SI9300415A - Improved method for preparing soluble glucans - Google Patents

Improved method for preparing soluble glucans Download PDF

Info

Publication number
SI9300415A
SI9300415A SI9300415A SI9300415A SI9300415A SI 9300415 A SI9300415 A SI 9300415A SI 9300415 A SI9300415 A SI 9300415A SI 9300415 A SI9300415 A SI 9300415A SI 9300415 A SI9300415 A SI 9300415A
Authority
SI
Slovenia
Prior art keywords
glucan
soluble
phosphate
particulate
dmso
Prior art date
Application number
SI9300415A
Other languages
Slovenian (sl)
Inventor
David L Williams
Rose Brigid Mcnamee
Henry A Pretus
Isaac William Browder
Original Assignee
Bioglucans L P
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bioglucans L P filed Critical Bioglucans L P
Publication of SI9300415A publication Critical patent/SI9300415A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Peptides Or Proteins (AREA)

Abstract

A highly efficient, rapid method for preparing aqueous soluble glucans is described.

Description

1. PODROČJE IZUMA1. FIELD OF THE INVENTION

Ta izum se nanaša na izpopolnjeno, visoko učinkovito metodo za pripravo topnih glukanov. Metoda se prednostno izogiba uporabe visoko polarnih topil kot so na primer dimetilsulfoksid (DMSO). Topni glukani pripravljeni po metodi tega izuma so netoksični in kažejo izrazit imunološki odziv kadar so administrirani in vivo, najbolj opazno imunostimulacijo aktivnosti makrofagov in stimulacijo hamatopoieticne aktivnosti kostnega mozga. Topni glukani tudi kažejo pomembne učinke proti malignim neoplazmam vključno melanomom in sarkomom.The present invention relates to a sophisticated, highly efficient method for the preparation of soluble glucans. The method preferably avoids the use of highly polar solvents such as dimethylsulfoxide (DMSO). The soluble glucans prepared by the method of the present invention are non-toxic and exhibit a pronounced immune response when administered in vivo, most notably immunostimulating macrophage activity and stimulating bone marrow hamatopoietic activity. Soluble glucans also show significant effects against malignant neoplasms including melanoma and sarcoma.

2. OZADJE IZUMA2. BACKGROUND OF THE INVENTION

Izraz glukan se generično nanaša na vrsto naravnih homopolisaharidov ali poliglukoz, vključno s polimeri kot so : celuloza, amiloza, glikogen, laminariati (vrsta polisaharidov), škrob itd. Glukan zajema razvejane in nerazvejane verige glukoznih enot povezanih z 1-3, 14, in 1-6 glukozidnih vezi, ki so lahko tipa a ali β.The term glucan generally refers to a variety of natural homopolysaccharides or polyglucose, including polymers such as: cellulose, amylose, glycogen, laminariates (a type of polysaccharide), starch, etc. Glucan comprises branched and unbranched chains of glucose units linked to 1-3, 14, and 1-6 glucoside bonds, which may be of type a or β.

Partikularni glukan (agregat v vodi netopnih delcev glukana), kakor je imenovan v tem izumu, je označen kot vodno netopni partikulat (agregat delcev glukana) (velikost 1-3 pm) poliglukoze, pridobljen iz celične ovojnice kvasovke Saccharomyces cerevisiae. Partikulatni glukan je makromolekula in obsega zaprto verigo glukopiranoznih enot, povezanih z vrsto β-1-3 glukozidnih vezi (Hassid et.al., 1941, J.Amer. Chem. Soc. 63:295-298; DiLuzio et al.,1979, Infl J.Cancer 24:773-779). Študij z rentgensko difrakcijo je potrdil, da partikulatni glukani tvorijo trikratno-sučno vijačnico. (Sarko et al., 1983, Biochem. Soc. Trans. 11:139142).Particular glucan (an aggregate of water-insoluble glucan particles) as named in the present invention is referred to as a water-insoluble particle (aggregate of glucan particles) (size 1-3 pm) of polyglucose obtained from the cell envelope of the yeast Saccharomyces cerevisiae. Particulate glucan is a macromolecule and comprises a closed chain of glucopyranose units linked to a series of β-1-3 glucoside bonds (Hassid et.al., 1941, J.Amer. Chem. Soc. 63: 295-298; DiLuzio et al., 1979 , Infl. J. Cancer 24: 773-779). X-ray diffraction studies have confirmed that particulate glucans form a three-fold helix. (Sarko et al., 1983, Biochem. Soc. Trans. 11: 139142).

Partikulatni glukan je močan aktivator vrste makrofag/monocitnih celic, komplementov kakor tudi T in B celičnih limfocitov. Tako ima partikulatni glukan izrazit učinek na retikuloendotelični in imunski sistem. Partikulatni glukan je pokazal zmožnost modificiranja gostiteljeve rezistence za širok spekter infektivnih bolezni (glej pregledni članek DiLuzia, 1983, Trends in Pharmacol. Sci. 4:344-347 in citirane reference ). Dodatno partikulatni glukan tudi inhibira rast tumorjev in podaljša preživetje v prirojenih mišjih tumornih modelih (DiLuzio et.al., 1979, Advances in Exp. Med. Biol. 121A.-269-290). In vitro študija normalnih in tumornih celic inkubiranih s partikulatnim glukanom je pokazala, da glukan kaže citostatični učinek na sarkomske in melanomske celice in proliferativni učinek na normalne jetrne in celice kostnega mozga (VVilliams et al., 1985, Hepatology 5:198-206).Particulate glucan is a potent activator of macrophage / monocyte cell type, complement as well as T and B cell lymphocytes. Thus, particulate glucan has a pronounced effect on the reticuloendothelial and immune systems. Particulate glucan demonstrated the ability to modify host resistance to a wide range of infectious diseases (see review article DiLuzia, 1983, Trends and Pharmacol. Sci. 4: 344-347 and cited references). Additionally, particulate glucan also inhibits tumor growth and prolongs survival in congenital mouse tumor models (DiLuzio et.al., 1979; Advances in Exp. Med. Biol. 121A.-269-290). An in vitro study of normal and tumor cells incubated with particulate glucan showed that glucan exhibits a cytostatic effect on sarcoma and melanoma cells and a proliferative effect on normal liver and bone marrow cells (VVilliams et al. 1985, Hepatology 5: 198-206).

Vkljub koristnim biološkim učinkom partikulatnih glukanov so ti različni stranski učinki preprečili njihovo uporabnost v klinični medicini. Dodajanje partikularnega glukana živalim in vivo, je pokazalo na resne stranske učinke, med katerimi so najbolj opazni: (1) tvorba granuloma (sarkoidoza ); (2) razvoj heptatosplenomegalije; (3) naraščajoča občutljivost za gram-negativne infekcije in endotoksine; (4) aktivacija komplementa (anafilatoksina ); razvijanje pljučnega grnulomatoznega vaskulitisa; razvijanja hipotenzije, ki sledi intravenozni administraciji; in (7) rasti mikroembolije pri dodajanju visoko koncentriranega reagenta.Despite the beneficial biological effects of particulate glucans, these various side effects have prevented their usefulness in clinical medicine. Addition of particulate glucan to animals in vivo has revealed serious side effects, the most notable of which are: (1) granuloma formation (sarcoidosis); (2) development of heptatosplenomegaly; (3) increasing susceptibility to gram-negative infections and endotoxins; (4) complement activation (anaphylatoxin); development of pulmonary granulomatous vasculitis; developing hypotension following intravenous administration; and (7) the growth of microembolism upon the addition of a highly concentrated reagent.

Dodatno so opazili tudi relativno visoko stopnjo akutne toksičnosti pri in vivo dodajanju partikulatnega glukana. V primeru enega samega intravenoznega vbrizga vodne suspenzije partikulatnega glukana, so opazili 20% in 100% smrtnost pri miših, ki so sprejele 250 in 500 mg/kg glukana na telesno težo.In addition, a relatively high level of acute toxicity was observed with in vivo addition of particulate glucan. In the case of a single intravenous injection of particulate glucan aqueous suspension, 20% and 100% mortality was observed in mice receiving 250 and 500 mg / kg glucan per body weight, respectively.

Nadalje je zaradi partikularne narave glukananove priprave (1-3 pm), glukan zelo težko administrirati po intravenozni poti. Za ilustracijo, pacientu je potreben stalen nadzor pri intravenoznem (IV) dodajanju partikulatnega glukana, saj je bistvenenega pomena kontinuirno stresanje IV kapljevinaste stekleničke, da se vzdržuje suspenzija in s tem prepreči embolijo pri pacientu.Furthermore, due to the particular nature of glucanan preparation (1-3 pm), glucan is very difficult to administer via the intravenous route. To illustrate, the patient needs constant monitoring of intravenous (IV) administration of particulate glucan, since continuous shaking of the IV droplet bottle is essential to maintain suspension and thus prevent embolism in the patient.

Četudi so šibko topni nevtralni glukani komercialno dostopni, ti pripravki niso primerni za intravenozno administriranje, ker imajo vodne raztopine zelo veliko viskoznost in še važnejše, ker je njihova uporaba, ko jih administrirajo eksperimentalnim živalim, neizogibno spremljana s precejšno toksičnostjo.Even though weakly soluble neutral glucans are commercially available, these preparations are not suitable for intravenous administration because aqueous solutions have a very high viscosity and, more importantly, their use when administered to experimental animals is inevitably accompanied by considerable toxicity.

Zaradi vseh slabosti β-1,3 glukanov pri in vivo administriranju, so že predhodno intenzivno raziskovali nove poti razvoja β-1,3 poliglukoze, ki naj ne bi bila toksična, ne bi inducirala značilne patologije in kljub temu obdržala pomembno imunološko aktivnost.Due to all the disadvantages of β-1,3 glucan in in vivo administration, new pathways for the development of β-1,3 polyglucose, which is not toxic, would not induce characteristic pathology and still retain significant immunological activity, have been extensively investigated previously.

Nefosforilirani glukanovi pripravki nizke molekularne mase, pripravljeni s hidrolizo partikulatnega glukana z mravljinčno kislino, so pokazali antitumorno aktivnost in učinkovitost proti stafilokokom (DiLuzio et al.,lntemat'l J.Cancer 24:773-779). Žal so nizki izkoristki in različnost frakcij, ki se jih dobi po tej metodi, preprečili uporabo teh pripravkov v profilaktične in terapevtske namene. (Glej DiLuzio, 1983, Trends in Pharmacological Sciences 4:344-347).Non-phosphorylated glucan low molecular weight preparations prepared by hydrolysis of particulate glucan with formic acid have shown antitumor activity and efficacy against staphylococci (DiLuzio et al., Intemat'l J.Cancer 24: 773-779). Unfortunately, the low yields and the diversity of fractions obtained by this method prevented the use of these preparations for prophylactic and therapeutic purposes. (See DiLuzio, 1983, Trends in Pharmacological Sciences 4: 344-347).

Poskusi solubilizacije (topljivosti) partikulatnega gkukana z dodatkom dimetilsulfoksida (DMSO), molekulskega relaksanta so bili prav tako neuspešni. Predpostavljali so, da bo DMSO zrahljal konfiguracijo trojne vijačnice glukanove molekule. Partikulatni glukan se sicer zares raztopi v prisotnosti DMSO. Vsi poskusi, da bi izolirali partikulatni glukan iz DMSO raztopine, pa so se izkazali kot neuspešni. Po razredčenju DMSOglukanove raztopine z različnimi vodnimi mediji, kot so glukozne raztopine ali raztopine soli, se je partikulatni glukan preoblikoval. Po razredčenju DMSO-topnih glukanovih raztopin s slanico, so vse živali, ki so dobile injekcije teh raztopin, takoj umrle zaradi visokih koncentracij DMSO ali preureditve partikulatnega glukana. Po izoborjenju partikulatnega glukana z dodatkom etanola (100%) smo oborino zbrali in jo liofilizirali. Tako liofilizirani glukan se je preoblikoval z dodatkom vode.Attempts to solubilize (solubility) the particulate gucana with the addition of dimethylsulfoxide (DMSO), a molecular relaxant, have also been unsuccessful. DMSO was assumed to loosen the configuration of the triple helix of the glucan molecule. Particulate glucan is indeed dissolved in the presence of DMSO. All attempts to isolate the particulate glucan from the DMSO solution, however, have proved unsuccessful. After diluting the DMSOglucan solution with various aqueous media, such as glucose solutions or salt solutions, the particulate glucan was transformed. After dilution of DMSO-soluble glucan solutions with brine, all animals that received injections of these solutions immediately died due to high concentrations of DMSO or rearrangement of particulate glucan. After the formation of particulate glucan with ethanol (100%), the precipitate was collected and lyophilized. The lyophilized glucan was transformed by the addition of water.

Prav tako so bili neuspešni zgodnji poskusi pretvorbe nevtralnega glukanskega preparata partikulatnega glukana v preparat s polarnim nabojem z dodatkom fosfatnih ali sulfatnih skupin, pa tudi z acetiliranjem. Vsi ti postopki so bili izvedeni po solubilizaciji partikulatnega glukana z DMSO, in v vseh primerih se je partikulatni glukan preoblikoval.Early attempts to convert a neutral glucan preparation of particulate glucan into a polar-charged preparation with the addition of phosphate or sulfate groups, as well as acetylation, were also unsuccessful. All of these procedures were performed after solubilization of the particulate glucan with DMSO, and in all cases the particular glucan was transformed.

Nevtralni preparat partikulatnega glukana je bil uspešno pretvorjen v stabilno obliko imenovano topni fosforilirani glukan (tukaj nadalje imenovan glukan fosfat) s hidrolizo s fosforno kislino z uporabo metode na kratko opisane spodaj. Kot je označeno tukaj, se izraza glukan fosfat in topni fosforilirani glukan nanašata na vrsto giukanov solubiliziranih z dodatkom fosfatnih skupin preko reakcije s fosforno kislino. Ti so enaki ali bistveno podobni substancam opisanim v U.S. patentih No. 4,739,064; 4,761,402; 4,818,752 in 4,833,131. Ta topni fosforilirani glukan ni toksičen, ni imunogen, in bistveno ne-pirogen (glej U.S. patente No. 4,739,064; 4,761,402; 4,818,752 in 4,833,131).A neutral particulate glucan preparation was successfully converted to a stable form called soluble phosphorylated glucan (hereinafter referred to as glucan phosphate) by hydrolysis with phosphoric acid using the method briefly described below. As indicated herein, the terms glucan phosphate and soluble phosphorylated glucan refer to a series of giucans solubilized by the addition of phosphate groups via reaction with phosphoric acid. These are identical or substantially similar to the substances described in U.S. Pat. No. 4,739,064; 4,761,402; No. 4,818,752 and 4,833,131. This soluble phosphorylated glucan is non-toxic, non-immunogenic and substantially non-pyrogenic (see U.S. Patent Nos. 4,739,064; 4,761,402; 4,818,752 and 4,833,131).

Po metodi opisani v U.S. patentu No. 4,739,046, je bil pripravljen glukan fosfat kot sledi: partikulatni glukan ali poiiglukozno proteinski kompleks, sta bila suspendirana v močno polarnem aprotičnem topilu: DMSO. Dadali so močan kaotropičen reagent (snov, ki povzroči denaturiranje proteinov) sečnino in zmes segrevali pri 50-150°C med stalnim mešanjem, kateri so počasi dodajali fosforno kislino. Temperaturo se preferenčno drži pri 100°C od 3-12 ur. S tem se zviša izkoristek bioaktivnega produkta. Produkt se izolira in DMSO, sečnino, glukozo in vso nezreagirano fosforno kislino odstrani. Izkoristek po reakciji (6 ur, 100°C) je okoli 70-90%.According to the method described in U.S. Pat. patent no. No. 4,739,046, glucan phosphate was prepared as follows: Particulate glucan or a polyglucose protein complex were suspended in a strongly polar aprotic solvent: DMSO. A strong chaotropic reagent (a substance that causes protein denaturation) was added to the urea and the mixture was heated to 50-150 ° C under constant stirring, to which phosphoric acid was slowly added. The temperature is preferably kept at 100 ° C for 3-12 hours. This increases the yield of the bioactive product. The product is isolated and DMSO, urea, glucose and all unreacted phosphoric acid removed. The yield after reaction (6 hours, 100 ° C) is about 70-90%.

Naslednja nova vrsta topnih giukanov, kjer so poliglukopiranozne verige pridobile skupino z nabojem iz kisline brez fosforja, je opisana v patentni prijavi s serijsko številko 07/649,572. Topni glukani s skupino, ki vsebuje naboj, vključno tako, kot sta sulfate in nitrate, so tudi zmožni pokazati izrazit imunobiološki učinek, kadar so administrirani in vivo. Ti topni glukani imunostimulirajo aktivnost makrofagov z odgovarjajočo aktivacijo imunoaktivnih celic v retikuloendoteličnem in imunskem sistemu. Ti topni glukani tudi dodatno zvišajo hematopoitično (krvotvorno) aktivnost kostnega mozga.Another new type of soluble gyucan, where the polyglucopyranose chains have obtained a phosphor-free acid group, is described in patent application Serial Number 07 / 649,572. Soluble glucans with a charge-containing group, including such as sulfates and nitrates, are also able to show a pronounced immunobiological effect when administered in vivo. These soluble glucans immunostimulate the activity of macrophages through the corresponding activation of immunoactive cells in the reticuloendothelial and immune systems. These soluble glucans also increase the haematopoietic (hematopoietic) activity of the bone marrow.

Skladno z metodami patentne prijave s serijsko številko 07/649,527, so bili topni glukani pripravljeni kot sledi: partikulatni glukan je bil suspendiran v raztopini DMSO in sečnine; koncentrirana zmes segreta na 50-150°C, dodana koncentrirana kislina, (žveplova ali dušikova), in sicer sama, ali v DMSO in reakcijska zmes segrevana med mešanjem pri 50-150°C. Bioaktivni produkt so izolirali in odstranili DMSO, sečnino, glukozo in vso nezreagirano kislino. Po približno 6 urah pri 100°C je bila uporabljena sama kislina, izkoristek podan kot 37.5%, ko pa je bila uporabljena kislina z dodanim DMSO, je bil izkoristek okoli 98%.In accordance with the methods of patent application serial number 07 / 649,527, soluble glucan was prepared as follows: particulate glucan was suspended in DMSO solution and urea; concentrated mixture heated to 50-150 ° C, concentrated acid added (sulfuric or nitric) alone or in DMSO and the reaction mixture heated while stirring at 50-150 ° C. The bioactive product was isolated and the DMSO, urea, glucose and all unreacted acid were removed. After about 6 hours at 100 ° C, the acid itself was used, the yield being given as 37.5%, but when the acid with DMSO was added, the yield was about 98%.

U.S. patent No. 4,707,471 opisuje vodotopno aminirano β-1-3 vezano D-glukanovo zmes in postopek za pripravo take zmesi. Skladno z vključitvijo ene od metod, je bil β 1,3-D-glukan, prednostno sirast ali luskav, hidroliziran v 90% mravljinčni kislini. Kislina je bila odstranjena z uparevanjem, dodana voda in zmes segreta do refluksa za eno uro. Zmes je bila nato ločena na Sephadex G-50 koloni in izločena frakcija z najvišjo molsko maso, ki je bila nadalje procesirana kot sledi. Hidrolizirani glukan je bil raztopljen v vodi, ki je vsebovala brom pri pH 7, kjer je stal v tej raztopini do popolne porabe broma (24-48 ur). Nato je bil pH uravnan do 5.0 in zmes dializirana v vodo in liofilizirana. Oksidirani glukan je bil dodan v raztopino amonijevega, aceta ali 1,6-diaminoheksana v vodi z pH uravnanim na 7.0 z uporabo ocetne kisline skupaj z natrijevim cianoborhidridom in raztopina puščena stati ob mešanju 7 dni. Aminirani glukan je bil dobljen po dializi in liofiliziran. V drugi inačici postopka so bile hidrolizirane luske raztopljene v DMSO pred acetiliranjem in potem aminirane kot opisano zgoraj.U.S. patent no. No. 4,707,471 describes a water-soluble aminated β-1-3 bound D-glucan mixture and a process for preparing such a mixture. According to the inclusion of one of the methods, β 1,3-D-glucan, preferably cheesy or flaky, was hydrolyzed in 90% formic acid. The acid was removed by evaporation, water was added and the mixture heated to reflux for one hour. The mixture was then separated on a Sephadex G-50 column and the fraction with the highest molar mass separated, which was further processed as follows. The hydrolyzed glucan was dissolved in water containing bromine at pH 7 where it stood in this solution until complete consumption of bromine (24-48 hours). The pH was then adjusted to 5.0 and the mixture dialyzed into water and lyophilized. Oxidized glucan was added to a solution of ammonium, acetate or 1,6-diaminohexane in water at pH adjusted to 7.0 using acetic acid together with sodium cyanoborohydride and the solution allowed to stand with stirring for 7 days. Aminated glucan was obtained after dialysis and lyophilized. In another embodiment, the hydrolyzed scales were dissolved in DMSO prior to acetylation and then aminated as described above.

VVO91/03495 Jamasa opisuje topne preparate nevtralnih polimerov glukana s postopkom, ki vsebuje obdelavo glukanovih delcev z edinstveno sekvenco delovanja kisline in baze. Celotne glukanove delce so suspendirali v kisli raztopini, navadno okoli pH=1-5 pri 20-100° C, prednostno z uporabo organskih kislin kot sta ocetna in mravljinčna kislina; odstranili so v kislini netopni glukan in pH uravnali na 7-14. Sirotko so resuspendirali v vroči bazi (NaOH ali KOH) (0.1-1 ON ) pri 4-120° C. Topni glukan so nato pridobili nazaj in ga dodatno očistili.VVO91 / 03495 Jamasa describes soluble preparations of neutral glucan polymers by a process comprising treating glucan particles with a unique sequence of acid and base action. The whole glucan particles were suspended in an acidic solution, usually around pH = 1-5 at 20-100 ° C, preferably using organic acids such as acetic and formic acid; the acid-insoluble glucan was removed and the pH was adjusted to 7-14. The whey was resuspended in hot base (NaOH or KOH) (0.1-1 ON) at 4-120 ° C. The soluble glucan was then recovered and further purified.

U.S. patent No. 3,883,505 opisuje postopek za izbolšanje topnosti slabo topnih ali v vodi netopnih polisaharidov kot so pachyman*, explain*, lentinan itd., z uporabo močnih, vročih vodnih raztopin sečnine, tiosečnine, guanidina in njihovih nižjih N-alkilnih derivatov.U.S. patent no. No. 3,883,505 describes a process for improving the solubility of poorly soluble or water insoluble polysaccharides such as pachyman *, explain *, lentinan, etc., using strong, hot aqueous solutions of urea, thiourea, guanidine and their lower N-alkyl derivatives.

U.S. patenta No. 3,987,166; in 3,943,247 opisujeta zdravljenje živalskih tumorjev in preprečevanje in zdravljenje bakterijskih infekcij. Popolnoma drugače kot fosforilirani glukani pripravljeni po tem postopku ki so neviskozni, so glukani pripravljeni po teh patentih visoko viskozni in težko pripravljivi v vodnih raztopinah višjih koncentracij kot 0.5%.U.S. patent no. 3,987,166; and 3,943,247 describe the treatment of animal tumors and the prevention and treatment of bacterial infections. Completely unlike phosphorylated glucan prepared by this process which is non-viscous, glucan prepared according to these patents are highly viscous and difficult to prepare in aqueous solutions of higher concentrations than 0.5%.

Kljub zgornjim postopkom, so še vedno potrebni visoko efektivni, hitrejši postopki za pridobivanje bioaktivnih topnih glukanov, ki se jih lahko uporablja kot modifikatorje biološkega odziva. Predstavljeni postopek ustreza tej dolgo zamišljeni potrebi.Despite the above procedures, highly effective, faster processes are still required to obtain bioactive soluble glucans that can be used as biological response modifiers. The process presented meets this long-imagined need.

3. POVZETEK PREDLOŽENEGA IZUMA3. SUMMARY OF THE INVENTION

Predloženi izum predstavlja izboljšano visoko učinkovito metodo priprave vodotopnih glukanov. Postopek se izogne uporabi DMSO.The present invention provides an improved highly efficient method for the preparation of water-soluble glucans. The process avoids the use of DMSO.

Postopek tega izuma za pripravo topnih glukanov vsebuje naslednje stopnje:The process of the present invention for the preparation of soluble glucans comprises the following steps:

(a) mešanje nevtralne poliglukoze ali glikoproteina poliglukoze z močnim kaotropičnim reagentom in mletje zmesi do finega prahu;(a) mixing neutral polyglucose or glycoprotein polyglucose with a strong chaotropic reagent and grinding the mixture to a fine powder;

*ni ustreznega slovenskega izraza (b) reagirati zmes finega prahu z močno raztopino koncentrirane fosforne kisline do tvorjenja topnega glukana in do pridobitve topnega glukana iz zmesi.* there is no relevant Slovenian expression (b) react the fine powder mixture with a strong solution of concentrated phosphoric acid to form soluble glucan and to obtain soluble glucan from the mixture.

4. KRATEK OPIS DIAGRAMOV IN SLIK4. BRIEF DESCRIPTION OF THE DIAGRAMS AND FIGURES

Predloženi izum lahko bolje razumemo z naslednjim natančnim opisom , primeri specifičnih vključkov izuma in dodatnimi skicami v katerih:The present invention can be better understood by the following detailed description, examples of specific embodiments of the invention and additional drawings in which:

Slika 1. (A-B) predstavlja analizo prehoda spiralnega zvitka. Dekstran (70kD) (Δ-Δ) služi kot linearna kontrola. Kongo rdeče v natrijevem hidroksidu (o-o) služi kot negativna kontrola. Slika 1A pomeni analizo prehoda spirale za topne fosforilirane glukane pripravljene po postopku predloženega izuma. SLIKA 1B je analiza prehodnega stanja spirale za topni, fosforilirani glukan, pripravljen po znanih postopkih. Slika 2. (A-B) prikazuje 13C -NMR spektre topnih fosforiliranih glukanov. Slika 2A kaže NMR spekter topnega fosforiliranega glukana pripravljenega po že znani metodi. Slika 2B kaže NMR spekter topnega fosforiliranega glukana pripravljenega po postopku opisanem v predloženem izumu.Figure 1. (AB) presents an analysis of the spiral roll transition. Dextran (70kD) (Δ-Δ) serves as a linear control. Congo red in sodium hydroxide (oo) serves as a negative control. Figure 1A is an analysis of the helix transition for soluble phosphorylated glucan prepared according to the process of the present invention. FIG. 1B is an analysis of the transition state of a helix for soluble, phosphorylated glucan prepared by known methods. Figure 2. (AB) shows the 13 C-NMR spectra of soluble phosphorylated glucan. Figure 2A shows the NMR spectrum of soluble phosphorylated glucan prepared by a method known in the art. Figure 2B shows the NMR spectrum of soluble phosphorylated glucan prepared according to the method described in the present invention.

5. NATANČNI OPIS IZUMA5. DETAILED DESCRIPTION OF THE INVENTION

5.1 POSTOPEK ZA PRIPRAVO TOPNIH GLUKANOV5.1. PROCEDURE FOR PREPARATION OF SOLUBLE GLUCANES

Skladno s postopkom predloženega izuma pripravimo vodni topni glukan iz nevtralne poliglukoze ali glikoproteina, ki ga dobimo iz več mikrobioloških izvorov kot sledi: nevtralno poliglukozo ali glikoprotein zmešamo z močnim kaotropičnim reagentom kot je sečnina, in suho zmes močno mešamo in jo končno stremo v fin prah. Primeren je vsak način mletja. Za pripravo majhnih količin se lahko zadovoljimo s terilnico in pestilom. V praksi zmešamo približno 1-4 g nevtralnega poliglukana ali glikoproteina z okoli 10-20 g sečnine. Dodamo koncentrirano fosforno kislino (5-50 ml, konc. 20-43%) da tvorimo blatno zmes in reakcijsko zmes segrejemo na 60-80° C med stalnim mešanjem. Reakcijsko zmes držimo pri 60-80° C, 1-6 ur dokler se ne tvori oborina topnega fosforiliranega glukana. Dodamo 10 ml destilirane vode, da preoblikujemo blato, držimo reakcijsko zmes pri 60-80° C s konstantnim mešanjem; večkrat ponovimo dodajanje vode (prednostno trikrat), da obdržimo blato in nadaljujemo s segrevanjem. Najbolje je držati temperaturo pri 60-80° C 1-2 uri. V praksi, po dveurni reakciji dobimo 97% izkoristek. Med reakcijo se sprošča amonijak iz sečnine, kar je najbolj opazno med 1-2 uro po pričetku segrevanja.In accordance with the process of the present invention, an aqueous soluble glucan is prepared from neutral polyglucose or glycoprotein, which is obtained from several microbial sources as follows: the neutral polyglucose or glycoprotein is mixed with a strong chaotropic reagent such as urea, and the dry mixture is stirred vigorously and finely powdered . Any grinding method is suitable. To prepare small quantities, we can use a mortar and pestle. In practice, about 1-4 g of neutral polyglucan or glycoprotein is mixed with about 10-20 g of urea. Concentrated phosphoric acid (5-50 ml, conc. 20-43%) was added to form a mud mixture and the reaction mixture was heated to 60-80 ° C with constant stirring. The reaction mixture was kept at 60-80 ° C for 1-6 hours until a precipitate of soluble phosphorylated glucan formed. Add 10 ml of distilled water to transform the sludge, keeping the reaction mixture at 60-80 ° C with constant stirring; Repeat the addition of water (preferably three times) to keep the sludge and continue heating. It is best to keep the temperature at 60-80 ° C for 1-2 hours. In practice, after a two-hour reaction, 97% yield is obtained. During the reaction, ammonia is released from urea, which is most noticeable 1-2 hours after the start of heating.

V enem primeru, zmešamo 1-4 g parti-kulatnega glukana z 10-20 g sečnine in 20-25 ml koncentrirane fosforne kisline, da pripravimo blato, ki ga obdelujemo kot zgoraj.In one case, mix 1-4 g of parti-culate glucan with 10-20 g of urea and 20-25 ml of concentrated phosphoric acid to prepare the sludge treated as above.

Topni fosforilirani glukan izoliramo iz reakcijske zmesi kot sledi: reakcijsko zmes odstranimo iz toplotne kopeli in jo raztopimo v velikem volumnu destilirane vode tako da resuspendiramo oborino. Odgovarjajočo raztopino filriramo skozi grob, srednje velik in fin sinterni filter, da odstranimo vse ostanke oborine. Raztopini nato dodamo molekularna sita, ki odstranijo vse komponente manjše od 10.000 molske mase. Ustrezno odstranimo iz raztopine še sečnino, glukozo in nezreagirano fosforno kislino. Upodabljamo lahko vsako znano metodo, ki uporablja molekularna sita. Za primer lahko predstavimo uporabo sit z membransko dializo preko Spectrapor membranskih cevi in dializiramo zmes proti tekoči destilirani vodi. V drugem primeru uporabljamo Millipor dializator/koncentrator z membranskim filtrom velikim 10.000 daltonov molske mase in velikim volumnom dializne tekočine.Soluble phosphorylated glucan is isolated from the reaction mixture as follows: The reaction mixture is removed from the heat bath and dissolved in a large volume of distilled water by resuspending the precipitate. The appropriate solution is filtered through a coarse, medium and fine sinter filter to remove any residue of the precipitate. Molecular sieves are then added to the solution, removing all components smaller than 10,000 moles. Urea, glucose and unreacted phosphoric acid are appropriately removed from the solution. Any known method that uses molecular sieves can be depicted. As an example, the use of membrane dialysis sieves via Spectrapor membrane tubes can be demonstrated and the mixture dialyzed against liquid distilled water. In the second case, we use a Millipor dialyzer / concentrator with a membrane filter of 10,000 daltons of molar mass and a large volume of dialysis fluid.

Postopek opisan v predloženem izumu je hitrejši in učinkovitejši kot predhodno znani postopki za pripravo topnih fosfatov glukana. Potreben čas smo zmanjšali na manj kot 2 uri v primerjavi s 6 urami. Nov postopek ne potrebuje tako intenzivnega gretja kot predhodno znane metode.The process described in the present invention is faster and more efficient than previously known processes for the preparation of soluble phosphate glucan. We reduced the required time to less than 2 hours compared to 6 hours. The new process does not require as intense heating as the previously known method.

Nevtralna poliglukoza, ki jo uporabljamo v predloženem postopku za pripravo topnega fosforiliranega glukana je lahko partikulatni glukan izoliran iz celičnih ovojnic S. cerevisiae po znanih postopkih ( glej DiLuzio et al., 1979, lnt'l J. Cancer 224:773-779: Hassid et al., 1941, J.Amer. Chem. Soc., 63:295-298).The neutral polyglucose used in the present process for the preparation of soluble phosphorylated glucan may be a particulate glucan isolated from S. cerevisiae cell envelopes by known methods (see DiLuzio et al. 1979, lnt'l J. Cancer 224: 773-779: Hassid et al., 1941, J.Amer. Chem. Soc., 63: 295-298.

Dodatno lahko pripravimo topni fosforilirani glukan iz nevtralne poliglukoze ali glikoproteinov pridobljenih iz različnih mikrobioloških izvorov. V Tabeli 1 predstavljamo neizčrpen seznam teh izvorov po U.S. patentu No. 4,739,046, ki je tukaj vključen kot referenca.Additionally, soluble phosphorylated glucan from neutral polyglucose or glycoproteins obtained from various microbial sources can be prepared. In Table 1, we present a non-exhaustive list of these U.S. sources. patent no. No. 4,739,046, which is incorporated herein by reference.

5.2 PRODUKTI IZ TOPNEGA GLUKANA IN NJIHOVA5.2 SOLUBLE GLUCAN PRODUCTS AND THEIR

UPORABAAPPLICATION

Izdelki topnega glukana pripravljeni po ustreznem postopku tega izuma niso toksični, pirogeni in niso imunogeni, če so testirani z interfacialnim obročnim testom. Kot je prikazano v Primeru 7, so topni fosforilirani glukani pripravljeni po teh izboljšanih postopkih snovno enaki po sestavi tem, ki so pripravljeni po predhodno znanih postopkih.The soluble glucan products prepared by the corresponding process of the present invention are non-toxic, pyrogenic and non-immunogenic when tested by interfacial ring test. As shown in Example 7, soluble phosphorylated glucan prepared by these improved processes are substantially identical in composition to those prepared by previously known methods.

Topni glukani pripravljeni po predloženih postopkih kažejo temeljito izražen biološki odziv, kadar jih administriramo in vivo. Bolj natančno, ker so učinkoviti kot biološki modifikatorji biološkega odziva, so produkti pridobljeni po predloženih postopkih uporabni za profilakso in terapijo infekcijskih bolezni povzročenih z vrsto mikroorganizmov, vključno, vendar ne omejujoče na bakterije, viruse, gljive in protozojske parazite. Dodatno lahko topne glukane uporabljamo za preprečevanje in/ali zdravljenje oportunističnih infekcij pri živalih in ljudeh, ki so imunosupresivne kot rezultat predrojstvene ali pridobljene imunodeficience.The soluble glucans prepared by the methods presented show a thoroughly expressed biological response when administered in vivo. More specifically, because they are effective as biological modifiers of biological response, the products obtained by the following methods are useful for the prophylaxis and therapy of infectious diseases caused by a variety of microorganisms, including but not limited to bacteria, viruses, fungi and protozoan parasites. Additionally, soluble glucans can be used to prevent and / or treat opportunistic infections in animals and humans that are immunosuppressive as a result of prenatal or acquired immunodeficiency.

Zaradi nezmožnosti stimuliranja aktivnosti makrofagov in razmnoževanja lahko uporabljamo topne glukane same, ali v kombinacijski terapiji neoplazm.Due to the inability to stimulate macrophage activity and reproduction, soluble glucans can be used alone or in combination therapy of neoplasms.

Načini administriranja so, vendar ne omejeni, na sledeče: oralno, z vbrizgavanjem, vključujoč, vendar ne omejeni na intravenozno, intraperitoralno, podkožno, intramuskularno in lokalno aplikacijo. Topne glukane lahko dodajamo v kombinaciji z vodo, z vodno raztopino ali z katerimkoli biološko sprejemljivim nosilcem.Administration is, but is not limited to, the following: oral, injectable, including but not limited to intravenous, intraperitoneal, subcutaneous, intramuscular and topical application. Soluble glucans can be added in combination with water, with an aqueous solution or with any biologically acceptable carrier.

Za ilustracijo bomo predstavili naslednjo vrsto primerov, vendar ne kot omejujoče za obseg tega izuma.As an illustration, we will present the following series of examples, but not as limiting to the scope of the present invention.

6. PRIPRAVA TOPNEGA FOSFORILIRANEGA6. PREPARATION OF SOLUBLE Phosphorylated

GLUKANAGLUKANA

Partikulatni glukan smo pripravili iz Saccharomyces cerevisiae ustrezno metodi DiLuzia et al., 1979, Infl J. Cancer 24:773-779. 540 g suhega kvasa (Universal Foods Corp., Milvvaukee, Wl) smo suspendirali v 3% raztopini vodnega natrijevega hidroksida v 6 I posodi do končnega volumna 5 I. Suspenzijo smo postavili v vrelo vodno kopel za 4 ure, jo ohladili preko noči in oddekantirali tekočino. Ta postopek smo ponovili trikrat. Preostanek smo nato nakisali s 5,75% klorovodikovo kislino do končnega volumna 5 I in jo postavili v vrelo vodno kopel za 4 ure. Suspenzijo smo nato pustili stati preko noči in tekočino zopet oddekantirali. Preostanek smo dvakrat razredčili z 3% solno kislino do končnega volumna 5 I pri 100°C. Preostanek smo sprali z vrelo vodo in večkrat oddekantirali dokler ostanek ni postal koloiden. Preostaku smo dodali 1 I etanola, zmes skrbno zmešali in jo pustili stati minimalno 24 ur, da se maksimalno ekstrahira. Temno rdečerjavo alkoholno matičnico smo odnučirali od preostanka in zavrgli. Postopek alkoholne ekstrakcije smo ponavljali dokler nismo dobili brezbarvnega supernatanta. Alkohol smo odstranili s štirikratnim spiranjem preostanka z vročo vodo; pripravek partikulatnega glukana smo nato odločili s centrifugiranjem, zamrznili in liofilizirali.Particulate glucan was prepared from Saccharomyces cerevisiae according to the method of DiLuzia et al., 1979, Infl J. Cancer 24: 773-779. 540 g of dry yeast (Universal Foods Corp., Milvvaukee, Wl) was suspended in 3% aqueous sodium hydroxide solution in a 6 I container until a final volume of 5 I. The suspension was placed in a boiling water bath for 4 hours, cooled overnight and decanted. fluid. We repeated this process three times. The residue was then acidified with 5.75% hydrochloric acid to a final volume of 5 I and placed in a boiling water bath for 4 hours. The suspension was then allowed to stand overnight and the liquid was decanted again. The residue was diluted twice with 3% hydrochloric acid to a final volume of 5 I at 100 ° C. The residue was washed with boiling water and decanted several times until the residue became colloidal. 1 I of ethanol was added to the residue, the mixture was carefully mixed and allowed to stand for a minimum of 24 hours to maximize extraction. The dark red liquor mother liquor was discarded from the rest and discarded. The alcohol extraction process was repeated until a colorless supernatant was obtained. The alcohol was removed by washing the residue four times with hot water; the particulate glucan preparation was then decided by centrifugation, frozen and lyophilized.

Topne fosforilirane glukane smo pripravili v smislu predloženega izuma s solubilizacijo in fosforiliranjem partikulatnega glukana kot sledi:Soluble phosphorylated glucan was prepared according to the present invention by solubilizing and phosphorylating the particulate glucan as follows:

g partikulatnega glukana smo zmešali z 18 g sečnine, zmes zmleli s pestilom v terilnici in tako pripravili fino zdrobljeno praškasto zmes. Počasi smo dodali 25 ml fosforne kisline (43%) in pretvorili prašnato zmes v blato. Zmes smo nato segreli na 60-80° C in jo držali pri tej temperaturi nadalnji 1-2 uri s konstantnim mešanjem. Tvorila se je oborina, ki je postala vidna čez kake 1-1,5 ure in je kasneje narasla. Dodali smo približno 10 ml destilirane vode (Milli-Q- voda ) in nadaljevali s segrevanjem in mešanjem. Dodajanje destilirane vode (10 ml) smo trikrat ponovili in še nadaljevali s segrevanjem (1-2 uri). Zmes smo nato prenehali segrevati, jo ohladili in razredčili s približno 1 I destilirane vode, da smo resuspendirali oborino. S serijo filtrov smo zmes prefiltrirali in s tem odstranili preostali precipitat.g of particulate glucan was mixed with 18 g of urea, the mixture was ground with a pestle in a mortar and thus a finely ground powder mixture was prepared. Slowly added 25 ml of phosphoric acid (43%) and converted the powder mixture to sludge. The mixture was then heated to 60-80 ° C and held at this temperature for a further 1-2 hours with constant stirring. A precipitate formed, which became visible within 1-1.5 hours and subsequently increased. About 10 ml of distilled water (Milli-Q- water) was added and heating and stirring was continued. The addition of distilled water (10 ml) was repeated three times and continued to warm (1-2 hours). The mixture was then stopped warming, cooled and diluted with about 1 I of distilled water to resuspend the precipitate. A series of filters filtered the mixture to remove residual precipitate.

Odgovarjajočo raztopino, ki je vsebovala fosforilirani glukan smo nato obdelali z molekularnimi siti in s tem odstranili frakcije z nizko molekulsko maso, vključno sečnino in glukozo. V tej vrsti eksperimentov smo zmes filtrirali skozi grob (1-3 pm), srednji 0,8 pm, 0,65 pm in fini (0,45 pm) sinterni Millipore filter, da bi odstranili oborino. Raztopino smo nato - ponovno obdelali z molekularnimi siti preko dializator/koncentratorja (Millipore Corp. Bedford ,MA) z membranskim filtrom (10.000 MW ). Nato smo z dializo proti 24-100 I destilirane vode (Milli-Q voda) odstranili spojine z niško molekulsko maso.The corresponding solution containing phosphorylated glucan was then treated with molecular sieves to remove low molecular weight fractions, including urea and glucose. In this type of experiment, the mixture was filtered through a coarse (1-3 pm), a mean 0.8 pm, 0.65 pm and a fine (0.45 pm) sinter Millipore filter to remove the precipitate. The solution was then - re-treated with molecular sieves via a dialyser / concentrator (Millipore Corp. Bedford, MA) with a membrane filter (10,000 MW). Then, dialysis against 24-100 I distilled water (Milli-Q water) eliminated niche molecular weight compounds.

Po obdelanju raztopine, ki je vsebovala topni fosforilirani glukan z molekularnimi siti, smo raztopino koncentrirali in liofilizirali. Izkoristek je bil 97%.After treatment of the solution containing soluble phosphorylated glucan with molecular sieves, the solution was concentrated and lyophilized. The yield was 97%.

7. KARAKTERIZACIJA TOPNIH FOSFORILIRANIH7. CHARACTERIZATION OF SOLUBLE PHOSPHORILATED

GLUKANOV PRIPRAVLJENIH PO PREDLOŽENEMGLUCANS PREPARED AFTER PROPOSED

IZUMU.IZUMU.

Izvršili smo serijo poskusov za primerjavo topnih fosforiliranih glukanov (označenih kot glukan fosfat-no DMSO), pripravljenih s postopkom tega izuma opisanim v odseku 5 zgoraj, s topnim fosforiliranim glukanom (označenim kot glukan fosfat), ki je bil pripravljen po predhodnem znanem postopku, po metodi iz U.S. patenta No. 4.739.046.A series of experiments were performed to compare soluble phosphorylated glucan (labeled glucan phosphate DMSO) prepared by the process of the present invention described in section 5 above with soluble phosphorylated glucan (labeled glucan phosphate) prepared by a prior known method, by the method of US patent no. 4.739.046.

7.1 ELEMENTNA SESTAVA7.1 ELEMENTAL COMPOSITION

Elementna sestava glukan fosfat-no DMSO je bila določena v Galbright Laboratoires v Knoxvillu,TN. Primerjava elementne sestave s sestavo glukan fosfata je podana v Tabeli 1.The elemental composition of glucan phosphate-no DMSO was determined at Galbright Laboratoires in Knoxville, TN. Comparison of elemental composition with glucan phosphate composition is given in Table 1.

Tabela 1Table 1

Kemična sestava topnih glukanovChemical composition of soluble glucans

element element glukan fosfat Mol% glucan phosphate Mol% glukan fosfat (No DMSO) Mol% glucan phosphate (No DMSO) Mol% Ogljik Carbon 34,66 34.66 32,72 32.72 Vodik Hydrogen 6,29 6.29 6,32 6.32 Kisik Oxygen 42,83 42.83 48,67 48.67 Fosfor Phosphorus 2,23 2.23 4,37 4.37

Elementna sestava glukan fosfata pripravljenega po postopku predloženem v tem izumu ga označuje kot bistveno identičnega v primerjavi z znanim gukan fosfatom. Iz Tabele 1. je razvidno, da je edina vidna razlika med produktoma v stopnji fosforiliranja. Glukan fosfat-no DMSO poseduje eno fosfatno substitucijo na vsake 3 glukozne enote, medtem ko pri glukan fosfat-u zasledimo eno fosfatno substitucijo na 7 glukoznih enot.The elemental composition of glucan phosphate prepared according to the process of the present invention characterizes it as substantially identical to that of known gucan phosphate. Table 1 shows that the only visible difference between the products is the degree of phosphorylation. Glucan phosphate DMSO has one phosphate substitution for every 3 glucose units, whereas for glucan phosphate one phosphate substitution per 7 glucose units is observed.

7. 2 RAZPOREDITEV MOLEKULSKIH MAS7. 2 MOLECULAR WEIGHT DISTRIBUTION

Razporeditev molekulskih mas (polimerov) obeh glukanov je bila določena z vodno gelsko permeabilno kromatografijo (GPC). Osnovni GPC sistem sestoji iz Waters 600E odtočnega sistema topil, U6K ročnega injektorja in komore za ogrevanje kolon (Waters Chromatography Division, Millipore Corp., Milford, MA). Mobilna faza je 0,05 M natrijev nitrit, spravljen v sterilnem rezervarju (Kontess, Vineland, NJ). Pred uporabo pa se skrbno odstrani zrak s prepihavanjem s helijem. Pretok mobilne faze je bil 0,5 ml/min. Tri Ultrahydrogel vodne GPC kolone (Waters Chromatography Division, Milford,Ma) z ekskluzijskimi limitami 2 χ 106 D, 5 χ 105 D in 1,2 x 105 D so povezali v vrsti z dodatno Ultrahydrogel zaščitno kolono. Kolone so držali pri 30°C. Hitrost pretoka, temperatura kolon in delovanje črpalke so kontrolirali z Maxima 820 GPC softverom (Dynamic Solutions, Ventura CA).The molecular weight (polymers) distribution of both glucan was determined by aqueous gel permeable chromatography (GPC). The basic GPC system consists of a Waters 600E solvent drain system, a U6K manual injector and a column heating chamber (Waters Chromatography Division, Millipore Corp., Milford, MA). The mobile phase is 0.05 M sodium nitrite stored in a sterile tank (Kontess, Vineland, NJ). Carefully remove the helium blowing air before use. The mobile phase flow was 0.5 ml / min. Three Ultrahydrogel aqueous GPC columns (Waters Chromatography Division, Milford, Ma) with exclusion limits of 2 χ 10 6 D, 5 χ 10 5 D and 1.2 x 10 5 D were connected in series with an additional Ultrahydrogel protection column. The columns were kept at 30 ° C. Flow rate, column temperature and pump performance were controlled with Maxima 820 GPC software (Dynamic Solutions, Ventura CA).

Sistem so kalibrirali z ozkotrakovnimi polulanskimi in dekstranskimi standardi. Za analizo so glukane raztopili v mobilni fazi pri koncentraciji 2-3 mg/ml ob rahlem stresanju, dokler ni potekla popolna hidratacija (2-3 ure). Pri vseh analizah so uporabljali 200 ml injekcijske volumne.The system was calibrated using narrow-band half-wave and dextran standards. For analysis, glucans were dissolved in the mobile phase at a concentration of 2-3 mg / ml with gentle shaking until complete hydration (2-3 hours) had elapsed. 200 ml injection volumes were used in all analyzes.

Absolutne molekulske mase glukanov so določili z on-line večkotno lasersko svetlobno razprševalno fotometrijo (MALLS), z uporabo Dawn-F MALLS fotometra opremljenega s K5 pretočno celico (Wyatt Technology Corp, Santa Barbara CA). Absolutna porazdelitev molekulskih mas (MW), momenti MW (številčno poprečje MW, Z-poprečje MW, utežno poprečje MW ), vrh MW, polidisperznost in koren sredjega kvadratnega radija momenta so bili določeni z ASTRA softverom (v.2,0). Predpostavljen je bil diferencialni indeks lomnega količnika (dn/dc), vrednosti 0,146 cm3/g. Objavljene molekulske mase pollulanovih in dekstranovih standardov, ki so jih uporabili za preverjanje kalibracij kolon, so pokazale dobro ujemanje z MALLS rezultati.Absolute molecular weights of glucan were determined by on-line multilayer laser light scattering photometry (MALLS), using a Dawn-F MALLS photometer equipped with a K5 flow cell (Wyatt Technology Corp, Santa Barbara CA). The absolute distribution of molecular masses (MW), MW moments (numerical average MW, Z-average MW, weighted average MW), MW peak, polydispersity, and root mean square radius of the torque were determined by ASTRA software (v.2,0). A differential refractive index (dn / dc) of 0.146 cm3 / g was assumed. The published molecular weights of the pollulan and dextran standards used to verify column calibrations showed good agreement with the MALLS results.

Dinamična viskoznost ([η]) polimernih glukanov je bila določena z on-line diferenčno viskozimetrijo (d.v.). Pri določevanju kolonskega eluenta so uporabili pretok le-tega skozi Viscotek Model 200, diferencialnega refraktometra/viskometra in analizirali podatke z Unical softverom (Viscotek, Porter, TX). Določevanje molekulskih mas standardov z uporabo omenjenih tehnik je pokazalo dobro ujemanje z MALLS rezultati. Dinamična viskoznost polulanskih standardov se je tesno ujemala s prejšnimi podatki. Poprečne molske mase, polidisperznost in dinamična viskoznost glukan fosfata brez DMSO je podana v Tabeli 2. Za primerjavo so predstavljeni analogni podatki za glukan fosfat pripravljen po postopku iz patenta U.S. No. 4,739,046.The dynamic viscosity ([η]) of polymer glucan was determined by on-line differential viscometry (d.v.). For the determination of the column eluent, it was used to flow through the Viscotek Model 200, differential refractometer / viscometer, and analyze the data with Unical software (Viscotek, Porter, TX). Molecular weight determination of standards using the above techniques showed good agreement with MALLS results. The dynamic viscosity of the Polulan standards closely matched the previous data. The transverse molar masses, polydispersity and dynamic viscosity of glucan phosphate without DMSO are given in Table 2. For comparison, analogous data for glucan phosphate prepared according to the process of U.S. Pat. No. No. 4,739,046.

Tabela 2Table 2

Karakteristike molekulskih masMolecular mass characteristics

parameter3 parameter 3 glukan fosfat glucan phosphate glukan fosfat no DMSO glucan phosphate no DMSO vrh 1 top 1 vrh 2 top 2 vrh 1 top 1 vrh 2 top 2 Ma M a 1.28 χ 106 1.28 χ 10 6 0.25x105 0.25x10 5 2.77x106 2.77x10 6 0.18 χ 105 0.18 χ 10 5 Mw M w 3.57 χ 106 3.57 χ 10 6 1.10Χ105 1.10Χ10 5 5.45x106 5.45x10 6 1.10x 105 1.10x 10 5 Mz M z 1.22 χ 107 1.22 χ 10 7 3.04x105 3.04x10 5 1.47 χ 107 1.47 χ 10 7 2.75 x 105 2.75 x 10 5 Mw M w 31.7 31.7 25.4 25.4 40.3 40.3 b b RMSR(nm) RMSR (nm) Polidisperznost(l) Polydispersity (l) 3.2 3.2 6.2 6.2 1.97 1.97 6.1 6.1 [η] [η] c c 0.29 0.29 c c 0.30 0.30

a Mn predstavlja: številčno poprečno MW a M n represents: numerically transverse MW

Mw predstavlja: utežno poprečno MW Mz predstavlja: z-poprečno MWM w represents: mostly transverse MW M z represents: z-transverse MW

Mw RMS radij: utežno-poprečni kvadratni koren radija (nm)M w RMS radius: weight transverse square root of the radius (nm)

Vse MW so izražene v g/mol. η predstavlja dinamično viskoznost b RMS radij ni bilo mogoče določiti za ta del vzorca c Zaradi nizke koncentracije polimerov na vrhu 1 ni bilo mogoče določiti dinamične viskoznosti na tem delu vzorca.All MW are expressed in g / mol. η represents the dynamic viscosity b The RMS radius could not be determined for this part of the sample c Due to the low concentration of polymers at the top 1, it was not possible to determine the dynamic viscosity on this part of the sample.

Tabeli 2 se vidi, da so karakteristike molekulskih mas glukan fosfat-no DMSO in glukan fosfata pripravljenega po predhodni metodologiji izredno podobne, pravzaprav v osnovi identične. Pri uporabi navedenih tehnik sta bila opažena dva vrhova pri obeh pripravljenih fosfatnih glukanih. Večina polimerov v obeh preparatih se nahaja v vrhu 2; v obeh preparatih vsebuje vrh 1 < 2% vseh polimerov. V Tabeli 2. je jasno prikazano, da so Mn, značilen za delež polimerov z nizkimi MW, in Mw, znčilen za delež poprečne MW in Ml, delež značilen za delež polimerov z visoko MW, v osnovi identični pri vrhu 2, v obeh pripravljenih glukan fosfatih. Polidisperznostni indeks dodatno potrjuje identičnost, saj kaže na identično homogenost polimerov. Iz Tabele 2. se končno tudi vidi, da je dinamična viskoznost obeh sestavin dejansko identična.Table 2 shows that the molecular weight characteristics of glucan phosphate DMSO and glucan phosphate prepared according to the previous methodology are extremely similar, in fact essentially identical. Using these techniques, two peaks were observed for both prepared phosphate glucan. Most of the polymers in both preparations are in the top 2; in both preparations the peak contains 1 <2% of all polymers. Table 2 clearly shows that M n characteristic of the fraction of polymers with low MW and M w characteristic of the fraction of transverse MW and Ml, the fraction characteristic of the proportion of polymers with high MW, are essentially identical at the top 2, in of both prepared glucan phosphates. The polydispersity index further confirms the identity, as it indicates the identical homogeneity of the polymers. Table 2 also finally shows that the dynamic viscosity of the two components is actually identical.

7.3 ANALIZA KONFORMACIJSKE STRUKTURE7.3 CONFORMITY STRUCTURE ANALYSIS

Konformacijka struktura je bila ocenjena z uporabo tehnike Ogawe in sodelavcev (Ogawa in Hatana, 1978, Carbohydrate Res. 6Z:527535; Ogawa in Tsurugi, 1973, Carbohydrate Res. 29:397-403). Ta tehnika določa absorpcijske maksimume polimernih raztopin kompleksiranih s Kongo rdečim v prisotnosti različnih koncentracij hidroksilnega iona. Prisotnost spojin s trojno vijačnico, bi bila na primer označena s premikom v absorpcijskem maksimumu raztopine pri povečanju koncentracije natrijevega hidroksida. Vodikove vezi se prekinejo z relaksacijo polimerne spirale, kar ima za posledico kompleksiranje Kongo rdečega z ogljikovim hidratom.The conformational structure was evaluated using the technique of Ogawe et al. (Ogawa and Hatana, 1978; Carbohydrate Res. 6Z: 527535; Ogawa and Tsurugi, 1973; Carbohydrate Res. 29: 397-403). This technique determines the absorption maxima of polymer solutions complexed with Congo red in the presence of different concentrations of hydroxyl ion. For example, the presence of compounds with a triple helix would be indicated by a shift in the absorption maximum of the solution with increasing sodium hydroxide concentration. Hydrogen bonds are broken by polymer helix relaxation, resulting in the complexation of Congo red with carbohydrate.

Že prej so pokazali, da je urejena (vijačna) konformacija bistvena pri ogljikovih hidratih kot je glukan, za tvorbo kompleksa z barvilom Kongo rdeče. Vodne raztopine Kongo rdečega (44 pm) so pripravili pri različnih koncentracijah NaOH (1 mM do 1000 mM). Rezultati so predstavljeni v sliki 1. (A in B) in sicer za glukan fosfat-no DMSO in glukan fosfat.Earlier, they showed that an orderly (helical) conformation is essential for carbohydrates such as glucan to form a complex with Congo dye red. Aqueous solutions of Congo red (44 pm) were prepared at various NaOH concentrations (1 mM to 1000 mM). The results are presented in Figure 1. (A and B) for glucan phosphate DMSO and glucan phosphate, respectively.

Kakor se vidi iz slike 1. (A in B), kaže analiza konformacijske strukture obeh giukanov, glukan fosfata in glukan fosfata-no DMSO urejeno konformacijo trojne vijačnice. V obeh primerih je bil opažen premik absobcijskega maksimuma pri spremembi koncentracije natrijevega hidroksida od 0,1 - okoli 0,4 M.As can be seen from Figure 1. (A and B), the conformational structure analysis of the two giucans, glucan phosphate and glucan phosphate DMSO, show an ordered conformation of the triple helix. In both cases, a shift of the absorption maximum was observed when the sodium hydroxide concentration changed from 0.1 to about 0.4 M.

7.4 NUKLEARNA MAGNETNA RESONANČNA7.4 NUCLEAR MAGNETIC RESONANCE

SPEKTROSKOPIJASPECTROSCOPY

13c jedrska magnetna resonančna spektroskopija (13CNMR) na Bruker 260 MHz NMR spektrometru (Bruker Instruments, INc., Billerica, MA) je bila uporabljena za določanje položaja medverižnih povezav v glukan fosfatu in glukan fosfatu-no DMSO. Topna glukan fosfat ali glukan fosfat-no DMSO sta bila raztopljena v D2O (50 mg/ml) in meritve izvedene pri sledečih pogojih:13c Nuclear Magnetic Resonance Spectroscopy ( 13 CNMR) on a Bruker 260 MHz NMR spectrometer (Bruker Instruments, INc., Billerica, MA) was used to determine the position of the interconnections in glucan phosphate and glucan phosphate DMSO. Soluble glucan phosphate or glucan phosphate DMSO was dissolved in D 2 O (50 mg / ml) and measurements were made under the following conditions:

MOČ POLJA: 50 MHzFIELD POWER: 50 MHz

RELAKSACIJSKI ZAMIK: 1 sekunda,RELAXATION LOCK: 1 second,

VELIKOST PULZA: 15° - 20°,PULSE SIZE: 15 ° - 20 °,

ŠTEVILO PONOVITEV: Glukan fosfat 694 pon.REPEAT NUMBER: Glucan Phosphate 694 Mon.

Glukan fosfat-no DMSO, 14.900 pon.Glucan Phosphate DMSO, 14,900 Mon.

Rezultati so prikazani na Sliki 2. (A-B) in v Tabeli 3.The results are shown in Figure 2. (A-B) and Table 3.

Tabela 3Table 3

13C -NMR kemijski premiki glukanov*13C-NMR chemical shifts of glucans *

ogljikov atom carbon atom glukan fosfat glucan phosphate glukan fosfat (No DMSO) glucan phosphate (No DMSO) C-1 C-1 102,58 102.58 105,02 105.02 C-2 C-2 73,23 73.23 75,88 75.88 C-3 C-3 84,45 84.45 86,76 86.76 C-4a C-4a 68,21 68.21 70,79 70.79 C-4b C-4b 70,37 70.37 C-5a C-5a 75,66 75.66 78,26 78.26 C-5b C-5b 77,15 77.15 C-6 C-6 60,81 60.81 63,40 63.40

* Kemijski premiki v ppm* Chemical shifts in ppm

Vrhova C4^ in C513 opažena pri glukan fosfat-no DMSO, nista opazna pri glukan fosfat-u, kar je edina razlika med glukan fosfat-om in glukan fosfat-no DMSO. Jasno je, da spojine kažejo 13C-NMR spektre, ki so značilni za β-1,3-spojitev (Colson, Carbohydrate Res., 71/265, 1979).Peaks C4 ^ and C5 13 observed with glucan phosphate DMSO are not observed with glucan phosphate, which is the only difference between glucan phosphate and glucan phosphate DMSO. It is clear that the compounds exhibit 13 C-NMR spectra that are characteristic of the β-1,3-coupling (Colson, Carbohydrate Res., 71/265, 1979).

Zahtevani in tukaj pojasneni izum ni omejen v širini s specifičnimi opisanimi predstavitvami, ker so te predstavitve namenjene ilustraciji več aspektov izuma. Vse ekvivalentne predstavitve so omejene znotraj obsega tega izuma. Različne modifikacije tega izuma bodo zares evidentne, dodatno k že opisanim tukaj, za vse strokovnjake. Te modifikacije naj bi tudi sovpadle znotraj obsega dodatnih zahtevkov. Citirane so številne reference, katerih vsebina je vključena celovito.The invention claimed and explained herein is not limited in scope by the specific presentations described, since these representations are intended to illustrate several aspects of the invention. All equivalent representations are limited within the scope of the present invention. Various modifications of the present invention will be truly evident, in addition to those already described herein, for all experts. These modifications should also coincide with the scope of the additional claims. A number of references are cited, the content of which is comprehensively included.

Claims (7)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Postopek za pripravo topnega fosforiliranega glukana, označen s tem, da (a) zmešamo nevtralno poliglukozo ali glikoprotein z močno kaotropičnim reagentom in zmes zdrobimo v fin prah;A process for the preparation of soluble phosphorylated glucan, characterized in that (a) the neutral polyglucose or glycoprotein is mixed with a strongly chaotropic reagent and the mixture is ground to a fine powder; (b) reagiramo fini prah s koncentrirano fosforno kislino, da tvorimo reakcijsko zmes, ki vsebuje topni fosforiliran glukan; in (c) pridobimo odgovarjajoči topni fosforilirani glukan iz reakcijske zmesi.(b) react the fine powder with concentrated phosphoric acid to form a reaction mixture containing soluble phosphorylated glucan; and (c) obtain the corresponding soluble phosphorylated glucan from the reaction mixture. 2. Postopek po zahtevku 1, označen s tem, da predstavlja sečnina kaotropičen reagent.A process according to claim 1, characterized in that the urea is a chaotropic reagent. 3. Postopek po zahtevku 1, označen s tem, da nadalje obsega segrevanje reakcijske zmesi po stopnji (b) na 60-80°C približno 6 ur.The process of claim 1, further comprising heating the reaction mixture according to step (b) to 60-80 ° C for about 6 hours. 4. Postopek po zahtevku 3, označen s tem, da reakcijsko zmes segrevamo na 60-80° C 1-2 uri.Process according to claim 3, characterized in that the reaction mixture is heated to 60-80 ° C for 1-2 hours. 5. Postopek po zahtevku 1, označen s tem, da topni fosforilirani glukan izoliramo z:Process according to claim 1, characterized in that soluble phosphorylated glucan is isolated by: (a) obarjanjem topnega fosforili-ranega glukana;(a) precipitation of soluble phosphorylated glucan; (b) dodatkom dovolj velike količine vode, da resuspendiramo oborjeni topni fosforilirani glukan;(b) addition of a sufficient amount of water to resuspend the precipitated soluble phosphorylated glucan; (c) odstranitvijo vseh komponent z manjšo molekulsko maso od 10.000 daltonov.(c) removal of all components with a molecular weight less than 10,000 daltons. 6. Postopek po zahtevku 1, označen s tem, da nevtralna poliglukoza vsebuje partikulatni glukan pridobljen iz mikroorganizmov.Method according to claim 1, characterized in that the neutral polyglucose contains particulate glucan obtained from microorganisms. 7. Postopek po zahtevku 6, označen s tem, da je partikulatni glukan pridobljen iz Saccharomyces cerevisiae.A method according to claim 6, characterized in that the particulate glucan is derived from Saccharomyces cerevisiae.
SI9300415A 1992-08-05 1993-08-04 Improved method for preparing soluble glucans SI9300415A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US92607892A 1992-08-05 1992-08-05

Publications (1)

Publication Number Publication Date
SI9300415A true SI9300415A (en) 1994-06-30

Family

ID=25452720

Family Applications (1)

Application Number Title Priority Date Filing Date
SI9300415A SI9300415A (en) 1992-08-05 1993-08-04 Improved method for preparing soluble glucans

Country Status (8)

Country Link
EP (1) EP0654045A4 (en)
CN (1) CN1091747A (en)
AU (1) AU4837693A (en)
CA (1) CA2141845A1 (en)
MX (1) MX9304728A (en)
SI (1) SI9300415A (en)
WO (1) WO1994003498A1 (en)
ZA (1) ZA935649B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622939A (en) * 1992-08-21 1997-04-22 Alpha-Beta Technology, Inc. Glucan preparation
JPH05503952A (en) * 1989-09-08 1993-06-24 アルファ ベータ テクノロジー,インコーポレイティッド Method for producing soluble glucans
US5811542A (en) * 1989-09-08 1998-09-22 Alpha-Beta Technology, Inc. Method for producing soluble glucans
US5488040A (en) * 1989-09-08 1996-01-30 Alpha-Beta Technology, Inc. Use of neutral soluble glucan preparations to stimulate platelet production
US5786343A (en) * 1997-03-05 1998-07-28 Immudyne, Inc. Phagocytosis activator compositions and their use
US6046323A (en) * 1997-07-29 2000-04-04 The Collaborative Group, Ltd. Conformations of PPG-glucan
AU6261999A (en) 1998-09-25 2000-04-17 Collaborative Group, Ltd., The Very high molecular weight beta-glucans
US6369216B1 (en) 1998-09-25 2002-04-09 Biopolymer Engineering Pharmaceutical, Inc. Very high molecular weight β-glucans
US7507724B2 (en) * 2001-01-16 2009-03-24 Sloan-Kettering Institute For Cancer Research Therapy-enhancing glucan
CN117016797B (en) * 2023-08-14 2024-06-04 四川合泰新光生物科技有限公司 Method for improving dissolution rate of glucan

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3883505A (en) * 1972-07-17 1975-05-13 Ajinomoto Kk Method of solubilizing polysaccharides
US4739046A (en) * 1985-08-19 1988-04-19 Luzio Nicholas R Di Soluble phosphorylated glucan
US4946450A (en) * 1989-04-18 1990-08-07 Biosource Genetics Corporation Glucan/collagen therapeutic eye shields

Also Published As

Publication number Publication date
AU4837693A (en) 1994-03-03
MX9304728A (en) 1994-05-31
CN1091747A (en) 1994-09-07
CA2141845A1 (en) 1994-02-17
ZA935649B (en) 1994-03-07
EP0654045A4 (en) 1996-03-20
WO1994003498A1 (en) 1994-02-17
EP0654045A1 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
KR900008442B1 (en) Souble phospkorylated glucan
Williams et al. A method for the solubilization of a (1→ 3)-β-D-glucan isolated from Saccharomyces cerevisiae
Müller et al. The application of various protic acids in the extraction of (1→ 3)-β-D-glucan from Saccharomyces cerevisiae
Williams et al. Development of a water-soluble, sulfated (1→ 3)-β-D-glucan biological response modifier derived from Saccharomyces cerevisiae
CN104822382B (en) Saccharide compound for treatment of diabetic nephropathy and the galactose branches of relevant disease
JP6541643B2 (en) Phytoglycogen nanoparticles and method for producing the same
Cooper et al. Anti-complementary action of polymorphic “solubility forms” of particulate inulin
SI9300415A (en) Improved method for preparing soluble glucans
US4975421A (en) Soluble phosphorylated glucan: methods and compositions for wound healing
US11547719B2 (en) Acetylation of aloe polysaccharides
JPS62209101A (en) Immuno-stimulative polysaccharides from cell culture of echinacea prupurea or echinacea angustifolia, its production and preparation containing the same
CN114163545B (en) Lycium barbarum polysaccharide and application thereof in reducing blood sugar
US5574023A (en) Intramolecularly crosslinked (1→3)-β-D-glucans
Solberg et al. Alginate-based diblock polymers: preparation, characterization and Ca-induced self-assembly
US5561226A (en) Process for the production of a pyrogen-free fructan which is readily water-soluble
WO1992013896A1 (en) Soluble glucans
CN110520171A (en) Carbohydrate composition for dialysis
S̆oltés et al. HPLC and 13C‐NMR study of carboxymethyl‐β‐(1→ 6)‐d‐gluco‐β‐(1→ 3)‐d‐glucan derived from saccharomyces cerevisiae
Rahimi et al. Fractionation and determination of some structural properties of Persian Gum
Hensel γ-Propoxy-sulfo-lichenin, an antitumor polysaccharide derived from lichenin
CN111040042A (en) Wolfberry polysaccharide, preparation method and application thereof
JP2583183B2 (en) Process for producing bioactive glycogen and bioactivity
Doyle Carbohydrate‐Concanavalin A Interactions A Note on Recent Studies
JPS6371188A (en) Production of carcinostatic substance