The final product is black in color with satisfactory cohesion and flexibility.

Izvebeni primer 2Implementation case 2

Dvokomponentna mešanica trimetilolpropantrimetakrilat (TMPTMA)/katalizator je bila uvedena v uparjeni fazi v vlakneni material, ki obstoji iz surovih vlaken, in je bil monomer zatem zamrežen z obsevanjem z ultravijolično svetilko.The two-component trimethylolpropantrimetacrylate (TMPTMA) / catalyst mixture was introduced in the evaporated phase into the crude fiber material and the monomer was then cross-linked by irradiation with an ultraviolet lamp.

TMPTMA je trifunkcionalen metakrilni monomer, ki ima tudi zelo visoko vrelišče, in sicer 370°C.TMPTMA is a three-functional methacrylic monomer with a very high boiling point of 370 ° C.

Komercialno ime tega katalizatorja je IRGACURE 369 (CIBA GEIGY). Kemična oznaka je 2-benzil 2 dimetilamino l-(4 morfolinofenil)-butanon 1.The commercial name of this catalyst is IRGACURE 369 (CIBA GEIGY). The chemical designation is 2-benzyl 2 dimethylamino 1- (4 morpholinophenyl) -butanone 1.

Katalizator, trdna snov, je bil raztopljen v monomeru in mešanica se je vsedla v parni fazi v notranjosti vlaknenega materiala.The catalyst, a solid, was dissolved in the monomer and the mixture was saturated in the vapor phase inside the fibrous material.

Omeniti je treba, da se drugače kot v ekstenzivnem postopku priprave mešanice, ki se ga uporabi v pripravi s slik 1 do 3, zračni tok, kije že bil dovolj predgret, pomeša z vročim, uparjenim monomerom v zgornjem odseku posode. Tako se lahko predgrevanje zraka uredi bolj preprosto in mešanje segretega zraka z uparjenim monomerom se lahko ustrezno izvede preprosteje.It should be noted that, unlike in the extensive process of preparation of the mixture used in the preparation of Figures 1 to 3, the air stream which has already been sufficiently preheated is mixed with the hot, evaporated monomer in the upper section of the container. Thus, the preheating of the air can be arranged more simply and the mixing of the heated air with the evaporated monomer can be conveniently carried out more easily.

Monomer se je vnašalo v vzorce valjastega vlaknenega materiala s premerom 9 cm v parni fazi pri 90°C s pretokom 50 1/min. Pri tem se upošteva, da se polimerizacija monomera v posodi lahko začne že pri temperaturi nad 90°C, da pa je po drugi strani težko sprožiti prehod monomera v parno fazo pri temperaturah pod 90°C. Torej je pri izbrani temperaturi 90°C parne mešanice še vedno možno zadovoljivo stvoriti mešanico iz uparjenega monomera in predgretega zraka.The monomer was introduced into samples of cylindrical fibrous material 9 cm in diameter in the vapor phase at 90 ° C at a flow rate of 50 1 / min. It is appreciated that the polymerization of the monomer in the vessel can start at temperatures above 90 ° C, but on the other hand it is difficult to initiate the transition of the monomer to the vapor phase at temperatures below 90 ° C. Therefore, at the selected temperature of 90 ° C, it is still possible to satisfactorily create a mixture of evaporated monomer and preheated air.

Št. No. Transporten plin Transporten gas Trajanje vnosa Duration input Temperatura pri vnašanju Input temperature Delež vnešenega kondenzata (tehtano pred in po impregniranju) Condensate input (weighed before and after impregnation) 6 6 dušik nitrogen 5 min. 5 min. 90°C 90 ° C 13,8 mas.% 13.8% by weight 7 7 dušik nitrogen 5 min. 5 min. 90°C 90 ° C 11,8 mas.% 11.8% by weight 8 8 dušik nitrogen 5 min. 5 min. 90°C 90 ° C 10,2 mas.% 10.2% by weight 10 10 dušik nitrogen 5 min. 5 min. 90°C 90 ° C 13,3 mas.% 13.3% by weight 18 18 zrak air 5 min. 5 min. 90°C 90 ° C 7,6 mas.% 7.6% by weight

Vnašanje monomera se je s to poskusno pripravo izvajalo s pomočjo dveh različnih transportnih plinov, namreč z zrakom in z dušikom. To je ponudilo priložnost, da se preizkusi, ali zrak kot transporten plin prednostno ovira polimerizacijo monomera pod neugodnimi pogoji (tlak, temperatura, mešalno razmerje), če je polimerizacijo monomera treba izvesti z obsevanjem, potem ko se gaje vneslo. Študija pa dejansko prikazuje, da se lahko vnašanje s pomočjo zraka kot transportnega plina izvaja, ne da bi se inhibiralo polimerizacijo.The introduction of the monomer was carried out with the help of two different transport gases, namely air and nitrogen, through this experimental preparation. This offered the opportunity to test whether air as a transport gas preferentially impedes the polymerization of the monomer under adverse conditions (pressure, temperature, mixing ratio), if the polymerization of the monomer is to be carried out by irradiation after it has been introduced. However, the study actually shows that airborne intake as a transport gas can be carried out without inhibiting polymerization.

Uporaba inertnega plina, to se pravi dušika, je lahko prednostna v določenih okoliščinah z ozirom na polimerizacijo monomera z obsevanjem po njegovem vnosu.The use of an inert gas, i.e. nitrogen, may be preferred in certain circumstances with respect to the polymerization of the monomer by irradiation after its introduction.

Izvedbeni primer 3:Example 3:

V tem izvedbenem primeru se je preskušalo mazivo priplast 3018 (di-2-etilheksilazelat). Ta material ima kislinsko število 0,5 mg KOH/g, hidroksilno Število 3 mg KOH/g in vodno vsebnost 0,1 %. Nadalje se lahko ta material uporablja do najnižje temperature -60°C in ima dinamično viskoznost pri 25°C 16 mPa.s in pri 90°C 3 mPa.s, vnetišče nad 210 °C, razmerje gostot 25/25°C 0,92 in lomni količnik N25/D 1,448.In this embodiment, a lubricant of 3018 (di-2-ethylhexylazelate) was tested. This material has an acid number of 0.5 mg KOH / g, a hydroxyl number of 3 mg KOH / g and a water content of 0.1%. Furthermore, this material can be used up to a minimum temperature of -60 ° C and has a dynamic viscosity at 25 ° C of 16 mPa.s and at 90 ° C of 3 mPa.s, a flash point above 210 ° C, a density ratio of 25/25 ° C 0, 92 and refractive index N25 / D 1,448.

V preskusu z mazivom priplast 3018 kot snovjo, ki jo je treba vnesti, da prekrije površino vlaken za njihovo finiširanje po kondenziranju, so bili dobljeni naslednji rezultati.In the lubricant test, layer 3018 as a substance to be introduced to cover the surface of the fibers to be finalized after condensation, the following results were obtained.

$t. $ t. Ploskovna Flat Trajanje Duration Tempe- Tempe- Temperatura pri Temperature at Delež vneše The share is paid gostota density vnosa input ratura ratura vnašanju v vlak- getting on the train- nega konden- condensing care vi aken you acne neni material neni material zata zata 1 1 759 g/m2 759 g / m 2 2x5 min. 2x5 min. 25’C 25'C 108°C-lll°C 108 ° C-11 ° C 1,4 mas.% 1.4% by weight 2 2 826 g/m2 826 g / m 2 2x5 min. 2x5 min. 25°C 25 ° C 114’C-116’C 114'C-116'C 1,3 mas.% 1.3% by weight 3 3 846 g/m2 846 g / m 2 2x5 min. 2x5 min. 25’C 25'C 115°C-116°C 115 ° C-116 ° C 0,8 mas.% 0.8% by weight 4 4 855 g/m2 855 g / m 2 2x5 min. 2x5 min. 25’C 25'C 117’C-119°C 117'C-119 ° C 0,8 mas.% 0.8% by weight 5 5 886 g/m2 886 g / m 2 2x5 min. 2x5 min. 25-C 25-C 117°C-119°C 117 ° C-119 ° C 0,7 mas.% 0.7% by weight 6 6 821 g/m2 821 g / m 2 2x2 min. 2x2 min. 25’C 25'C 116°C-117°C 116 ° C-117 ° C 0,7 mas.% 0.7% by weight 7 7 870 g/m2 870 g / m 2 2x2 min. 2x2 min. 25’C 25'C 115’C-116°C 115'C-116 ° C 0,25 mas.% 0.25% by weight 8 8 924 g/m2 924 g / m 2 2x2 min. 2x2 min. 25’ C 25 'C 114’C-113’C 114'C-113'C 0,33 mas.% 0.33 wt.% 9 9 805 g/m2 805 g / m 2 2x2 min. 2x2 min. 25’C 25'C 114°C-113°C 114 ° C-113 ° C 0,75 mas.% 0.75 wt.%

Vlakneni material v mirovanju s srednjo ploskovno gostoto okoli 850 g/m2 je bil pred vnašanju pri temperaturi 25°C in se je vanj vnašalo tok mešanice 2x5 minut ali 2 x 2 minuti. Jasno se lahko razpozna, da se je med vnašanjem v času 2x5 minut pri srednji temperaturi vnašanja 116°C ali med vnašanjem v času 2x2 minuti pri srednji temperaturi vnašanja 114°C lahko v povprečju kondenziralo okoli 1% oziroma 0,5% maziva. Tukaj je tudi razvidno, da se lahko količino, ki se jo da vnesti, poveča s časom in s temperaturo rosišča.Fibrous material at rest with a mean planar density of about 850 g / m 2 was introduced at a temperature of 25 ° C before application and the mixture was injected with a mixture of 2x5 minutes or 2 x 2 minutes. It can be clearly recognized that, on average, about 1% and 0.5% of the lubricant may condense during application over a period of 2x5 minutes at a mean injection temperature of 116 ° C, or during injection over a period of 2x2 minutes at a mean injection temperature of 114 ° C. It is also apparent here that the amount that can be introduced can increase with time and with dew point.

Ko se vlakna natančno pregleduje pod mikroskopom, se lahko na površini vlaken zazna tanek oljni film. Torej je v osnovi možno prekriti vlakna z uporabo postopka po izumu pri finiširanju ali izboljšavi različnih fizikalnih ali termičnih lastnosti.When the fibers are examined closely under a microscope, a thin oil film can be detected on the surface of the fibers. Thus, it is basically possible to cover fibers using the process of the invention in the finishing or enhancement of various physical or thermal properties.

ZaFor

ISOVER SAINT-GOBAIN:ISOVER SAINT-GOBAIN:

PATENTNA PISARNAPATENT OFFICE

LJUBLJANALJUBLJANA

Claims (19)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Postopek odlaganja snovi ali mešanice snovi na vlakna v vlaknenem materialu, predvsem materiala iz mineralnih vlaken, označen s tem, da se pusti vsako snov ali njen predhoden material v plinastem stanju pri temperaturi nad temperaturo vlaknenega materiala pronicati v vlakneni material in se prednostno njen del zaradi kondenziranja usede na vlakna.A method of depositing a substance or mixture of substances on fibers in a fibrous material, in particular mineral fiber material, characterized in that each substance or its precursor material is gaseous at a temperature above the temperature of the fibrous material and preferably is penetrated into the fibrous material part condenses on the fibers due to condensation. 2. Postopek po zahtevku 1, označen s tem, da se plinasto snov, ko se jo dovede v dotik z vlakni vlaknenega materiala, drži pri temperaturi, ki ne presega vrelišča snovi.A method according to claim 1, characterized in that the gaseous substance, when brought into contact with the fibers of the fibrous material, is kept at a temperature not exceeding the boiling point of the substance. 3. Postopek za odlaganje snovi ali mešanice snovi na vlakna v vlaknenem materialu, predvsem v materialu iz mineralne volne, označen s tem, da se vsaka snov ali njen predhoden material pomeša s transportnim plinom, ki ima znatno nižjo temperaturo rosišča kot snov, tako da se tvori mnogokomponentno plinsko mešanico in da se pusti omenjeno mnogokomponentno plinsko mešanico pronicati v vlaknen material, pri čemer se vlaknen material drži pri temperaturi pod temperaturo rosišča za omenjeno plinsko mešanico, katere vsaj del se zaradi kondenziranja vsede na vlakna.3. A process for depositing a substance or mixture of substances on fibers in a fibrous material, in particular mineral wool material, characterized in that each substance or its precursor material is mixed with a transport gas having a substantially lower dew point than the substance, such that a multicomponent gas mixture is formed and the said multicomponent gas mixture is allowed to permeate into the fibrous material, keeping the fibrous material at a temperature below the dew point for said gas mixture, of which at least a part is impinged on the fibers. 4. Postopek po zahtevku 3, označen s tem, da se mnogokomponentno plinsko mešanico, ko se jo dovede v dotik z vlakni vlaknenega materiala, drži pri temperaturi, ki ne presega začetne temperature rosišča mešanice.Method according to claim 3, characterized in that the multi-component gas mixture, when brought into contact with the fibers of the fibrous material, is kept at a temperature not exceeding the initial dew point of the mixture. 5. Postopek po zahtevku 3 ali 4, označen s tem, da se temperaturo mnogokomponentne plinske mešanice izbere zelo blizu začetne temperature rosišča mešanice.Method according to claim 3 or 4, characterized in that the temperature of the multicomponent gas mixture is selected very close to the initial dew point of the mixture. 6. Postopek po kateremkoli od zahtevkov 3 do 5, označen s tem, da se transporten plin nasiti s paro te snovi.Method according to any one of claims 3 to 5, characterized in that the transport gas is saturated with steam of this substance. 7. Postopek po kateremkoli izmed zahtevkov 3 do 6, označen s tem, da se kot transporten plin uporablja zrak.Method according to any one of claims 3 to 6, characterized in that air is used as the transport gas. 8. Postopek po kateremkoli izmed zahtevkov 1 do 7, označen s tem, da se tok plinaste snovi ali mnogokomponentne plinske mešanic izvede s prisilnim obtokom ali tokom.A method according to any one of claims 1 to 7, characterized in that the flow of the gaseous substance or multicomponent gas mixtures is carried out by forced circulation or flow. 9. Postopek po kateremkoli izmed zahtevkov 1 do 8,. označen s tem, da se polimerizira monomeren plinasti predhodnik snovi v teku ali po odlaganju v vlaknenem materialu pod vplivom faktorja, kot so toplota, katalitske snovi, sevanja in druge monomerne snovi ali plina.A process according to any one of claims 1 to 8. characterized in that the monomeric gaseous precursor of the substance is polymerized during or after deposition in a fibrous material under the influence of factors such as heat, catalytic substances, radiation and other monomeric substances or gas. 10. Postopek po kateremkoli izmed zahtevkov 1 do 9, označen s tem, da se odlaganje izvede, potem ko se je vlakna, ki tvorijo vlakneni material, sprejelo na izdelovalni prenašalnik in medtem ko je vlakneni material še na izdelovalnem prenašalniku.A method according to any one of claims 1 to 9, characterized in that the deposition is carried out after the fibers forming the fibrous material have been admitted to the production carrier and while the fiber material is still on the production carrier. 11. Postopek po kateremkoli izmed zahtevkov 1 do 9, označen s tem, da se v primeru izdelovanja izoblikovanih izdelkov, kot so odseki cevi, odlagnaje izvede, potem ko seje vlakneni material odstranilo z izdelovalnega prenašalnika.A method according to any one of claims 1 to 9, characterized in that, in the case of the manufacture of molded products, such as pipe sections, the deposition is carried out after removal of the fibrous material from the manufacturing carrier. 12. Postopek po kateremkoli izmed zahtevkov 1 do 11, označen s tem, da se smer plinskega toka skozi vlakneni material, po možnosti ponavljaje, obrne po vnaprej določenem času toka v eno smer.A method according to any one of claims 1 to 11, characterized in that the direction of the gas flow through the fibrous material, preferably repeated, is reversed after a predetermined flow time in one direction. 13. Postopek po kateremkoli izmed zahtevkov 1 do 12, označen s tem, da se vsaj med posameznimi obrati zagotovi dodatno obdelavo, kotje hlajenje.A method according to any one of claims 1 to 12, characterized in that additional treatment such as cooling is provided at least between the individual plants. 14. Priprava za odlaganje snovi na vlakna materiala (17) iz mineralnih vlaken, označen s tem, da je predvidena izdelovalna oprema (tokokrog A’) za binarno plinsko mešanico zrak/snov, pri čemer je zrak kot transporten plin nasičen s paro snovi, ki jo je treba odložiti, ali njenega predhodnika pri dani temperaturi, in s pripravo (tokokrog B’) za usmerjanje binarne plinske mešanice zrak/snov, da pronica v omenjeni vlakneni material (17).14. A device for depositing a substance on the fibers of a mineral fiber material (17), characterized in that the manufacturing equipment (circuit A ') for the binary gas / air mixture is provided, the air being saturated with the vapor of the substance as the transport gas, to be deposited, or a precursor thereof, at a given temperature, and by means of a device (circuit B ') for directing the binary gas / air mixture to penetrate said fibrous material (17). 15. Priprava po zahtevku 14, označena s tem, da omenjena izdelovalna oprema (tokokrog A’) obsegaApparatus according to claim 14, characterized in that said manufacturing equipment (circuit A ') comprises - toplotni izmenjevalnik (4) za segrevanje snovi v njenem tekočem stanju,- heat exchanger (4) for heating the substance in its liquid state, - črpalko (3) za potiskanje segrete tekoče snovi proti vstopnemu predelu Venturijevega sesalnika (8) in- a pump (3) for pushing the heated liquid substance towards the inlet of the Venturi vacuum cleaner (8), and - sredstva (vod 10) za sprejem zraka (11), ki se odpirajo proti vakuumskemu področju omenjenega Venturijevega sesalnika (8), da se tvori binarno plinsko mešanico zrak/snov.- air intake means (line 10) (11) opening against the vacuum region of said Venturi vacuum cleaner (8) to form a binary gas / air mixture. 16. Priprava po zahtevku 14 ali 15, označena s tem, da omenjena oprema (tokokrog B’) za usmerjanje obsega sredstva za tvorjenje tlačne razlike preko vlaknenega materiala, tako da se povzroči, da binarna plinska mešanica zrak/snov pronica v omenjeni vlakneni material (17) pri vnaprej določenem pretoku.Apparatus according to claim 14 or 15, characterized in that said guidance equipment (circuit B ') comprises means for generating a pressure difference over the fibrous material so as to cause the binary gas / air mixture to seep into said fibrous material (17) at a predetermined flow rate. 17. Priprava po zahtevku 16, označena s tem, da omenjeno sredstvo za tvorjenje tlačne razlike preko omenjenega vlaknenega materiala (17) obsega vakuumska sredstva v navzdolnji smeri za omenjenim vlaknenim materialom (17).Apparatus according to claim 16, characterized in that said means for generating a pressure difference through said fibrous material (17) comprises vacuum means in a downward direction behind said fibrous material (17). 18. Priprava po zahtevkih 16 in 17, označena s tem, da omenjeno vakuumsko sredstvo obsega omenjeni Venturijev sesalnik (8).Device according to claims 16 and 17, characterized in that said vacuum means comprises said Venturi vacuum cleaner (8). 19. Priprava po kateremkoli izmed zahtevkov 14 do 18, označena s tem, da so filtrska sredstva (12) navzornje glede na vlakneni material (17) predvidena tako, da zadržujejo vsakršno tekočo snov nad določeno velikostjo delcev, da bi sejo odnašalo skupaj z binarno mešanico zrak/snov.Device according to any one of claims 14 to 18, characterized in that the filter means (12) are inwardly relative to the fibrous material (17) so as to hold any liquid substance above a certain particle size in order to carry it along with the binary air / substance mixture.
SI9400441A 1993-12-21 1994-12-15 Method and apparatus for introducing a substance into a fibre material, particularly into mineral fibre material SI9400441A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR9307843A BR9307843A (en) 1993-12-21 1993-12-21 Process and equipment for introducing a substance into a fiber material, particularly a mineral fiber material
PCT/EP1993/003653 WO1995017353A1 (en) 1993-12-21 1993-12-21 Method and apparatus for introducing a substance into a fibre material, particularly into a mineral fibre material

Publications (1)

Publication Number Publication Date
SI9400441A true SI9400441A (en) 1995-06-30

Family

ID=25664598

Family Applications (1)

Application Number Title Priority Date Filing Date
SI9400441A SI9400441A (en) 1993-12-21 1994-12-15 Method and apparatus for introducing a substance into a fibre material, particularly into mineral fibre material

Country Status (7)

Country Link
EP (1) EP0684936A1 (en)
CN (1) CN1112528A (en)
BR (1) BR9307843A (en)
FI (1) FI953733A0 (en)
NO (1) NO953250L (en)
SI (1) SI9400441A (en)
WO (1) WO1995017353A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103332945B (en) * 2013-06-17 2014-06-18 中南大学 Preparation method of crack-free coating fiber
KR102362227B1 (en) * 2017-01-06 2022-02-11 에스에이치피피 글로벌 테크놀러지스 비.브이. Apparatus for continuous needleless electrospinning of nanoscale or submicron scale polymer fiber webs on substrates

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3032434A (en) * 1957-09-23 1962-05-01 Dominick Nardelli Process for cleaning and coating sized bulk glass fibrous material
US3540870A (en) * 1968-05-07 1970-11-17 Us Air Force Apparatus for drawing and coating quartz glass fibers

Also Published As

Publication number Publication date
CN1112528A (en) 1995-11-29
FI953733A (en) 1995-08-04
EP0684936A1 (en) 1995-12-06
NO953250D0 (en) 1995-08-18
FI953733A0 (en) 1995-08-04
WO1995017353A1 (en) 1995-06-29
BR9307843A (en) 1996-03-05
NO953250L (en) 1995-08-18

Similar Documents

Publication Publication Date Title
CZ178995A3 (en) Dosing apparatus of tablets
US4397158A (en) Apparatus for treating materials in the form of continuous lengths
KR102362227B1 (en) Apparatus for continuous needleless electrospinning of nanoscale or submicron scale polymer fiber webs on substrates
CN100360886C (en) Method and apparatus for heating nonwoven webs
KR102097140B1 (en) Apparatus for electrospinning liquid polymers into nanoscale or submicron scale fibers
HU219953B (en) Method and apparatus for producing a composite yarn
JPS5921764A (en) Method and apparatus for producing added product containing fiber felt
KR20190100394A (en) Continuous wire drive system of needleless electronic spinning device
SI9400441A (en) Method and apparatus for introducing a substance into a fibre material, particularly into mineral fibre material
FI61677C (en) FOER REFRIGERATION FOR FIXING OF FIBERS WITH THERMOPLASTIC MATERIAL
RU97116504A (en) COMPOSITION FOR SIZING GLASS STRAPS, METHOD OF APPLICATION OF THIS COMPOSITION AND PRODUCTS PRODUCED
DE1760377A1 (en) Spinning process and device for its implementation
EP3921585B1 (en) Device and method for drying a textile web
US4907310A (en) Installation for the continuous processing of at least one textile yarn
AU674922B2 (en) Method and apparatus for introducing a substance into a fibre material, particularly into a mineral fibre material
US5913997A (en) Process for thermomechanically treating a fleece web made of thermoplastic synthetic resin and an apparatus for carrying out the process
US4440557A (en) Method and apparatus for forming and collecting continuous glass filaments
NO152052B (en) PROCEDURE AND APPARATUS FOR SURFACE DESIGN OF A MATERIAL COAT.
WO2006060928A2 (en) Dropper plant
KR100417881B1 (en) Apparatus and method for pre-impregnating fiber-etchable chemical treating agents in-line
CA2156401A1 (en) Method and apparatus for introducing a substance into a fibre material, particularly into a mineral fibre material
NZ259522A (en) Apparatus for substance(s) deposited onto fibres of fibrous material below dew point temperature of substance(s) mixed with transport gas
SU971087A3 (en) Apparatus for making glass fiber
DE10048516A1 (en) Heat and substance transfer arrangement for treating gaseous media has housing, which is immersed into liquid or powder medium and which enables drainage of treated gaseous medium
DE102022103194A1 (en) fiberglass manufacturing process