SI9300226A - Process for automatic control of liquid-cristal light transparency modulator for velding goggles - Google Patents

Process for automatic control of liquid-cristal light transparency modulator for velding goggles Download PDF

Info

Publication number
SI9300226A
SI9300226A SI9300226A SI9300226A SI9300226A SI 9300226 A SI9300226 A SI 9300226A SI 9300226 A SI9300226 A SI 9300226A SI 9300226 A SI9300226 A SI 9300226A SI 9300226 A SI9300226 A SI 9300226A
Authority
SI
Slovenia
Prior art keywords
cell
welding
voltage
liquid crystal
control
Prior art date
Application number
SI9300226A
Other languages
Slovenian (sl)
Inventor
Janez Pirs
Ivan Kvasic
Igor Musevic
Bojan Marin
Samo Kopac
Original Assignee
Inst Jozef Stefan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inst Jozef Stefan filed Critical Inst Jozef Stefan
Priority to SI9300226A priority Critical patent/SI9300226A/en
Priority to PCT/SI1994/000004 priority patent/WO1994025892A1/en
Publication of SI9300226A publication Critical patent/SI9300226A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

In accordance with the method of the invention to automatically control a liquid crystal light tansmission modulator of welding protective glasses, across an active liquid crystal cell, when welding starts, a high transient control voltage (UAC) of the fifth level (U5) of an alternating polarity and of a varying amplitude is applied, which in several milliseconds from its initial value exceeding the optical threshold voltage of the active cell for an order of magnitude, drops to the control voltage of the third level (U3). In several hundred microseconds the transmission of the protective glasses drops for 95 % of the transmission (Psb) in the open state. After the termination of a welding flash, on the active cell there is the control voltage (UAC) of the fourth level (U4) of an alternating polarity and a constant amplitude and is slightly below the optical threshold voltage of the active cell.

Description

Institut Jožef StefanJoseph Stefan Institute

Postopek avtomatskega krmiljenja tekočekristalnega modulatorja svetlobne prepustnosti varilskih očalProcedure for automatic control of liquid crystal modulator of light transmission of welding glasses

Predmet izuma je postopek avtomatskega krmiljenja tekočekristalnega modulatorja svetlobne prepustnosti varilskih očal.The subject of the invention is a process for the automatic control of a liquid crystal modulator of the light transmission of welding goggles.

Izum je po mednarodni klasifikaciji patentov uvrščen v razred F 16P 1/06.According to the International Patent Classification, the invention is classified in class F 16P 1/06.

Glede na pomanjkljivosti dosedaj znanih postopkov avtomatskega krmiljenja tekočekristalnega modulatorja svetlobne prepustnosti varilskih očal je tehnični problem izuma predvsem predlagati postopek navedene vrste, po katerem naj se z večnivojskim avtomatskim krmiljenjem tekočekristalnega modulatorja svetlobne prepustnosti v svetlobnem preklopniku doseže tako kratek njegov preklopni čas, da bo ustrezal zahtevi DIN 4647/7 za najvišje stopnje zasenčenja. Postopek avtomatskega krmiljenja svetlobnega preklopnika pa naj še zagotavlja, da se le-ta samodejno vklopi ob začetku varjenja in da se s samodejnim testiranjem napajalne baterije doseže, da varilska očala potemnijo, kadar je napajalna baterija iztrošena.In view of the disadvantages of the known methods of automatic control of the liquid crystal modulator of the light transmittance of the welding glasses, the technical problem of the invention is, in particular, to propose a method of the type according to which short switching time will be achieved by the multi-level automatic control of the liquid crystal modulator of the light switch in such a short time that its switching time is reached. DIN 4647/7 for maximum shading rates. The process of automatic control of the light switch should also ensure that it switches on automatically when welding begins and that the automatic testing of the power battery results in the welding glasses darkening when the power battery is exhausted.

Postopki avtomatskega krmiljenja tekočekristalnega modulatorja svetlobne prepustnosti obstojijo v znanih varilskih očalih v bistvu v tem, da se skuša doseči proženje svetlobnega preklopnika kot odziv na začetek varjenja. Postopek se nadalje osredotoča na to, da se obenem zmanjša verjetnost proženja svetlobnega preklopnika zaradi močne osvetlitve delovnega prostora. Svetlobni preklopnik se proži s senzorjem za infrardečo svetlobo in s senzorjem za vidno svetlobo (US 4,039,803) ali s senzorjem za infrardečo svetlobo in s senzorjem za ultraviolično svetlobo (EP 0 027 518 Al) ali pa z mikrofonom oziroma z mikrofonskim parom (US 4,241,286).Procedures for the automatic control of a liquid crystal modulator of light transmittance exist in known welding goggles, essentially in an attempt to achieve the triggering of the light switch in response to the start of welding. The process further focuses on reducing the likelihood of the light switch being triggered due to the strong illumination of the workspace. Light switch is activated by infrared light sensor and visible light sensor (US 4,039,803) or infrared light sensor and ultraviolet light sensor (EP 0 027 518 Al) or by microphone or microphone pair (US 4,241,286) .

Znani postopki avtomatskega krmiljenja tekočekristalnega modulatorja svetlobne prepustnosti varilskih očal v bistvu obstojijo v naslednjem. Tekočekristalni modulator svetlobne prepustnosti v svetlobnem preklopniku varilskih očal obstoji iz pasivne in aktivne tekočekristalne celice. Po koncu varjenja je na pasivni tekočekristalni celici v času, ki je krajši od izklopnega časa varilskih očal, krmilna napetost prvega krmilnega nivoja spreminjajoče se polaritete in stalne amplitude, ki presega napetost optičnega praga pasivne celice. S tem se doseže, daje tedaj pasivna celica v stanju večje prepustnosti. Sicer pa je na pasivni celici med varjenjem in v stanju mirovanja varilskih očal po koncu varjenja v času, ki je daljši od izklopnega časa, krmilna napetost drugega krmilnega nivoja, ki je enaka 0. Pasivna celica je tako v stanju manjše svetlobne prepustnosti. Na aktivni celici pa je med varjenjem nastavljiva krmilna napetost tretjega krmilnega nivoja spreminjajoče se polaritete in stalne amplitude, ki presega napetost optičnega praga aktivne celice.The known procedures for the automatic control of the liquid crystal modulator of the light transmission of welding goggles essentially exist in the following. The liquid crystal modulator of light transmission in the light switch of the welding glasses consists of a passive and active liquid crystal cell. At the end of welding, the control voltage of the first control level of changing polarity and constant amplitude exceeding the voltage of the optical threshold of the passive cell is at the passive liquid crystal cell for a period shorter than the cut-off time of the welding glasses. This results in the passive cell being in a state of higher permeability. Otherwise, at the passive cell during welding and at the standstill of the welding goggles after the end of welding, for a time longer than the cut-off time, the control voltage of the second control level is equal to 0. The passive cell is thus in a state of low light transmittance. On the active cell, however, the control voltage of the third control level of variable polarity and constant amplitude beyond the optical threshold voltage of the active cell is adjustable during welding.

Sama varilska očala so opremljena bodisi s polmehanskimi svetlobnimi preklopniki (DE 30 17 241 Al) ali s tekočekristalnimi svetlobnimi preklopniki (DE 33 32 083 Al, DT 25 53 976 Al, EP 0 349 665 Al, US 4,039,803, US 4,241,286, EP 0 027 518 Al, EP 0091 514 BI).The welding glasses themselves are equipped with either semi-mechanical light switches (DE 30 17 241 Al) or liquid crystal light switches (DE 33 32 083 Al, DT 25 53 976 Al, EP 0 349 665 Al, US 4,039,803, US 4,241,286, EP 0 027 518 Al, EP 0091 514 BI).

Čeprav nekateri tekočekristalni modulatorji svetlobne prepustnosti (US 4,039,803 in EP 0 027 518 Al) obsegajo le eno tekočekristalno celico, so prednostno opremljeni z drugo za drugo nameščenimi eno pasivno ter eno ali več aktivnimi tekočekristalnimi celicami (EP 0 091 514 BI in F 22 93 188). Ti drugi tekočekristalni modulatorji svetlobne prepustnosti lahko glede na prve bolj atenuirajo vpadlo svetlobo, zagotavljajo pa tudi primernejšo kotno porazdelitev prepuščene svetlobe.Although some liquid crystal transmitters (US 4,039,803 and EP 0 027 518 Al) comprise only one liquid crystal cell, they are preferably provided with one passive and one or more active liquid crystal cells (EP 0 091 514 BI and F 22 93 188). ). These second liquid crystal modulators of light transmittance can attenuate the incident light more than the former, but also provide a more appropriate angular distribution of the transmitted light.

Svetlobni preklopniki v navedenih varilskih očalih imajo avtonomno baterijsko napajanje, nekateri (EP 0 349 665 Al in EP 0 091 514 BI) pa so, da se podaljša življensko dobo baterije, opremljeni s polprevodniško sončno celico.The light switches in these welding goggles have autonomous battery power, some (EP 0 349 665 Al and EP 0 091 514 BI) to extend the life of the battery equipped with a solid state solar cell.

Pomanjkljivost znanih postopkov krmiljenja tekočekristalnega modulatorja je predvsem v dinamiki preklopa tekočekristalnih modulatorjev svetlobne prepustnosti, ki pri najvišjih zaščitnih stopnjah zasenčenja v celoti ne ustrezajo varnostnim predpisom (DIN 4647/7). Za vse tekočekristalne modulatorje svetlobne prepustnosti velja, da je hitrost njihovega elektrooptičnega odziva močno odvisna od temperature. Ker se lastnosti tekočih kristalov, predvsem viskoznost, močno spreminjajo s temperaturo, nobeden od zgoraj navedenih tekočekristalnih modulatorjev, ki so krmiljeni na dosedaj znan način, pri temperaturah pod +5° C ne ustreza varnostnim predpisom za najvišje zaščitne stopnje (stopnji 12 in 13) zasenčenja.A disadvantage of the known control procedures for a liquid crystal modulator is mainly in the switching dynamics of liquid crystal modulators of light transmittance, which do not fully comply with safety regulations at the highest shielding degrees of shading (DIN 4647/7). For all liquid crystal modulators of light transmittance, the speed of their electro-optical response is strongly dependent on temperature. As the properties of the liquid crystals, especially the viscosity, vary greatly with temperature, none of the liquid crystal modulators above, which are controlled so far in the known manner, do not meet the safety requirements for the highest protection levels (degrees 12 and 13) at temperatures below + 5 ° C. shading.

Kot pomanjkljivost postopka krmiljenja tekočekristalnega modulatorja svetlobne prepustnosti v znanih varilskih očalih se nadalje občuti, da je potrebno varilska očala pred varjenjem vklopiti z mehanskim stikalom in da se mora tudi testiranje baterije sprožiti s posebnim mehanskim stikalom. Nobeden izmed postopkov krmiljenja tekočekristalnega modulatorja svetlobne prepustnosti v navedenih varilskih očalih na celovit način ne rešuje zastavljenega tehničnega problema.As a disadvantage of the process of controlling the liquid crystal modulator of light transmittance in known welding goggles, it is further felt that the welding goggles need to be switched on with a mechanical switch before welding and that the battery testing must also be triggered by a special mechanical switch. None of the procedures for controlling the liquid crystal modulator of light transmittance in the above-mentioned welding glasses completely solves the technical problem.

Navedeni tehnični problem je rešen s postopkom po izumu za avtomatsko krmiljenje tekočekristalnega modulatorja svetlobne prepustnosti varilskih očal, po katerem je na pasivni tekočekristalni celici, ki z aktivno tekočekristalno celico tvori tekočekristalni modulator svetlobne prepustnosti v svetlobnem preklopniku varilskih očal, po koncu varjenja v času, ki je krajši od izklopnega časa, krmilna napetost prvega krmilnega nivoja spreminjajoče se polaritete in stalne amplitude, ki presega napetost optičnega praga pasivne celice, tako da je pasivna celica v stanju večje prepustnosti, sicer pa je na pasivni celici med varjenjem in v stanju mirovanja varilskih očal po koncu varjenja v času, ki je daljši od izklopnega časa, krmilna napetost drugega krmilnega nivoja, ki je enaka 0, tako da je pasivna celica v stanju manjše prepustnosti, in je na aktivni celici med varjenjem nastavljiva krmilna napetost tretjega krmilnega nivoja spreminjajoče se polaritete in stalne amplitude, ki presega napetost optičnega praga aktivne celice, pri čemer je postopek po izumu značilen po tem, da je na aktivni celici po koncu varjenja v času, ki je krajši od izklopnega časa, krmilna napetost četrtega krmilnega nivoja spreminjajoče se polaritete in stalne amplitude, ki je rahlo pod napetostjo optičnega praga aktivne celice, in da se na aktivni celici v začetku varjenja, ki po presledku,, ki je krajši od izklopnega časa, sledi koncu predhodnega varjenja, vzpostavi kratkotrajno krmilno napetost petega krmilnega nivoja spreminjajoče se polaritete in s spremenljivo amplitudo, ki po nekaj milisekundah pade od svoje začetne vrednosti, ki za red velikosti presega napetost optičnega praga aktivne celice, na krmilno napetost tretjega krmilnega nivoja.Said technical problem is solved by the method according to the invention for the automatic control of a liquid crystal modulator of light transmission of welding glasses, according to which there is a passive liquid crystal cell which, with an active liquid crystal cell, forms a liquid crystal modulator of light transmittance in the light switch of the welding glasses, after the end of welding. is shorter than the cut-off time, the control voltage of the first control level of varying polarity and constant amplitude exceeding the optical threshold voltage of the passive cell so that the passive cell is in a state of greater permeability, otherwise it is on the passive cell during welding and in the standby mode of the welding glasses. after the end of welding for a period longer than the cut-off time, a control voltage of the second control level equal to 0 so that the passive cell is in a state of lower permeability and the control voltage of the third control level of variable polarity is adjustable on the active cell during welding and constant amplitudes e, which exceeds the optical threshold voltage of the active cell, wherein the method of the invention is characterized in that the control voltage of the fourth control level of varying polarity and constant amplitude is at the active cell after the end of welding at a time shorter than the cut-off time, slightly under the voltage of the optical threshold of the active cell, and that a short-term control voltage of the fifth control level of varying polarity and variable is established at the active cell at the beginning of welding which, after an interval shorter than the cut-off time, follows the end of pre-welding an amplitude which, after a few milliseconds, falls from its initial value, which exceeds the optical cell threshold of the active cell by an order of magnitude, to the control voltage of the third control level.

Nadalje je postopek po izumu za avtomatsko krmiljenje tekočekristalnega modulatorja svetlobne prepustnosti varilskih očal značilen po tem, da se po prvem varilskem blisku avtomatsko vklopi celotno krmilno vezje svetlobnega preklopnika in da se na pasivni celici, ko se iztroši napajalna baterija svetlobnega preklopnika, pojavi krmilna napetost drugega krmilnega nivoja, ki je enaka 0, da s tem pasivna celica preide v stanje manjše svetlobne prepustnosti.Furthermore, the process according to the invention for the automatic control of a liquid crystal modulator of the transmittance of welding goggles is characterized in that after the first welding flash, the entire control circuit of the light switch is automatically switched on and that the control voltage of the second appears on the passive cell when the power switch of the light switch is depleted. a control level equal to 0 to bring the passive cell to a state of low light transmittance.

Postopek po izumu za avtomatsko krmiljenje tekočekristalnega modulatorja svetlobne prepustnosti omogoča, da se svetlobna prepustnost varilskih očal zmanjša za vsaj 95 % v nekaj sto mikrosekundah oziroma v času < 1 ms, potem ko se pojavi varilski blisk. Dinamika elektrooptičnega odziva torej v celotnem temperaturnem območju delovanja tekočekristalnega modulatorja svetlobne prepustnosti zadošča varilskim varnostnim predpisom (DIN 4647/7) tudi za stopnji zasenčenja 12 in 13. Tekočekristalni modulator je prednostno krmiljen tako, da očala potemnijo, ko napetost napajalne baterije pade pod dovoljeno vrednost, s čimer je zagotovljena pasivna varnost v primeru iztrošenosti napetostnega izvora.The process according to the invention for the automatic control of a liquid crystal modulator of light transmittance allows the light transmittance of welding goggles to be reduced by at least 95% within a few hundred microseconds or within a time <1 ms after a welding flash occurs. Therefore, the dynamics of the electro-optical response throughout the temperature range of the liquid crystal modulator of light transmittance are sufficient for welding safety regulations (DIN 4647/7) even for the shading rates 12 and 13. The liquid crystal modulator is preferably controlled so that the glasses darken when the voltage of the supply battery falls below the permitted value , thus ensuring passive safety in the event of a voltage source being worn out.

Izum bomo v nadaljnjem podrobno opisali na osnovi izvedbenega primera ter pripadajočega načrta, ki prikazuje na sl.l vezje svetlobnega preklopnika v varilskih očalih za izvajanje postopka po izumu, sl.2 vezje krmilnika aktivne in pasivne tekočekristalne celice v svetlobnem preklopniku s sl. 1, sl. 3 diagram časovnega poteka svetlosti delovnega mesta in krmilne napetosti na aktivni in pasivni tekočekristalni celici ter svetlobne prepustnosti varilskih očal, v katerih je uporabljen postopek po izumu.The invention will be described in further detail on the basis of an embodiment and an accompanying plan showing in FIG. 1 the circuit of the light switch in the welding glasses for carrying out the method of the invention; FIG. 2 the circuit of the active and passive liquid crystal controller in the light switch of FIG. 1, FIG. 3 is a diagram of the time course of the brightness of the workplace and the control voltage on the active and passive liquid crystal cells and the light transmittance of the welding glasses in which the process according to the invention is used.

S postopkom po izumu se večnivojsko avtomatsko krmili tekočekristalni modulator LAM svetlobne prepustnosti v varilskih očalih (sl. 1). Tekočekristalni modulator LAM svetlobne prepustnosti je sestavni del svetlobnega preklopnika, katerega vezje je prikazano na sl. 1, in ga sestavljata druga za drugo nameščene pasivna tekočekristalna celica PC in ena ali več aktivnih tekočekristalnih celic AC.The process according to the invention automatically controls a liquid crystal modulator of the light transmittance LAM in welding goggles (Fig. 1). The liquid crystal LAM modulator of light transmittance is an integral part of the light switch whose circuit is shown in FIG. 1, consisting of passive PC liquid crystal cells and one or more active AC liquid cells.

Na pasivni tekočekristalni celici PC se v času τοη po prenehanju varilskega bliska vsakega varjenja, torej v časovnih intervalih RI, ko svetlobne razmere v prostoru določajo svetlost I delovnega področja (sl. 3), vzpostavi krmilno napetost Upc spreminjajoče se polaritete in stalne amplitude, ki je enaka napetosti prvega krmilnega nivoja Ul. Napetost prvega krmilnega nivoja Ul presega napetost optičnega praga pasivne celice PC. Pasivna celica PC je tedaj v stanju največje svetlobne prepustnosti. Krmilna napetost Upc omenjenega nivoja se na pasivni tekočekristalni celici vzdržuje tudi v časovnem intervalu RI od prenehanja zadnjega varilskega bliska pa do preteka izklopnega časa T (okoli 20 min.), ko se samodejno izklopi celotno vezje svetlobnega preklopnika.On a passive liquid crystal cell PC, a control voltage U pc of varying polarity and constant amplitudes is established at the time τ οη after the end of the welding flash of each welding, ie at the time intervals RI, when the light conditions in the room determine the brightness I of the working area (Fig. 3). , which is equal to the voltage of the first control level Ul. The voltage of the first control level Ul exceeds the optical threshold voltage of the passive PC cell. The passive PC cell is then in the state of maximum light transmittance. The control voltage U pc of said level is also maintained on the passive liquid crystal cell during the RI time interval from the end of the last welding flash to the expiration time T (about 20 min.) When the entire light switch circuit is automatically switched off.

V času varilskih bliskov, to je na sl. 3 v časovnih intervalih Wl, W, in v stanju mirovanja varilskih očal, to je v časovnem intervalu RI po izteku izklopnega časa T od prenehanja zadnjega varilskega bliska, je na pasivni tekočekristalni celici PC krmilna napetost Upc drugega krmilnega nivoja U2, ki je enaka 0. Pasivna tekočekristalna celica PC je torej v stanju najmanjše svetlobne prepustnosti.During the welding flashes, this is in FIG. 3 at the time intervals Wl, W, and at the standstill of the welding goggles, that is, at the RI interval after the end of the cut-off time T since the end of the last welding flash, the control voltage U pc of the second control level U2 equal to the passive liquid crystal cell PC 0. The passive liquid crystal PC cell is therefore in the state of minimum light transmittance.

Na aktivni tekočekristalni celici AC je v časovnih intervalih Wl, W, v katerih se pojavljajo varilski bliski, nastavljiva krmilna napetost UAC tretjega krmilnega nivoja U3 spreminjajoče se polaritete. Njena amplituda je stalna in presega napetost optičnega praga aktivne tekočekristalne celice AC.On the active liquid crystal cell AC, the polarity adjustable voltage U AC of the third control level U3 is changing at the time intervals Wl, W at which welding flashes occur. Its amplitude is constant and exceeds the optical threshold voltage of the active liquid crystal AC cell.

Na aktivni tekočekristalni celici AC se v času τοη, ki je reda velikosti 10 ms, po vsakokratnem prenehanju varilskega bliska, torej v časovnih intervalih RI, vzpostavi krmilna napetost UAC četrtega krmilnega nivoja U4 spreminjajoče se polaritete. Njena amplituda je rahlo pod napetostjo optičnega praga aktivne tekočekristalne celice AC. Takšna krmilna napetost UAC pa je na aktivni tekočekristalni celici AC tudi v časovnem intervalu RI, vendar le do preteka izklopnega časa T.At the active liquid crystal cell AC, a control voltage U AC of the fourth control level U4 of varying polarity is restored at time τ οη , which is of the order of 10 ms, at each time the welding flash stops, ie at RI time intervals. Its amplitude is slightly below the voltage of the optical threshold of the active liquid crystal AC cell. However, such a control voltage U AC is also present on the active liquid crystal AC cell during the RI time interval, but only until the switch-off time T has elapsed.

V samem začetku varjenja, ki sledi prenehanju zadnjega bliska predhodnega varjenja prej kot po preteku izklopnega časa T, torej na začetku časovnega intervala W se na aktivni tekočekristalni celici AC vzpostavi kratkotrajno krmilno napetost UAC petega krmilnega nivoja U5 spreminjajoče se polaritete in s spremenljivo amplitudo. Amplituda krmilne napetosti hitro naraste na začetno vrednost, ki za red velikosti presega napetost optičnega praga aktivne tekočekristalne celice AC, in po nekaj milisekundah pade na amplitudo tretjega krmilnega nivoja U3.At the very beginning of welding, which follows the end of the last flash of pre-welding earlier than after the cut-off time T, that is, at the beginning of the time interval W, a short-term control voltage U AC of the fifth control level U5 of variable polarity and variable amplitude is established on the active liquid crystal cell AC. The amplitude of the control voltage rapidly increases to an initial value that exceeds the optical threshold threshold of the active liquid crystal AC cell by an order of magnitude and drops to the amplitude of the third control level U3 after a few milliseconds.

Po postopku po izumu se takoj, ko se pojavi prvi varilski blisk v začetku prvega varilnega časovnega intervala W1 po daljšem presledku (časovni interval RI’) po predhodnem varjenju, avtomatsko vklopi celotno krmilno vezje svetlobnega preklopnika. V samem začetku prvega varilnega časovnega intervala W1 zato krmilna napetost UAC na aktivni tekočekristalni celici AC ne doseže začetne vrednosti, ki bi za red velikosti presegla napetost optičnega praga aktivne tekočekristalne celice AC, nekoliko pa vendarle preseže amplitudo tretjega krmilnega nivoja U3 (sl. 3).According to the method according to the invention, as soon as the first welding flash occurs at the beginning of the first welding time interval W1 after a long interval (time interval RI ') after pre-welding, the entire control circuit of the light switch is automatically switched on. At the very beginning of the first welding time interval W1, therefore, the control voltage U AC on the active liquid crystal AC cell does not reach an initial value that exceeds the optical threshold voltage of the active liquid crystal AC cell by an order of magnitude but slightly exceeds the amplitude of the third control U3 level (Fig. 3 ).

Po postopku po izumu pade krmilna napetost Upc na pasivni tekočekristalni celici PC na nič vsakič, kadar se iztroši napajalna baterija svetlobnega preklopnika, in s tem pasivna tekočekristalna celica PC preide v stanje najmanjše svetlobne prepustnosti.According to the process of the invention, the control voltage U pc on the passive liquid crystal cell PC drops to zero each time the light switch power supply battery is consumed, and thus the passive liquid crystal cell PC enters the state of minimum light transmittance.

Ker v samem začetku prvega varilnega časovnega intervala W1 krmilna napetost UAC ne doseže visoke napetosti petega krmilnega nivoja U5, se svetlobna prepustnost P varilskih očal od svetlobne prepustnosti Poff v časovnem intervalu RI’ zmanjša ob začetku časovnega intervala W1 med varjenjem v času rx, ki je reda velikosti 10 ms, za 95 % na vrednost Pw. V časovnih intervalih RI oziroma v časovnem intervalu RI do preteka izklopnega časa T so varilska očala v stanju pripravljenosti in njihova svetlobna prepustnost Psb je višja, za okoli 50 krat, od svetΊ lobne prepustnosti Pofp torej je delovno področje dobro vidno skozi varilska očala že pri svetlobnih razmerah v delovnem prostoru. Visoka napetost petega krmilnega nivoja U5, ki se v začetku časovnih intervalov W vzpostavi na aktivni tekočekristalni celici AC, omogoči, da se svetlobna prepustnost P varilskih očal zmanjša za 95 % v zelo kratkem času t, ki znaša nekaj sto mikrosekund, oziroma je < 1 ms pri -10° C. Dejansko svetlobna prepustnost P varilskih očal takoj po času τ po nastopu varilskega bliska za nekaj milisekund pade celo nekoliko pod vrednost Pw.Since at the very beginning of the first welding interval W1 the control voltage U AC does not reach the high voltage of the fifth control level U5, the light transmittance P of the welding glasses from the light transmittance P off in the time interval RI 'decreases at the beginning of the welding interval W1 during r x , which is of the order of 10 ms, by 95% to the value of P w . In the RI intervals or in the RI interval until the switch-off time T has elapsed, the welding goggles are on standby and their light transmittance P sb is higher, by about 50 times, than the light transmittance P ofp, so the working area is clearly visible through the welding goggles already at lighting conditions in the workspace. The high voltage of the fifth control level U5, which is established at the beginning of the time intervals W on the active liquid crystal AC cell, allows the light transmittance P of the welding glasses to be reduced by 95% in a very short time t of several hundred microseconds, or <1 ms at -10 ° C. In fact, the light transmittance of P welding goggles drops even slightly below the value of P w for a few milliseconds immediately after the onset of the welding flash.

Svetlobni preklopnik za izvajanje postopka po izumu za avtomatsko krmiljenje tekočekristalnega modulatorja svetlobne prepustnosti v varilskih očalih je sestavljen iz krmilnega vezja in tekočekristalnega modulatorja LAM svetlobne prepustnosti (sl. 1).The light switch for carrying out the process according to the invention for the automatic control of a liquid crystal modulator of light transmittance in welding glasses consists of a control circuit and a liquid crystal modulator of LAM of light transmittance (Fig. 1).

S standardom predpisano statično svetlobno prepustnost se doseže s tekočekristalnim modulatorjem LAM svetlobne prepustnosti, ki je sestavljen iz ene pasivne tekočekristalne celice PC in ene ali več aktivnih tekočekristalnih celic AC.The standard static light transmittance is achieved by means of a LAM light transmittance liquid crystal modulator consisting of one passive PC liquid PC and one or more active AC LCD cells.

Pasivna tekočekristalna celica PC najbolj atenuira svetlobo, kadar je električna napetost Upc na njej enaka nič. Elektrooptičen odziv pasivne tekočekristalne celice PC, to je hitrost zmanjšanja svetlobne prepustnosti, na trenutne spremembe amplitude krmilne napetosti Upc ne zavisi od napetosti Upc. Pasivna tekočekristalna celica PC mora biti tenka in opremljena s tekočim kristalom z majhno viskoznostjo, saj je njena hitrost zmanjšanja svetlobne prepustnosti obratno sorazmerna debelini plasti tekočega kristala in njegovi viskoznosti. Napetost Upc je v časovnih intervalih RI, ko naj bo svetlobna prepustnost pasivne tekočekristalne celice PC čim večja, prednostno nad celičinim optičnim pragom.The passive liquid crystal cell PC attenuates light most when the electric voltage U pc on it is zero. The electro-optical response of a passive liquid crystal PC cell, that is, the rate of decrease in light transmittance, to instantaneous changes in the amplitude of the control voltage U pc does not depend on the voltage U pc . A passive liquid crystal PC cell should be thin and equipped with a low viscosity liquid crystal because its speed of light transmittance is inversely proportional to the thickness of the liquid crystal layer and its viscosity. The voltage of U pc is at RI time intervals, when the light transmittance of the passive liquid crystal PC cell should be as high as possible, preferably above the cell's optical threshold.

Aktivna tekočekristalna celica AC atenuira svetlobo, kadar je električna napetost UAC na njej različna od nič. Elektrooptičen odziv aktivne tekočekristalne celice AC na trenutne spremembe amplitude krmilne napetosti UAC, to je hitrost zmanjšanja ali zvečanja svetlobne prepustnosti aktivne tekočekristalne celice AC, je sorazmeren velikosti napetosti UAC. Zelo hitro zmanjšanje svetlobne prepustnosti v začetku časovnih intervalov W se doseže s krmilno napetostjo UAC petega krmil8 nega nivoja U5. Hitrejši odziv na ta krmilni nivo se doseže, s tem da je že v časovnem intervalu RI napetost UAC na nivoju U3, torej nekoliko pod optičnim pragom aktivne tekočekristalne celice AC.An active liquid crystal AC cell attenuates light when the U AC voltage on it is non-zero. The electro-optical response of an active liquid crystal AC cell to the instantaneous changes in the amplitude of the control AC voltage U AC , that is, the rate of decrease or increase in the light transmittance of the active liquid crystal AC cell, is proportional to the magnitude of the voltage U AC . A very fast decrease in the light transmittance at the beginning of the time intervals W is achieved by the control voltage U AC of the fifth control level U5. A faster response to this control level is achieved by already having a voltage U AC at the U3 level in the RI time interval, which is slightly below the optical threshold of the active liquid crystal AC cell.

Svetlobni preklopnik je sestavljen iz senzorsko-napajalnega vezja 1, vhodnega ojačevalnika 2, logičnega kontrolnega vezja 3, preskuševalnika 4 baterije, regulatorja 5 napetosti, izbirnega stikala 6, krmilnika 7, 8 aktivne oziroma pasivne tekočekristalne celice, na katera je priključen modulator LAM svetlobne prepustnosti, števca C in oscilatorja O.The light switch consists of a sensor-power circuit 1, an input amplifier 2, a logic control circuit 3, a battery tester 4, a voltage regulator 5, a selector switch 6, a controller 7, 8 of an active or passive liquid crystal cell to which the LAM light modulator is connected , C meter and O oscillator.

V senzorsko-napajalnem vezju 1 je emitorska sponka fototranzistorja PT1 po eni strani vezana na vklopni vhod Ion napetostnega pretvornika VC1 in preko upora Rl na napajalno baterijo BI in na eno od napajalnih sponk napetostnega pretvornika VC1 in po drugi strani na neinvertirajoči vhod ojačevalnika A2 v vhodnem ojačevalniku 2. Drsna sponka potenciometra P2, katerega stalni sponki sta priključeni na napajalno napetost vezja oziroma na maso, je priključena na invertirajoči vhod ojačevalnika A2, katerega izhod je priključen na medsebojno povezana vhoda NAND vrat G31 v logično kontrolnem vezju 3. Izhod NAND vrat G31 je priključen na izhod 3c logično kontrolnega vezja 3 in na medsebojno povezana vhoda NAND vrat G32, katerih izhod je vezan na izhod 3a vezja 3 in na kondenzator C3, katerega druga sponka je vezana na izhod 3b vezja 3 in preko upora R3 na maso. Izhod 3a logično kontrolnega vezja 3 je priključen na resetirni vhod Cr števca C, katerega izhod Co je preko NAND vrat G33 z medsebojno sklenjenima vhodoma priključen na izklopni vhod loff napetostnega pretvornika VC1.In the sensor-power circuit 1, the emitter terminal of the PT1 phototransistor is connected, on the one hand, to the input Ion of the voltage converter VC1 and via the resistor Rl to the BI power supply and to one of the power terminals of the voltage converter VC1 and, on the other, to the non-inverting input of the amplifier A2 in the input amplifier 2. The sliding terminal of P2 potentiometer, whose permanent terminals are connected to the supply voltage of the circuit or ground, is connected to the inverting input of amplifier A2, the output of which is connected to the interconnected inputs of NAND gate G31 in the logic control circuit 3. Output of NAND gate G31 is connected to the output 3c of the logic control circuit 3 and to the interconnected inputs of the N32 port G32 whose output is coupled to the output 3a of the circuit 3 and to the capacitor C3, the second terminal of which is connected to the output 3b of the circuit 3 and via a resistor R3 to ground. The output 3a of the logic control circuit 3 is connected to the reset input Cr of the meter C whose output Co is connected to the cut-off input loff of the voltage converter VC1 via an NAND port G33 with mutually coupled inputs.

Napajalni priključki vezij v svetlobnem preklopniku so priključeni na nizkonapetosten izhod 11 napetostnega pretvornika VC1.The power connections of the circuits in the light switch are connected to the low-voltage output 11 of the VC1 voltage converter.

Izhod 3b logičnega kontrolnega vezja 3 je v izbirnem stikalu 6 preko upora R6 in preko stikalnega tranzistorja T61 priključen na bazo stikalnega tranzistorja T62, katerega emitor je priključen na visokonapetosten izhod lh napetostnega pretvornika VC1, kolektor pa preko izhodne sponke 6a izbirnega stikala 6 na napajalno sponko 7a krmilnika 7 aktivne tekočekristalne celice AC.The output 3b of the logic control circuit 3 is connected to the base of the switch transistor T62 in the selector switch 6 via the resistor R6 and via the switch transistor T61, whose emitter is connected to the high voltage output lh of the voltage converter VC1 and the collector via the output terminal 6a of the selector switch 6 to the power terminal 7a of controller 7 of active liquid crystal AC cell.

Izhod 3b logičnega kontrolnega vezja 3 je hkrati priključen še na resetirni vhod Or oscilatorja O, katerega urni izhod Ocl je priključen na urni vhod Cel števca C in na taktni vhod 7b, 8b krmilnika 7, 8 aktivne oziroma pasivne tekočekristalne celice AC, PC.The output of the logic control circuit 3b 3 is simultaneously connected to the reset input Or of the oscillator O, whose clock output Ocl is connected to the clock input Cel counter C and to the clock input 7b, 8b of the controller 7, 8 of the active or passive liquid crystal cell AC, PC.

Izhod 3c logičnega kontrolnega vezja 3 je v regulatorju 5 napetosti preko nastavljivega upora R51 in diode D5 priključen na invertirajoči vhod operacijskega ojačevalnika A5, katerega neinvertirajoči vhod je priključen na referenčno napetost Zenerjeve diode ZD, ki je preko upora R vezana na napajalno napetost, ki se generira na nizkonapetostnem izhodu 11 napetostnega pretvornika VC1. Invertirajoči vhod operacijskega ojačevalnika A5 je preko temperaturno odvisnega (NTC) upora 53 vezan na ojačevalnikov izhod, ki je preko diode D6 priključen na izhod 6a izbirnega stikala 6. Izhod 6a je priključen na sponko kondenzatorja C6, katerega druga sponka je priključena na maso.The output of the logic control circuit 3c 3 is connected to the inverter input of the operational amplifier A5 in the voltage regulator 5 via the adjustable resistor R51 and diode D5, whose non-inverting input is connected to the reference voltage of the Zener diode ZD, which is connected to the supply voltage via the resistor R generates at the low-voltage output 11 of the voltage converter VC1. The inverting input of the operational amplifier A5 is connected via a temperature-dependent (NTC) resistor 53 to the amplifier output, which is connected via diode D6 to the output 6a of the selector switch 6. The output 6a is connected to the capacitor terminal C6, the other terminal of which is connected to ground.

Izhod 3c logičnega kontrolnega vezja 3 je preko upora R43 priključen na neinvertirajoči vhod operacijskega ojačevalnika A4, ki je z uporom R44 vezan v pozitivno povratno zanko in katerega invertirajoči vhod je priključen na sponko Zenerjeve diode ZD in katerega izhod je priključen na krmilno sponko 8c krmilnika 8 pasivne tekočekristalne celice PC.The output of the logic control circuit 3c 3 is connected via a resistor R43 to a non-inverting input of an operational amplifier A4, which is connected to a positive feedback loop by a resistor R44, whose inverting input is connected to a Zener diode ZD terminal and whose output is connected to a control terminal 8c of controller 8 passive liquid crystal PC cells.

Nizkonapetostni izhod 11 napetostnega pretvornika VC1 je v vezju preskuševalnika 4 baterije preko zaporedno vezanih uporov R41, R42 priključen na maso in je skupna sponka uporov R41, R42 priključena na neinvertirajoči vhod operacijskega ojačevalnika A4.The low voltage output 11 of the voltage converter VC1 is connected to ground in the circuit of the battery tester 4 via the series resistors R41, R42 and the common resistor terminal R41, R42 is connected to the non-inverting input of the operational amplifier A4.

Na sl. 2 sta prikazana krmilnik 7, 8 aktivne oziroma pasivne tekočekristalne celice AC, PC. Driver 7 s tranzistorjema T71, T72 in uporoma R71, R72 ter tranzistorjema T73, T74 omogoča, da se na elektrodi aktivne tekočekristalne celice AC dovaja tudi visoko krmilno napetost UAC spreminjajoče se polarizacije. Krmilno napetost Upc spreminjajoče se polarizacije pripravi krmilnik 8, ki ga sestavljajo ekskluzivna NOR vrata G81,..., G84.In FIG. 2 shows the controller 7, 8 of the active or passive liquid crystal cells AC, PC. Driver 7 with transistors T71, T72 and resistors R71, R72, and transistors T73, T74 also allows a high control voltage U AC of varying polarization to be supplied at the electrode of an active liquid crystal AC cell. The control voltage U pc of varying polarization is produced by controller 8, which consists of the exclusive NOR port G81, ..., G84.

Foto tranzistor PT1 zazna varilski blisk in vklopi napetostni pretvornik VC1, s čimer se vklopi celotno vezje svetlobnega preklopnika. Vsakič ko se pojavi varilski blisk se na izhodu 3b logično kontrolnega vezja 3 pojavi pulz, ki resetira oscilator O. Pulz na izhodu 3b logično kontrolnega vezja 3 nadalje za čas svojega trajanja odpre tranzistor T62, da se na izhodu 6a izbirnega stikala 6 pojavi visoka napetost. Ta visoka napetost v časovnih intervalih W, ko je napajanje že od predhodnih varilskih bliskov vklopljeno, doseže krmilni nivo U5. Med samim varjenjem napetost na izhodu 3c logičnega kontrolnega vezja 3 preko nastavljivega upora R51 in ojačevalnika A5 določa napetost na izhodu 6a izbirnega stikala 6. Ta napetost določa krmilno napetost UAC na aktivni tekočekristalni celici AC in po izteku časa trajanja, to je po nekaj milisekundah, krmilnega nivoja U5 ustreza krmilnemu nivoju U3. Istočasno izhod 3c preko upora R43 in ojačevalnika A4 določa kontrolni nivo na sponki 8c krmilnika 8 tako, da pade amplituda krmilne napetosti Upc na nič.The PT1 Photo Transistor detects a welding flash and turns on the VC1 voltage converter, switching on the entire light switch circuit. Each time a welding flash occurs, a pulse is reset at output 3b of the logic-control circuit 3, which resets oscillator O. The pulse at output 3b of the logic-control circuit 3 further opens transistor T62 for a duration to produce high voltage at the output 6a of selector switch 6. . This high voltage at W intervals, when the power is on from previous welding flashes, reaches the control level U5. During the welding process, the voltage at output 3c of the logic control circuit 3, via the adjustable resistor R51 and the amplifier A5, determines the voltage at the output 6a of the selector switch 6. This voltage determines the control voltage U AC on the active liquid crystal AC cell and after a period of several milliseconds , the control level U5 corresponds to the control level U3. At the same time, output 3c via resistor R43 and amplifier A4 determines the control level at terminal 8c of controller 8 such that the amplitude of the control voltage U pc drops to zero.

Ko varilski blisk ugasne, napetost na izhodu 3c logičnega kontrolnega vezja 3 preko ojačevalnika A4 omogoči, da krmilna napetost Upc na pasivni tekočekristalni celici doseže vrednost, ki ustreza napetosti prvega napetostnega nivoja Ul. Istočasno napetost na izhodu 3c preko ojačevalnika A5 določi krmilno napetost UAC četrtega napetostnega nivoja U4 na aktivni tekočekristalni celici AC. Napetostni nivo U4 je določen z razmerjem uporov R53 in R52, torej sledi temperaturni odvisnosti optičnega praga aktivne tekočekristalne celice AC, saj je upor NTC upora R53 temperaturno odvisen. Dokler traja varilski blisk, napetost na izhodu 3a logično kontrolnega vezja 3 neprestano resetira števec C, ki po preteku izklopnega časa T preko NAND vrat G33 in sponke loff napetostnega pretvornika izklopi celotno vezje svetlobnega preklopnika.When the welding flash goes off, the voltage at the output 3c of the logic control circuit 3 via the amplifier A4 enables the control voltage U pc on the passive liquid crystal cell to reach a value corresponding to the voltage of the first voltage level Ul. At the same time, the voltage at the output 3c via the amplifier A5 determines the control voltage U AC of the fourth voltage level U4 on the active liquid crystal AC cell. The voltage level U4 is determined by the ratio of resistors R53 and R52, therefore, it follows the temperature dependence of the optical threshold of the active liquid crystal AC cell, since the NTC resistor R53 is temperature dependent. For the duration of the welding flash, the voltage at the output 3a of the logic control circuit 3 is continuously reset by the counter C, which, after the switch-off time T, switches off the entire circuit of the light switch after the NAND port G33 and the loff terminal of the voltage converter.

Claims (3)

1. Postopek avtomatskega krmiljenja tekočekristalnega modulatorja svetlobne prepustnosti varilskih očal, po katerem -je na pasivni tekočekristalni celici PC, ki z aktivno tekočekristalno celico AC tvori tekočekristalni modulator LAM svetlobne prepustnosti v svetlobnem preklopniku varilskih očal, po koncu varjenja v času, ki je krajši od izklopnega časa T, krmilna napetost Upc prvega krmilnega nivoja Ul spreminjajoče se polaritete in stalne amplitude, ki presega napetost optičnega praga pasivne celice PC, da je pasivna celica PC v stanju večje svetlobne prepustnosti, sicer pa je na pasivni celici PC med valjenjem in v stanju mirovanja varilskih očal po koncu varjenja v času, ki je daljši od izklopnega časa T, krmilna napetost Upc drugega krmilnega nivoja U2, ki je enaka 0, da je pasivna celica PC v stanju manjše svetlobne prepustnosti, in je na aktivni celici AC med valjenjem nastavljiva krmilna napetost UAC tretjega krmilnega nivoja U3 spreminjajoče se polaritete in stalne amplitude, ki presega napetost optičnega praga aktivne celice AC, označen s tem, da je na aktivni celici (AC) po koncu varjenja v času, ki je krajši od izklopnega časa (T), krmilna napetost (UAC) četrtega krmilnega nivoja (U4) spreminjajoče se polaritete in stalne amplitude, ki je rahlo pod napetostjo optičnega praga aktivne celice (AC), da se na aktivni celici (AC) v začetku varjenja, ki sledi koncu predhodnega varjenja po presledku, ki je krajši od izklopnega časa (T), vzpostavi kratkotrajno krmilno napetost (UAC) petega krmilnega nivoja (U5) spreminjajoče se polaritete in s spremenljivo amplitudo, ki po nekaj milisekundah pade od svoje začetne vrednosti, ki za red velikosti presega napetost optičnega praga aktivne celice (AC), na krmilno napetost (UAC) tretjega krmilnega nivoja (U3).1. A process for the automatic control of a liquid crystal modulator of light transmission of welding goggles according to which, on a passive liquid crystal cell PC, which, with an active liquid crystal cell AC, forms a liquid crystal modulator of light transmittance in a light switch of welding goggles, after the end of welding, for a period shorter than switch-off time T, control voltage U pc of the first control level Ul of varying polarity and constant amplitude beyond the optical threshold voltage of the passive PC cell, so that the passive PC cell is in a state of higher light transmittance, otherwise it is on the passive PC cell during hatching and in at the standstill of the welding goggles after the end of welding for a time longer than the cut-off time T, a control voltage U pc of the second control level U2 equal to 0 that the passive PC cell is in a state of low light transmittance and is on the active cell AC between rolling control adjustable voltage U AC of the third control level U3 of varying polarity i n a fixed amplitude exceeding the optical threshold voltage of an active AC cell, characterized in that the control voltage (U AC ) of the fourth control level is at the active cell (AC) after the end of welding for a time shorter than the cut-off time (T). (U4) of varying polarity and constant amplitude slightly below the voltage of the active cell optical threshold (AC) to be at the active cell (AC) at the start of welding following the end of pre-welding at an interval shorter than the cut-off time ( T), establishes a short-term control voltage (U AC ) of the fifth control level (U5) of variable polarity and with a variable amplitude that, after a few milliseconds, drops from its initial value, exceeding the optical threshold voltage of the active cell (AC) by an order of magnitude, at control voltage (U AC ) of the third control level (U3). 2. Postopek po zahtevku 1, označen s tem, da se po prvem varilskem blisku avtomatsko vklopi celotno krmilno vezje svetlobnega preklopnika.Method according to claim 1, characterized in that, after the first welding flash, the entire control circuit of the light switch is automatically switched on. 3. Postopek po zahtevku 2, označen s tem, da se na pasivni celici (PC), ko se iztroši napajalna baterija svetlobnega preklopnika, pojavi krmilna napetost (Upc) drugega krmilnega nivoja (U2), ki je enaka 0, da pasivna celica (PC) preide v stanje manjše svetlobne prepustnosti.Method according to claim 2, characterized in that a control voltage (U pc ) of the second control level (U2) equal to 0 that the passive cell occurs on the passive cell (PC) when the power switch of the light switch is consumed (PC) enters a state of low light transmittance.
SI9300226A 1993-04-29 1993-04-29 Process for automatic control of liquid-cristal light transparency modulator for velding goggles SI9300226A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI9300226A SI9300226A (en) 1993-04-29 1993-04-29 Process for automatic control of liquid-cristal light transparency modulator for velding goggles
PCT/SI1994/000004 WO1994025892A1 (en) 1993-04-29 1994-04-26 Method of automatically controlling a liquid crystal light transmission modulator of welding protective glasses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI9300226A SI9300226A (en) 1993-04-29 1993-04-29 Process for automatic control of liquid-cristal light transparency modulator for velding goggles

Publications (1)

Publication Number Publication Date
SI9300226A true SI9300226A (en) 1994-12-31

Family

ID=20431168

Family Applications (1)

Application Number Title Priority Date Filing Date
SI9300226A SI9300226A (en) 1993-04-29 1993-04-29 Process for automatic control of liquid-cristal light transparency modulator for velding goggles

Country Status (2)

Country Link
SI (1) SI9300226A (en)
WO (1) WO1994025892A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989289A (en) 1995-10-16 1999-11-23 Sdgi Holdings, Inc. Bone grafts
EP0955961B1 (en) 1996-10-23 2004-03-31 SDGI Holdings, Inc. Spinal spacer
US6614409B1 (en) * 1999-11-23 2003-09-02 Otos Co., Ltd. Glare shielding device of welding helmet and method of controlling the same
US6815652B1 (en) 2000-09-11 2004-11-09 Jackson Products, Inc. Low power phototransistor-based welding helmet providing reduced sensitivity to low intensity light and sharp phototransistor response to high intensity light
US7005624B2 (en) 2000-09-11 2006-02-28 Jackson Products, Inc. Low power phototransistor-based welding helmet providing reduced sensitivity to low intensity light and sharp phototransistor response to high intensity light

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890628A (en) * 1973-10-23 1975-06-17 Motorola Inc Liquid crystal light control device and circuit
US4039254A (en) * 1976-05-27 1977-08-02 Mack Gordon Electro-optic welding lens assembly using multiple liquid crystal light shutters and polarizers
SE425048B (en) * 1978-04-24 1982-08-30 Ake Hornell MULTIPLE GLASS, SEPARATE PROTECTIVE GLASS IN A WELDING SCREEN
SE464264B (en) * 1984-02-24 1991-03-25 Esab Ab OPTICAL FILTER FOR WELDING GLASS
US5252817A (en) * 1991-03-25 1993-10-12 Osd Envizion Company Detector system for detecting the occurrence of welding using detector feedback
US5181133A (en) * 1991-05-15 1993-01-19 Stereographics Corporation Drive method for twisted nematic liquid crystal shutters for stereoscopic and other applications

Also Published As

Publication number Publication date
WO1994025892A1 (en) 1994-11-10

Similar Documents

Publication Publication Date Title
US10185199B2 (en) System and method for controlling an optical filter assembly
US10539812B2 (en) Eyewear control system and method, and an eyewear device
US5477124A (en) Circuit to prevent excessive rechargeable battery discharge
US5252817A (en) Detector system for detecting the occurrence of welding using detector feedback
US4237385A (en) Control of power supply
JP2005160178A5 (en)
US20060012342A1 (en) Self-heating battery that automatically adjusts its heat setting
KR20080022319A (en) Apparatus for driving electrochromic device and method thereof
JPH01234820A (en) Lens assembly for electrooptic welding
SI9300226A (en) Process for automatic control of liquid-cristal light transparency modulator for velding goggles
US6081101A (en) Temperature switch controlled charging circuit
CN104842880A (en) Vehicular rearview mirror, light intensity adjusting method of vehicular rearview mirror, and vehicle
JP6870216B2 (en) Electrochromic element control device and electrochromic element control method
JPS5622970A (en) Disconnection/short-circuit detecting circuit of controlling device for smoke ventilation
KR100241906B1 (en) Apparatus for charging a secondary battery
KR101116631B1 (en) Open lamp protection circuit and method using the same
CN102081241A (en) Light-controlled liquid crystal eyeglasses
JPS5755428A (en) Protection circuit
KR0134971Y1 (en) Lcd screen mirror device for welding
KR20030075103A (en) Battery protection circuit for mobile communication terminal
WO2000054097A8 (en) Active electrooptic filtering device and method for operating the same
KR200225497Y1 (en) Spot welding circuit for stud
CN2254197Y (en) Photochromic glasses
JPH01150114A (en) Liquid crystal sunglass with solar battery
KR20060078164A (en) A control circuit for automatic darkening welding helmet