SI9210161A - Novel apertured non-woven fabric - Google Patents
Novel apertured non-woven fabric Download PDFInfo
- Publication number
- SI9210161A SI9210161A SI9210161A SI9210161A SI9210161A SI 9210161 A SI9210161 A SI 9210161A SI 9210161 A SI9210161 A SI 9210161A SI 9210161 A SI9210161 A SI 9210161A SI 9210161 A SI9210161 A SI 9210161A
- Authority
- SI
- Slovenia
- Prior art keywords
- fiber
- fibers
- pyramids
- openings
- groups
- Prior art date
Links
Landscapes
- Nonwoven Fabrics (AREA)
- Woven Fabrics (AREA)
Description
Nov perforiran netkan materialNew perforated non-woven fabric
Že več let se vršijo poskusi, da se stvori material, ki bo imel jakost in druge značilnosti tkanega ali pletenega materiala, ne da bi bilo potrebno iti skozi številne stopnje, ki so potrebne, da se proizvede takšen material. Da bi se proizvedlo tkan ali pleten material, je najprej treba proizvesti prejo. Preja se normalno proizvaja z odpiranjem in grebenanjem ali česanjem vlaken ter z izdelovanjem traku vlaken. Trak vlaken se zbija v trak preje, iz katere se dobiva narahlo sukana nit s previjanjem in izvlačenjem traku preje. Nato se več takšnih sukanih niti previje in izvlači, da bi se dobilo prejo. Da bi se proizvedlo končen material, se prejo tke na statvah v tkani material ali pa se jo plete na zapletenem stroju za pletenje. Pogosto je potrebno prejo apreturirati s škrobom ali drugim materialom, preden se jo lahko obdela na strojih za tkanje ah pletenje.For years, attempts have been made to create a material that will have the strength and other characteristics of woven or knitted material without having to go through the many stages required to produce such material. In order to produce woven or knitted fabric, yarn must first be produced. The yarn is normally produced by opening and combing or combing the fibers and by making a fiber strip. A strip of fiber is compacted into a yarn strip, from which a slightly twisted yarn is obtained by winding and pulling the yarn strip. Thereafter, several such twists are twisted and pulled to form a yarn. In order to produce the finished material, it is woven on looms into woven fabric or knitted on a complex knitting machine. It is often necessary to dress the yarn with starch or other material before it can be processed on weaving machines or knitting.
Zadnjih 20 ali 30 let se je razvijalo razne postopke in so se vršili poskusi, da se izdela tekstilni material neposredno iz traku vlaken in se pri tem izključi največji del, če ne vse prej opisane stopnje. Nekateri od teh postopkov obsegajo uporabo čepov ali igel, ki so razporejene po določeni shemi. Igle se vstavlja v vlaknen trak, da bi se stvorile odprtine v traku in simuliralo izgled tkanega materiala. Dobljeni proizvod je slab in zahteva dodajanje kemičnih veziv, da bi se dobilo želeno jakost. Dodajanje veziva v bistvu menja občutek pri dotiku, upogljivost, možnost oblikovanja nabora in druge željene fizikalne lastnosti ter povzroča, da je praktično nemogoče reproducirati željene lastnosti tkanega ali pletenega materiala. Druge tehnologije so obsegale uporabo tekočine ali sil tekočine, ki so bile usmerjene na trak vlaken po vnaprej določenem razporedu, da bi se vlakna razporedila tako, da ima proizvod nekatere od lastnosti tkanih ali pletenih materialov. Pri nekaterih izmed teh poznanih tehnologij je trak vlaken postavljen na element, ki ima vnaprej določeno površinsko obliko, topografijo, dokler se obdeluje s silami neke tekočine, da bi se spremenilo konfiguracijo vlaken in proizvedlo netkan material. Primeri postopka za izdelovanje netkanih materialov so prikazani in opisani v ameriških patentih 1,978,620; 2,862,251; 3,303,721; 3,081,515; 3,485,706 i 3,498,874.Over the last 20 or 30 years, various processes have evolved and attempts have been made to produce textile material directly from the fiber web, excluding the major part, if not all, of the stages described above. Some of these procedures involve the use of plugs or needles that are arranged according to a particular scheme. The needles are inserted into the fiber web to create openings in the webbing and simulate the appearance of the woven fabric. The product obtained is poor and requires the addition of chemical binders in order to obtain the desired strength. Adding a binder essentially changes the feel of the touch, the flexibility, the ability to form a set, and other desired physical properties and makes it virtually impossible to reproduce the desired properties of a woven or knitted material. Other technologies included the use of fluid or fluid forces that were directed to a fiber strip in a predetermined arrangement to distribute the fibers so that the product had some of the properties of woven or knitted materials. In some of these known technologies, the fiber strip is placed on an element having a predetermined surface shape, topography, as long as it is treated with forces of some fluid to change the configuration of the fibers and produce a nonwoven material. Examples of the process for making nonwovens are illustrated and described in U.S. Patent 1,978,620; 2,862,251; 3,303,721; 3,081,515; 3,485,706 and 3,498,874, respectively.
Čeprav so materiali proizvedeni po nekem od prej opisanih postopkov bili komercialno uspešni, dobljeni materiali tudi nadalje niso imeli vseh želenih značilnosti mnogih tkanih in/ali pletenih materialov. Nobena izmed teh tehnologij ni imela možnosti, da se bodisi stvori želeno kombinacijo fizikalnih lastnosti v izdelanem materialu, bodisi želen izgled tkanega ali pletenega materiala bodisi niti eno niti drugo. Znani postopki niso imeli natančne kontrole razporeda vlaken niti kontrole sil, ki zadevajo trak vlaken.Although the materials produced by one of the processes described above were commercially successful, the materials obtained still did not have all the desired characteristics of many woven and / or knitted materials. None of these technologies had the potential to either create the desired combination of physical properties in the fabric produced, or the desired appearance of woven or knitted material, or both. The known procedures had neither precise control of the fiber arrangement nor control of forces affecting the fiber web.
Na splošno mora tekstilni material imeti enakomerno strukturo in dobro jakost. Material mora imeti dobro zračnost in odprtost, celo kadar je sorazmerno velike debeline. Material mora imeti malo kratkih vlaken ali pa mora vpijati vlago. Želena kombinacija lastnosti naj se doseže brez dodajanja kemičnih veziv. Postopek mora biti takšen, da se more nadzorovati, da bi se omogočilo izdelavo materiala, ki ima željeno kombinacijo fizikalnih lastnosti.In general, the textile material must have a uniform structure and good strength. The material must have good clearance and openness, even when of relatively large thickness. The material should have little short fibers or absorb moisture. The desired combination of properties should be achieved without the addition of chemical binders. The process must be such that it can be controlled to allow the production of a material having the desired combination of physical properties.
Cilj prikazanega izuma je v tem, da se proizvede netkan material, ki bo imel izjemno jakost, vendar brez dodatnih vezivnih materialov.It is an object of the present invention to provide a non-woven material which will have exceptional strength but without additional binder materials.
Naslednji cilj prikazanega izuma je v tem, da se stvori material, ki je izravnanega izgleda in ima enakomerne ter nadzorovane fizikalne lastnosti. Prav tako je eden izmed ciljev tega izuma vtem, da se stvori material, ki bo imel izvrstno zračnost vrstic in odprtost področja.Another object of the present invention is to provide a material that has a balanced appearance and has uniform and controlled physical properties. It is also one of the object of the present invention to provide a material that will have excellent line clearance and open area.
Pri določenih izvedbah prikazanega izuma naš novi netkani material vsebuje večje število skupin vlaken, ki so podobna preji, pri čemer so te skupine praktično goste in fine kot predena nit. Te skupine so medsebojno povezane na spojih s pomočjo vlaken, ki so skupna za več skupin. Te skupine tvorijo vnaprej določeno shemo odprtin v končnem izdelku. Vsaka od skupin obsega več vzporednih in gosto zbitih vlaknenih segmentov. Vsaj nekatere izmed skupin obsegajo prepletena področja vlaknenih segmentov, ki so oviti okoli dela zunanje površine vzporednih in gosto zbitih vlaknenih segmentov kakor tudi skozi skupine vlaken. Pri teh izvedbah materiala obstojijo prepletena področja, pri katerih se snopi vlaken razprostirajo v nasprotnih smereh iz prepletenega področja.In certain embodiments of the present invention, our new non-woven fabric contains a greater number of yarn-like fiber groups, these groups being practically dense and fine than the spinning thread. These groups are interconnected at the joints by means of fibers common to several groups. These groups form a predetermined opening pattern in the finished product. Each of the groups consists of several parallel and densely packed fiber segments. At least some of the groups comprise interconnected areas of fiber segments that are wrapped around a portion of the outer surface of parallel and densely compacted fiber segments as well as through fiber groups. In these embodiments of the material, there are interlaced regions in which the fiber bundles extend in opposite directions from the interlaced region.
Pri nekaterih izvedbah novega netkanega materiala po prikazanem izumu so vzporedni in gosto zbiti vlakneni segmenti zaviti. Ta zavitost se razteza bodisi od enega medsebojno povezanega področja do nekega sosednjega medsebojno povezanega področja ali pa obstojijo nasprotnosmeme zavitosti, pri čemer se ena zavitost razteza od enega medsebojno povezanega področja do enega ovitega vpletenega področja, medtem ko se nasprotna zavitost razteza od tega ovitega vpletenega področja do sosednjega medsebojno povezanega področja. Pri mnogih izvedbah tega izuma so mnogi spoji zelo prepletena področja, ki obsegajo več vlaknenih segmentov. Nekateri izmed vlaknenih segmentov v področju so ravni, medtem ko so drugi zaviti pod kotom 90°. Nekateri izmed vlaknenih segmentov v spojih imajo diagonalno smer pri prehodu segmenta skozi spoj. Nekateri izmed vlaknenih segmentov se raztezajo v smeri z znotraj prepletenega področja. Smer z je debelina materiala v nasprotju z dolžino ali širino materiala.In some embodiments of the new nonwoven fabric of the present invention, the parallel and densely packed fiber segments are wrapped. This wrapping extends either from one interconnected area to an adjacent interconnected area, or there are opposite directions of envelope, with one wrapping extending from one interconnected area to one wrapped involved area, while the opposite wrapping extends from this wrapped involved area to the adjacent interconnected area. In many embodiments of the present invention, many joints are highly interconnected regions comprising multiple fiber segments. Some of the fiber segments in the area are straight, while others are curved at 90 °. Some of the fiber segments in the joints have a diagonal direction when the segment passes through the joint. Some of the fibrous segments extend in the direction from within the intertwined region. The z direction is the thickness of the material as opposed to the length or width of the material.
Pri določenih izvedbenih primerih so oviti vpleteni deli lahko na sredini med dvema spojema, medtem ko so pri drugih izvedbah oviti prepleteni deli lahko premaknjeni izven središča. Pri nekaterih drugih izvedbah lahko obstoji več ovitih, vpletenih delov, med sosednjima medsebojno povezanima spojema.In certain embodiments, the wrapped strands may be centered between two joints, while in other embodiments the wrapped strands may be moved off-center. In some other embodiments, there may be several wrapped, interconnected parts between adjacent interconnected joints.
Prozornost ali odprtost materiala po prikazanem izumu je izjemna, prav tako pa je tudi gostota zbitih grup vlaken in medsebojno povezanih spojev večja kot pri znanih netkanih materialih. V določenih primerih lahko gostota skupin in/ali spojev doseže gostoto preje pri tkanih ali pletenih materialih. Razen tega je pri mnogih materialih po tem izumu gostota v skupinah vlaken in medsebojno povezanih spojih skrajno enakomerna glede na znane netkane materiale. Novi postopki po prikazanem izumu razporejajo in prepletajo vlakna natančneje in bolj predvidljivo kot doslej, s čimer se omogoča izdelava materiala vrhunskih lastnosti.The transparency or openness of the material of the present invention is remarkable, and the density of compacted groups of fibers and interconnected joints is also greater than that of known nonwovens. In certain cases, the density of the groups and / or joints may reach the density of the yarn in woven or knitted fabrics. In addition, in many of the materials of the present invention, the density in the fiber groups and interconnected joints is extremely uniform with respect to known nonwovens. The new processes according to the present invention arrange and interweave the fibers more precisely and more predictably than ever before, thus making the material of superior properties possible.
Materiale po prikazanem izumu se izdeluje, s tem da se usmerja nadzorovane hidravlične sile na površino sloja vlaken, pri čemer je sloj s svojo nasprotno površino oprt na element, ki ima vnaprej določeno prostorsko obliko ali topografijo kot tudi vnaprej določen razpored ali shemo odprtih področij znotraj te topografije. Pri postopku, ki je značilen za proizvodnjo naših novih netkanih materialov, je oporni element za naslanjanje vlaknenega traku trodimenzionalen in obsega več piramid, ki so razporejene po površini opornega elementa. Stranice piramide so nagnjene glede na vodoravno površino opornega elementa pod kotom, ki je večji od 55°. Zaželjeno je, da bi bil ta kot 65° ali večji, vendar kot 75° daje izreden material po predloženem izumu. Oporni element prav tako obsega več odprtin, pri čemer so odprtine postavljene v področjih, kjer se stranice piramid dotikajo opornega elementa. Prav tako so zagotovljene naprave za usmerjanje sosednjih tokov tekočine hkrati na vrh in/ali stranice piramide, medtem ko je sloj vlaken oprt na piramide.The materials of the present invention are made by directing controlled hydraulic forces to the surface of the fiber layer, the layer having its opposite surface resting on an element having a predetermined spatial shape or topography as well as a predetermined arrangement or pattern of open regions within these topographies. In the process that characterizes the production of our new nonwovens, the support element for leaning the fiber web is three-dimensional and comprises several pyramids arranged over the surface of the support element. The sides of the pyramid are inclined with respect to the horizontal surface of the support element at an angle greater than 55 °. It is desirable that the angle be 65 ° or greater, but the angle 75 ° gives the exceptional material of the present invention. The support element also comprises several openings, the openings being positioned in areas where the sides of the pyramids touch the support element. Devices are also provided to direct adjacent fluid streams simultaneously to the top and / or sides of the pyramid while the fiber layer is supported on the pyramids.
Na priloženih risbah slika 1 prikazuje shematičen izgled v perspektivi materiala po prikazanem izumu, slika 2 prikazuje na shematičen način prerez priprave za izdelovanje materiala po predloženem izumu, slika 3 prikazuje pogled v perspektivi na vlaknene trakove in topografski oporni element, slika 4 prikazuje blok shemo, ki podaja razne faze postopka za proizvodnjo materiala po tem izumu, slika 5 na shematski način prikazuje videz ene vrste priprave za izdelovanje materiala po predloženem izumu, slika 6 na shematski način prikazuje videz druge vrste priprave za izdelovanje materiala po predloženem izumu, slika 7 na shematski način predstavlja videz prednostne vrste priprave za izdelovanje materiala po predloženem izumu, slika 8 prikazuje v povečanem merilu prerez topografskega opornega elementa, slika 9 prikazuje vodoravno projekcijo topografskega opornega elementa, ki je prikazan na sliki 8, slika 10 prikazuje v povečanem merilu prerez topografskega opornega elementa, slika 11 prikazuje vodoravno projekcijo topografskega opornega elementa, ki je prikazan na sliki 10, slika 12 prikazuje v povečanem merilu prerez topografskega opornega elementa, slika 13 prikazuje vodoravno projekcijo topografskega opornega elementa, ki je prikazan na sliki 12, slika 14 prikazuje v povečanem merilu prerez topografskega opornega elementa, slika 15 prikazuje vodoravno projekcijo topografskega opornega elementa, ki je prikazan na sliki 14, slika 16 prikazuje delno vodoravno projekcijo topografskega opornega elementa, slika 17 prikazuje prerez vzdolž linije 17-17 na sliki 16, slika 18 prikazuje delno vodoravno projekcijo topografskega opornega elementa, slika 19 prikazuje delno vodoravno projekcijo nadaljnjega topografskega opornega elementa, slika 20 prikazuje mikrofotografijo materiala, ki je na shematski način prikazan na sliki 1, pri povečavi okoli 20-krat, slika 21 prikazuje mikrofotografijo enega izmed področij materiala s pentljasto vezjo s slike 20, vendar z dodatno, okoli 4-kratno povečavo, slika 22 prikazuje mikrofotografijo medsebojno povezanega spoja materiala s slike 20, vendar z dodatno, okoli 4-kratno povečavo, slika 23 prikazuje mikrofotografijo prereza pentljaste vezi materiala s slike 20, vendar z dodatno, okoli 4-kratno povečavo, slika 24 prikazuje mikrofotografijo materiala po predloženem izumu, vendar v okoli 25-kratni povečavi, slika 25 prikazuje mikrofotografijo ene izmed pentljastih vezi materiala s slike 24, vendar z dodatno, okoli 3-kratno povečavo, slika 26 prikazuje mikrofotografijo medsebojno povezanega spoja materiala s slike 24, vendar z dodatno, okoli 3-kratno povečavo, slika 27 prikazuje mikrofotografijo materiala po predloženem izumu, vendar z okoli 25-kratno povečavo, slika 28 prikazuje mikrofotografijo pentljaste vezi materiala po predloženem izumu, vendar z dodatno, okoli 50-kratno povečavo, slika 29 prikazuje mikrofotografijo materiala po predloženem izumu, vendar z okoli 20-kratno povečavo, slika 30 prikazuje mikrofotografijo pentljaste vezi materiala s slike 29, vendar z dodatno, okoli 2,5-kratno povečavo, slika 31 prikazuje mikrofotografijo druge izvedbene oblike materiala po predloženem izumu pri povečavi okoli 15-krat, katerega vlakneni segmenti obsegajo sukanje, slika 32 prikazuje mikrofotografijo materiala s slike 31, vendar dodatno povečano za okoli 2-krat, slika 33 prikazuje mikrofotografijo drugega izvedbenega primera materiala po izumu v povečavi okoli 15-krat, slika 34 prikazuje mikrofotografijo nadaljega izvedbenega primera materiala po izumu v povečavi okoli 35-krat, slika 35 prikazuje mikrofotografijo vodoravnega prereza medsebojno povezanega spoja materiala po predloženem izumu v povečavi okoli 88-krat, slika 36 prikazuje mikrofotografijo vodoravnega prereza medsebojno povezanega spoja znanega materiala v povečavi okoli 88-krat, slike 37A do 37F prikazujejo mikrofotografije preiskovanega materiala v nizu stopenj slikovne analize preiskovanega materiala zaradi določanja prosojnosti odprtin v materialu.In the accompanying drawings, Figure 1 shows a schematic perspective view of the material of the present invention, Figure 2 schematically shows a cross-sectional view of a material preparation apparatus of the present invention, Figure 3 shows a perspective view of the fiber strips and topographic support element, Figure 4 shows a block diagram, illustrating the various steps of the process for producing a material of the present invention, Figure 5 schematically shows the appearance of one type of material preparation apparatus of the present invention, Figure 6 schematically shows the appearance of another type of material preparation apparatus of the present invention, Figure 7 schematically the method shows the appearance of a preferred type of material preparation apparatus of the present invention, Figure 8 shows an enlarged cross-section of a topographic support element, Figure 9 shows a horizontal projection of a topographic support element shown in Figure 8, Figure 10 shows an enlarged cross-section of a topographic support element , sli Figure 11 shows a horizontal projection of a topographic support element shown in Figure 10, Figure 12 shows an enlarged cross section of a topographic support element, Figure 13 shows a horizontal projection of a topographic support element shown in Figure 12, Figure 14 shows an enlarged cross section topographic support element, figure 15 shows a horizontal projection of a topographic support element shown in figure 14, figure 16 shows a partial horizontal projection of a topographic support element, figure 17 shows a cross-section along line 17-17 in figure 16, figure 18 shows a partial horizontal projection of a topographic of the support element, Figure 19 shows a partial horizontal projection of a further topographic support element, Figure 20 shows a micrograph of the material shown schematically in Figure 1, at a magnification of about 20 times, Figure 21 shows a micrograph of one of the areas of material with a looped bond from the image 20, but with do given at about 4x magnification, Fig. 22 shows a micrograph of the interconnected joint of the material of Fig. 20, but with an additional approximately 4x magnification, Fig. 23 shows a micrograph of a cross-section of the foam bond of the material of Fig. 20, but with an additional, about 4 times enlargement, Figure 24 shows a micrograph of a material of the present invention, but at about 25x magnification, Figure 25 shows a micrograph of one of the foam ties of the material of Figure 24, but with an additional 3x magnification, Figure 26 shows a micrograph of an interconnected material joint from Fig. 24, but with an additional 3x magnification, Fig. 27 shows a micrograph of the material of the present invention, but at about 25x magnification, Fig. 28 shows a micrograph of the foam bond of the material of the present invention, but with an additional, about 50x enlargement, Figure 29 shows a micrograph of the material of the present invention, but at about 20x magnification, Figure 3 Fig. 0 shows a micrograph of the foam bond of the material of Fig. 29, but with an additional 2.5x magnification, Fig. 31 shows a micrograph of another embodiment of the material of the present invention at a magnification of about 15 times whose fiber segments comprise a twist, Fig. 32 shows a micrograph of the material of Fig. 31 but further enlarged by about 2 times, Fig. 33 shows a micrograph of another embodiment of the material of the invention in magnification about 15 times, Fig. 34 shows a micrograph of a further embodiment of the material of the invention in magnification about 35 times, Fig. 35 shows a micrograph of a horizontal section of an interconnected joint of a material of the present invention in magnification of about 88 times, Fig. 36 shows a micrograph of a horizontal cross section of an interconnected joint of known material in a magnification of about 88 times, Figures 37A to 37F show micrographs of the investigated material in a series of stages of image analysis of the investigated material for to determine the transparency of openings in the material.
Glede na risbe slika 1 prikazuje izgled v perspektivi materiala 50 po predloženem izumu. Kot je razvidno s te slike, material vsebuje večje število vlaknenih snopov 51, ki so izoblikovani kot preja in ki se razprostirajo med spoji 52, kjer so medsebojno povezani. Ti vlakneni snopi in spoji tvorijo shemo odprtin 53, pri katerem imajo odprtine v glavnem kvadratno obliko. Vsak od vlaknenih snopov vsebuje vlaknene segmente, ki so zgoščeni in zbiti. V teh vlaknenih snopih so mnogi izmed vlaknenih segmentov medsebojno vzporedni. Kot je razvidno s slike, se približno na sredini vlaknenega snopa med sosednjima spojema nahaja naslednje prepleteno področje 54, v katerem vlakna težijo, da so krožno ovita okoli zunanje površine vzporedno zbitih vlaknenih segmentov. Kot se lahko vidi, se snop vlaken razteza od nasprotnih strani krožno prepletenega področja. Takšna konfiguracija se v nadaljnjem besedilu naziva vozel ali področje vozla.1 is a perspective view of the material 50 of the present invention. As can be seen from this figure, the material contains a large number of fiber bundles 51, which are shaped like yarn and extend between joints 52, where they are interconnected. These fiber bundles and joints form a scheme of openings 53 in which the openings have a substantially square shape. Each of the fiber bundles contains fibrous segments that are thickened and compacted. In these fiber bundles, many of the fiber segments are parallel to each other. As can be seen from the figure, approximately in the middle of the fiber bundle, between the adjacent joints, is the next interlaced region 54, in which the fibers tend to be circularly wrapped around the outer surface of the parallel fiber segments. As can be seen, the fiber bundle extends from opposite sides of the circularly intertwined area. This configuration is hereinafter referred to as a node or node region.
Slika 2 na shematičen način predstavlja prerez priprave za izdelovanje materiala po predloženem izumu. Ta priprava ima premičen transportni trak 55, na ta trak pa je postavljen, tako da se giba hkrati s trakom, nov oblikovan topografski oporni element 56. Oporni element ima več piramid kot tudi več odprtin, ki so razporejene v tem topografskem elementu, ki bodo pozneje podrobneje obrazloženi. Preko tega topografskega opornega elementa je postavljen trak 57 iz vlaken. To je lahko netkan trak iz počesanih, grebenanih vlaken, s komprimiranim zrakom nanešenih vlaken, topljenih in s pihanjem nanešenih vlaken ali podobnega. Nad vlaknenim trakom se nahaja zbiralnik 58 za nanašanje tekočine 59, prednostno vode, na vlaknen trak, medtem ko se ta vlaknen trak, oprt na topografski element, pomika po transportnem traku pod zbiralnikom. Vodo se lahko izpušča pod različnimi tlaki. Pod transportnim trakom je postavljen vakuumski zbiralnik 60 za odstranjanje vode iz tega področja, medtem ko trak in topografski oporni element potujeta mimo pod zbiralnikom s tekočino. V teku postopka se vlakneni trak postavi na topografski oporni element in vlakneni trak ter topografski element se potegne pod zbiralnikom s tekočino. Vodo se izpušča na vlaknen trak, da bi se vlakneni trak namočilo in bi se zagotovilo, da se trak ne bo premaknil ali pretrgal iz svojega položaja na topografskem elementu tekom nadaljnje obdelave. Za tem se topografski oporni element in trak večkrat spusti izpod zbiralnika. Med temi prehodi se tlak vode v zbiralniku povečuje od začetnega tlaka okoli 7 bar do tlaka do 50 bar ali več. Sam zbiralnik ima več odprtin od 1,6 do 39,4 odprtine na centimeter ali celo več. Priporoča se, da je število odprtin v zbiralniku od 11,8 do 27,6 odprtin na centimeter. Odprtine imajo premer od približno 0,18 mm. Potem ko trak in topografski oporni element gredo nekolikokrat izpod zbiralnika, se prekine dotok vode in naravna se delovanje vakuuma, da bi se doprineslo k odstranjevanju vode iz traku. Nato se trak sname s topografskega elementa in se ga suši, da bi se stvorilo material, kakršen je opisan v povezavi s sliko 1.Figure 2 is a schematic cross-sectional view of a device for manufacturing a material according to the present invention. This device has a movable conveyor belt 55, and on this strip is mounted so that it moves simultaneously with the belt, a new shaped topographic support element 56. The support element has more pyramids as well as more openings arranged in this topographic element, which will be later explained in more detail. A fiber strip 57 is placed over this topographic support element. This may be a non-woven strip of combed, wrinkled fibers, compressed air coated fibers, rendered and blown coated fibers or the like. Above the fiber strip, there is a reservoir 58 for applying fluid 59, preferably water, to the fiber strip, while this fiber strip, supported by a topographic element, moves along the conveyor belt below the reservoir. Water can be discharged under different pressures. A vacuum reservoir 60 is installed under the conveyor belt to remove water from the area, while the ribbon and topographic support element travel past the reservoir with fluid. During the process, the fiber strip is placed on the topographic support element and the fiber strip and the topographic element is pulled under the fluid reservoir. The water is discharged onto the fibrous tape to allow the fibrous tape to soak and to ensure that the tape does not move or tear from its position on the topographic element during further processing. After that, the topographic support element and the tape repeatedly fall below the reservoir. During these transitions, the water pressure in the reservoir increases from an initial pressure of about 7 bar to a pressure of up to 50 bar or more. The reservoir itself has multiple openings from 1.6 to 39.4 openings per centimeter or even more. It is recommended that the number of openings in the reservoir be from 11.8 to 27.6 openings per centimeter. The openings have a diameter of approximately 0.18 mm. After the tape and the topographic support element come under the reservoir several times, the flow of water is interrupted and the vacuum is adjusted in order to contribute to the removal of water from the tape. The strip is then removed from the topographic element and dried to form the material as described in connection with Figure 1.
Slika 3 predstavlja pogled v perspektivi na razdvojen del vlaknenega traku in na oporni element, ki sta opisana na sliki 2. Trak 57 v glavnem obsega poljubno nalagana vlakna 63. Dolžina vlaken se lahko spreminja v mejah od 6,35 mm ali manj pa do 38 mm ali več. Priporočljivo je, da se kratka vlakna, kadar se koristi kratka vlakna (vključno z vlakni iz lesne pulpe), meša z daljšimi vlakni. Vlakna so lahko katerakoli vlakna izmed poznanih umetnih, naravnih ali sintetičnih vlaken, kot so bombaž, rajon, najlon, poliester ali podobno. Trak je lahko stvorjen po kateremkoli postopku, ki so poznani v tem področju, kot so grebenanje, nalaganje z zrakom pod tlakom, nalaganje v vlažnem stanju, pihanje raztopine ipd.Figure 3 is a perspective view of the disconnected portion of the fiber web and the support element described in Figure 2. The web 57 mainly comprises arbitrarily loaded fibers 63. The length of the fibers may vary from 6.35 mm or less to 38 mm or more. It is recommended that short fibers be mixed with longer fibers when using short fibers (including wood pulp fibers). Fibers may be any fibers of known artificial, natural or synthetic fibers such as cotton, rayon, nylon, polyester or the like. The tape can be created by any of the procedures known in the art, such as creasing, pressurized air loading, wet loading, solution blowing, and the like.
Kritičen del priprave po predloženem izumu je topografski oporni element. Eden izmed izvedbenih primerov opornega elementa, na katerem se trak preoblikuje v enoten material po predloženem izumu, je prikazan na sliki 3. Kot je prikazano, element 56 obsega vrste piramid 61. Vrhovi 65 piramid so razporejeni po dveh medsebojno pravokotnih smereh. Nagnjene površine piramid se nadalje nazivajo stranice 66, prostori med piramidami pa se v nadaljnjem nazivajo poglobitve 67.A critical part of the preparation of the present invention is the topographic support element. One embodiment of a support element on which a strip is transformed into a single material according to the present invention is shown in Figure 3. As shown, element 56 comprises pyramid types 61. The tops of the 65 pyramids are arranged in two orthogonal directions. The sloping surfaces of the pyramids are hereinafter called the sides 66, and the spaces between the pyramids are hereinafter referred to as the recesses 67.
Več odprtin, katere prehajajo skozi oporni element, je na opornem elementu razporejenih po določeni shemi. Pri tem izvedbenem primeru je po ena odprtina postavljena v vsaki poglobitvi pri sredini stranic sosednjih piramid in pri vsakem vogalu, kjer se srečujejo po štiri piramide. Odprtine pri stranicah piramid se vsaj delno raztezajo vzdolž stranic sosednjih piramid. Kritičnost topografskega opornega elementa po predloženem izumu izhaja iz kota, ki ga stranica piramide objema z vodoravno ravnino opornega elementa, od razporeda in oblike odprtine kot tudi od velikoti in oblike poglobitve. Kadar se vlaknen trak postavi preko takšnega topografskega elementa in se preplete s pomočjo tekočine, kot je opisano v povezavi s sliko 2, se dobi material, ki ima nepričakovano izjemno prosojnost in pravilnost zgradbe. Kadar se koristi topografski oporni element, ki je opisan v povezavi s sliko 3, dobljeni material razen tega vsebuje vozle, kot je bilo predhodno opisano. Kot, ki ga stranice piramid oklepajo z vodoravno ravnino, mora biti vsaj 55° in je prednostno 65° ali večji. Ugotovili smo, da je posebno ugodno za izdelovanje materiala po predloženem izumu, če je kot med 65° in 75°. Da bi se stvorih vozli ali področja s krožno ovitimi prepletenimi vlakni, so odprtine v topografskem opornem elementu postavljene ob stranice piramid. Odprtine so lahko postavljene tudi na drugih mestih, kot so vogali piramid. Odprtine pri vogalih težijo k temu, da izboljšajo prepletanje pri spojih in prosojnost izdelanega materiala. To posebej velja za debelejše materiale. Širina poglobitve v njihovi osnovi bo regulirala širino ali dimenzije vlaknenih snopov ali oblike preje med medsebojno povezanimi spoji.Several openings, which pass through the support element, are arranged on the support element according to a certain scheme. In this embodiment, one opening is placed in each recess at the center of the sides of adjacent pyramids and at each corner where four pyramids meet. The openings at the sides of the pyramids extend at least partially along the sides of the adjacent pyramids. The criticality of the topographic support element according to the present invention stems from the angle that the side of the pyramid embraces with the horizontal plane of the support element, from the layout and shape of the opening, as well as from the size and shape of the recess. When a fiber strip is placed over such a topographic element and intertwined with a fluid as described in connection with Figure 2, a material is obtained that has unexpectedly remarkable transparency and regularity in structure. When using the topographic support element described in conjunction with Figure 3, the resulting material further comprises nodes as previously described. The angle enclosed by the sides of the pyramids with the horizontal shall be at least 55 ° and preferably 65 ° or greater. It has been found that it is particularly advantageous to produce the material of the present invention when the angle is between 65 ° and 75 °. In order to create nodes or regions with circularly interwoven fibers, openings in the topographic support element are placed along the sides of the pyramids. Openings may also be erected in places other than the corners of the pyramids. The openings at the corners tend to improve the interlocking at the joints and the transparency of the fabricated material. This is especially true for thicker materials. The width of the recesses at their base will regulate the width or dimensions of the fiber bundles or the shape of the yarn between interconnected joints.
Pri izdelavi materiala, ki je opisan v povezavi s sliko 2, ko tekočina udarja ob vlaknen trak, tekočina potiska vlakna na dno poglobitev in zabija vlakna v razpoložljiv prostor. Obstoji teorija, da tekočina prav tako tvori 'Vrtinec ali krožno gibanje, medtem ko potiska vlakna k dnu poglobitve. Kombinacija odprtin pri stranicah piramid in tekočinskih sil povzroča, da se vlakneni segmenti krožno ovijajo okoli dragih vlaknenih segmentov. V teku postopka se praktično vsa vlakna potisnejo navzdol vzdolž stranic piramid, tako da področje materiala, ki ustreza osnovnici piramide, praktično ostaja brez vlaken.In the manufacture of the material described in connection with Figure 2, when the fluid strikes the fiber web, the fluid pushes the fibers to the bottom of the recesses and crams the fibers into the available space. There is a theory that the fluid also forms a 'vortex' or a circular motion while pushing the fibers towards the bottom of the recess. The combination of openings at the sides of the pyramids and fluid forces causes the fiber segments to be circularly wrapped around expensive fiber segments. During the process, virtually all the fibers are pushed down along the sides of the pyramids so that the area of material corresponding to the base of the pyramid remains virtually free of fibers.
Slika 4 predstavlja blok shemo, ki prikazuje posamezne faze postopka izdelovanja novega materiala po predloženem izumu. Prva faza pri tem postopku je v tem, da se postavi vlakneni trak na topografski oporni element, blok T. Vlaknen trak se predhodno namaka ali vlaži, dokler je na tem opornem elementu (blok 2’), da bi se zagotovilo, da bo ostal na opornem elementu, dokler se ga bo obdelovalo. Nato se oporni element, na katerem je vlaknen trak, spušča izpod šob za brizganje tekočine pod visokim tlakom (blok 3’). Priporočljiva tekočina je voda. Voda se odstranjuje z opornega elementa prednostno z uporabo vakuuma (blok 4’). Iz vlaknenega traku se odstranjuje vodo (blok 5’). Izoblikovan trak, iz katerega se odstranjuje vodo, se snema z opornega elementa (blok 6’). Izoblikovan material se prepušča preko vrste bobnov za sušenje, da bi se material posušilo (blok 7’). Material se lahko zatem površinsko obdela ali pa se obdela po želji na nek drug način (blok 8’). Slika 5 predstavlja shematski prikaz vrste priprave za izvajanje procesa ali postopka in izdelovanje materiala po predloženem izumu. Pri tej pripravi se en porozen transportni trak 70 neprekinjeno giba okoli dveh medsebojno razmaknjenih, vrtečih se valjčkov 71 in 72. Trak ima takšen pogon, da se lahko giba izmenično bodisi na desno bodisi na levo. Na nekem mestu iznad traku, iznad zgornje veje 73 traku, je nad trakom postavljen zbiralnik 74 za škropljenje vode. Ta zbiralnik ima več odprtin zelo majhnega premera, velikosti okoli 0,18 mm z okoli 7,9 odprtine na dolžinski centimeter. Vodo se pod tlakom potiska skozi te odprtine. Na gornji strani transportnega traku je postavljen topografski oporni element 75, preko tega topografskega elementa pa je postavljen vlaknen trak 76, ki ga je treba oblikovati. Neposredno pod zbiralnikom z vodo ali pod zgornjo vejo traku je postavljen sesalni ali vakuumski zbiralnik 77, da se pomaga pri odstranjevanju vode in prepreči prekomerno vlaženje vlaknenega traku. Voda iz zbiralnika zadeva na vlaknen trak, prehaja skozi topografski oporni element in se odvaja s pomočjo sesalnega zbiralnika. Jasno je, da se topografski oporni element, na katerem je vlaknen trak, lahko prepusti izpod zbiralnika tolikokrat, kot se želi, da bi se stvorilo material po predloženem izumu.Figure 4 is a block diagram showing the individual steps of the process of manufacturing a new material according to the present invention. The first stage in this process is to place the fiber strip on the topographic support element, block T. The fiber strip is pre-soaked or moistened as long as it is on that support element (block 2 ') to ensure that it remains on the support member until it is machined. Then, the support element containing the fiber strip is lowered under the high pressure liquid injection nozzles (block 3 '). The recommended fluid is water. Water is preferably removed from the support element using a vacuum (block 4 '). Water is removed from the fiber strip (block 5 '). The formed strip from which the water is removed is removed from the support element (block 6 '). The molded material is passed through a series of drying drums to allow the material to dry (block 7 '). The material may then be surface treated or otherwise processed (block 8 '). Figure 5 is a schematic representation of a type of device for carrying out a process or process and for producing a material according to the present invention. In this preparation, one porous conveyor belt 70 moves continuously around two spaced, rotating rollers 71 and 72. The belt has such a drive that it can move alternately either to the right or to the left. At some point above the strips, above the upper branch 73 strips, a reservoir 74 for spraying water is mounted above the strips. This collector has several openings of very small diameter, about 0.18 mm in size, with about 7.9 openings per centimeter long. Pressurized water is pushed through these openings. A topographic support element 75 is positioned on the upper side of the conveyor belt and a fibrous strip 76 to be formed over this topographic element. A suction or vacuum reservoir 77 is installed directly below the water tank or under the upper branch of the strap to assist in the removal of water and to prevent the fiber tape from becoming excessively wet. The water from the reservoir contacts the fibrous strip, passes through the topographic support element and is discharged by means of the suction reservoir. It is clear that the topographic support element on which the fiber strip is can be left below the reservoir as many times as desired in order to create the material of the present invention.
Na sliki 6 je prikazana priprava za neprekinjeno izdelovanje materiala po predloženem izumu. Ta shematski prikaz priprave obsega transportni trak 80, ki dejansko služi kot topografski oporni element po predloženem izumu. Trak se neprekinjeno giba v smeri proti levi okoli medsebojno ločenih elementov, kar je sicer poznano. Nad tem trakom je zbiralnik 79 za dovajanje tekočine, ki povezuje več linij ali skupin 81 šob. Vsaka od skupin ima eno ali več vrst zelo drobnih odprtin z 12 ali več odprtin na centimeter. Zbiralnik je opremljen z manometrom 87 in s krmiljenimi ventili 88 za reguliranje tlaka tekočine v vsakem izmed nizov ali skupin šob. Pod vsako izmed linij ali skupin šob je postavljen po en element 82 za sesanje in odstranjanje viška vode ter za zaščito tega področja pred premočnim omočenjem. Vlaknen trak 83, ki se mora v material izoblikovati v material po predloženem izumu, se dovaja na transporten trak, ki predstavlja topografski oporni element. Vodo se škropi skozi ustrezne šobe 84 na vlakneni trak, da bi se trak predhodno namočilo ali navlažilo z vodo in da se prispeva k reguliranju vlaken, medtem ko prehajajo izpod zbiralnika pod tlakom. Sesalna špranja 85 je postavljena pod te šobe za vodo zaradi odstranjevanja viška vode. Vlaknen trak prehaja pod zbiralnikom za dovajanje tekočine, pri čemer je ugodno, da tlak v zbiralniku narašča. Tako lahko npr. prvi niz odprtin ali šob daje silo tekočine pri 7 bar, medtem ko naslednji niz šob lahko ustvarja tekočinsko silo pri tlaku 21 bar, zadnji niz šob pa lahko ustvarja tekočinsko silo pri tlaku 49 bar. Čeprav je prikazano 6 nizov šob za dovajanje tekočine, število nizov ali vrstic šob ni kritično, zaviselo pa bo od mase traku, hitrosti, tlaka, ki se uporablja, števila vrstic odprtin v vsakem nizu itd. Po prehodu med zbiralnikom za dovajanje tekočine in zbiralnikom za sesanje se stvorjeni material vodi preko dodatne sesalne špranje 86, da bi se odstranilo višek vode iz traku. Topografski oporni element je lahko izveden iz sorazmerno trdega materiala in lahko obsega več letvic. Vsaka od letvic se razteza prečno na širino transporterja in ima iztok na eni strani ter nastavek na nasprotni strani, tako da iztok ene letvice zajema nastavek sosednje letvice, da bi se omogočilo premikanje med sosednjimi letvicami in bi se omogočilo uporabo takšnih sorazmerno togih elementov pri konfiguraciji transporterjev, kije prikazana na sliki 6.Figure 6 shows a device for the continuous fabrication of a material according to the present invention. This schematic representation of the apparatus comprises a conveyor belt 80 that actually serves as the topographic support element of the present invention. The tape moves continuously to the left around the elements, which are otherwise known. Above this strip is a fluid supply reservoir 79 that connects multiple lines or groups of 81 nozzles. Each group has one or more types of very small openings with 12 or more openings per centimeter. The reservoir is equipped with a pressure gauge 87 and controlled valves 88 to regulate the fluid pressure in each of the series or groups of nozzles. One element 82 is placed under each of the lines or groups of nozzles to suck in and remove excess water and to protect this area from excessive wetting. The fiber strip 83, which is to be molded into the material of the present invention, is fed to the conveyor belt, which is a topographic support element. The water is sprayed through the corresponding nozzles 84 onto the fibrous tape to pre-wet or moisten the tape and to help regulate the fibers as they pass from under the pressure tank. The suction slot 85 is placed under these water nozzles to remove excess water. The fiber strip passes under the reservoir for fluid delivery, with the advantage that the pressure in the reservoir is increasing. Thus, e.g. the first set of nozzles or nozzles gives a fluid force at 7 bar, while the next set of nozzles can generate a fluid force at a pressure of 21 bar and the last set of nozzles can create a fluid force at a pressure of 49 bar. Although 6 sets of nozzles for fluid delivery are shown, the number of strings or rows of nozzles is not critical and will depend on the mass of the strip, the speed, the pressure used, the number of rows of openings in each set, etc. After passing between the fluid intake manifold and the intake manifold, the generated material is guided through an additional intake manifold 86 to remove excess water from the strip. The topographic support element may be made of relatively hard material and may comprise several moldings. Each of the slats extends transversely to the width of the conveyor and has an outlet on one side and a nozzle on the opposite side, so that the outlet of one lath covers the lug of the adjacent lath to allow movement between adjacent laths and to allow the use of such relatively rigid elements in the configuration conveyors shown in Figure 6.
Priporočljiva priprava za izdelovanje materiala po predloženem izumu je shematsko prikazana na sliki 7. Pri tej pripravi je topografski oporni element vrtljiv boben 90. Boben se vrti na levo in obsega več ukrivljenih plošč 91, ki imajo želeno prostorsko ali topografsko konfiguracijo, so pa razporejene tako, da tvorijo zunanjo površino bobna. Okoli dela zunanje površine bobna je postavljen zbiralnik 89, ki povezuje več trakov 92 s šobami za delovanje z vodo ali z drugo tekočino na vlaknen trak 93, ki je postavljen na zunanjo površino zakrivljenih plošč. Vsak izmed trakov s šobami ima lahko eno ali več vrst zelo majhnih odprtin premera od okoli 0,127 mm do 0,254 mm. Lahko je celo 20 ali 24 odprtin na dolžinski centimeter pa tudi več, če se to želi. Vodo ali drugo tekočino se usmerja skozi niz šob. Tlak v vsaki od skupin šob se povečuje od prve skupine, pod katero se nahaja vlakneni trak, proti zadnji skupini. Tlak se regulira z ustreznimi regulacijskimi ventili 97 in z manometri 98. Boben je povezan z zbiralnikom 94, v katerem se lahko ustvari podtlak, ki pomaga pri odvajanju vode in ščiti celo področje pred prekomernim navlaženjem. V teku delovanja se vlaknen trak 93 postavi na topografske oporne elemente 91 pred zbiralnikom 89 za brizganje vode. Vlaknen trak prehaja pod trakom s šobami in se oblikuje v material po predloženem izumu. Stvorjeni material se zatem pusti, da potuje preko dela topografskega opornega elementa in bobna 95, kjer ni traku s šobami, vendar še nadalje deluje vakuum. Potem ko se iz njega odstrani vodo, se material snema z bobna in prehaja okoli vrste bobnov 96 za sušenje.The preferred apparatus for fabricating the material of the present invention is shown schematically in Figure 7. In this preparation, the topographic support element is a rotating drum 90. The drum rotates to the left and comprises several curved plates 91 having the desired spatial or topographic configuration, but are arranged as follows to form the outer surface of the drum. A part 89 of the outer surface of the drum is assembled, which connects several strips 92 with nozzles for operation with water or other fluid to a fibrous strip 93, which is mounted on the outer surface of the curved plates. Each of the nozzle straps may have one or more types of very small openings with a diameter of about 0.127 mm to 0.254 mm. There can be as many as 20 or 24 openings per centimeter in length and more if desired. Water or other fluid is directed through a series of nozzles. The pressure in each of the groups of nozzles increases from the first group under which the fiber band is located towards the last group. The pressure is controlled by suitable control valves 97 and pressure gauges 98. The drum is connected to a reservoir 94 in which a vacuum can be created to help drain water and protect the entire area from excessive moisture. During operation, the fiber strip 93 is positioned on topographic support elements 91 in front of the water spout 89. The fiber strip passes under the nozzle strip and is molded into the material of the present invention. The generated material is then allowed to travel over a portion of the topographic support element and the drum 95, where there is no nozzle strip but still a vacuum. After the water has been removed, the material is removed from the drum and passed around a series of drying drums 96.
Slike 8 do 19 prikazujejo prereze in vodoravne projekcije različnih topografskih opornih elementov, ki se lahko koristijo po predloženem izumu. Na teh slikah so prikazane razne konfiguracije piramid in sheme odprtin, ki se lahko uporabljajo pri topografskih elementih.Figures 8 to 19 show cross-sections and horizontal projections of various topographic support elements that can be used according to the present invention. These figures show the various pyramid configurations and opening schemes that can be used with topographic elements.
Slika 8 predstavlja prerez topografskega opornega elementa, kije prikazan na sliki 3, slika 9 pa predstavlja vodoravno projekcijo. Oporni element, ki je prikazan na slikah 8 in 9, proizvaja material, ki je opisan v povezavi s sliko 1. Kot je prikazano na sliki 9, imajo piramide 61 kvadratno osnovnico. Piramide so si medsebojno enake, pri čemer je vsaka od stranic 66 piramid enakokrak trikotnik. Vsaka od piramid se končuje v eni točki ali v vrhu, ti vrhovi pa so razvrščeni v dveh, medsebojno pravokotnih smereh. Spodnji robovi piramid praktično nalegajo drug na drugega, tako da med stranicami piramid obstoji poglobitev 67 zanemarljive širine. Kot a, ki ga stranica piramide tvori z vodoravnico, tvori približno 70°. Topografski oporni element prav tako obsega odprtine 68, ki so razporejene vzdolž stranic piramide in pri vogalih piramide, kot je prikazano. Odprtine pri stranicah piramid se raztezajo vzdolž stranic piramid, kot je prikazano na sliki 8.Figure 8 is a cross-sectional view of the topographic support element shown in Figure 3, and Figure 9 is a horizontal projection. The support element shown in Figures 8 and 9 produces the material described in conjunction with Fig. 1. As shown in Fig. 9, the pyramids have a 61 square base. The pyramids are identical, with each of the sides 66 of the pyramids being an even triangle. Each of the pyramids ends at a single point or apex, and these peaks are arranged in two orthogonal directions. The lower edges of the pyramids practically rest on each other, so that there is a recess 67 of negligible width between the sides of the pyramids. The angle a formed by the side of the pyramid with the horizontal forms about 70 °. The topographic support element also comprises openings 68, which are arranged along the sides of the pyramid and at the corners of the pyramid, as shown. The openings at the sides of the pyramids extend along the sides of the pyramids, as shown in Figure 8.
Sliki 10 in 11 prikazujeta drug topografski oporni element, ki se lahko uporablja pri predloženem izumu. Slika 10 prikazuje prerez, slika 11 pa vodoravno projekcijo. Piramide so v glavnem iste oblike in razporeditve kot tudi piramide, ki so opisane na slikah 8 in 9. Je pa razdalja med piramidami za tvorjenje poglobitev 101 znatno večja, tako da so odprtine 102 na topografskem opornem elementu ne raztezajo vzdolž stranic piramid. Konfiguracija, ki je prikazana na slikah 10 in 11, se lahko uporablja pri trakovih z debelejšimi vlakni, ker ima več mest za zbijanje vlaken med stranice piramid.Figures 10 and 11 show another topographic support element that can be used in the present invention. Figure 10 shows a cross section and Figure 11 shows a horizontal projection. The pyramids are generally of the same shape and arrangement as the pyramids described in Figures 8 and 9. However, the distance between the pyramids to create recesses 101 is much larger, so that the openings 102 on the topographic support element do not extend along the sides of the pyramids. The configuration shown in Figures 10 and 11 can be used for bands with thicker fibers because there are more places for the fibers to fold between the sides of the pyramids.
Sliki 12 in 13 prikazujeta še nadaljnji izvedbeni primer topografskega opornega elementa po predloženem izumu. Pri tej izvedbi imajo stranice piramid 104 sestavljen nagibni kot. Del 105 stranice piramide, ki se razteza največ do poglobitve 106 oklepa kot okoli 80° z vodoravnico. Del 107 stranice piramide, ki se razteza navzdol od vrha 108 piramide, z vodoravnico oklepa kot okoli 55°. Prednost takšne konfiguracije piramid je v tem, da se stvorjeni material lahko laže sname s topografskega opornega elementa. Pri tem izvedbenem primeru so odprtine 109 razporejene vzdolž stranic piramid, odprtine 110 pa so razporejene pri vogalih, kjer se srečujejo štiri piramide. Pri tej izvedbi so odprtine pri stranicah piramid nekoliko večje od odprtin pri vogalih.12 and 13 show a further embodiment of a topographic support element of the present invention. In this embodiment, the sides of the pyramids 104 have a composite tilt angle. The portion 105 of the side of the pyramid, which extends up to a recess of 106, encloses an angle of about 80 ° with the horizontal. The part 107 of the side of the pyramid, extending down from the top 108 of the pyramid, with a horizontal angle of about 55 °. The advantage of such a pyramid configuration is that the created material can be easily removed from the topographic support element. In this embodiment, openings 109 are arranged along the sides of the pyramids, and openings 110 are arranged at the corners where four pyramids meet. In this embodiment, the openings at the sides of the pyramids are slightly larger than the openings at the corners.
Sliki 14 in 15 prikazujeta nadaljnji izvedbeni primer topografskega opornega elementa po predloženem izumu. Pri tem izvedbenem primeru stranice piramid niso enake. Zadnji rob 113 vsake od piramid je v bistvu navpičen, medtem ko sprednji rob 114 vsake od piramid z vodoravnico oklepa kot okoli 70°. Oporni element ima odprtine 116, kot je prikazano. S prilagajanjem oblike piramid na ta način se tekočinske sile, ki delujejo na vlakna, lahko regulira, tako da se tvori večje vrtinčno delovanje v poglobitvah 115 med piramidami.Figures 14 and 15 show a further embodiment of a topographic support element of the present invention. In this embodiment, the sides of the pyramids are not the same. The posterior edge 113 of each of the pyramids is substantially vertical, while the anterior edge 114 of each of the pyramids, with a horizontal angle, is about 70 °. The support element has openings 116 as shown. By adjusting the shape of the pyramids in this way, the fluid forces acting on the fibers can be regulated so as to produce greater eddy action in the recesses 115 between the pyramids.
Slika 16 prikazuje vodoravno projekcijo topografskega opornega elementa po predloženem izumu, slika 17 pa prikazuje prerez vzdolž linije 17-17 na sliki 16. Pri tem izvedbenem primeru imajo piramide 120 enake stranice, pri čemer vsaka izmed stranic z vodoravnico oklepa kot okoli 70°. Obstojita po dve odprtini ob vsaki stranici piramide. S tem da se postavi po dve odprtini ob vsako izmed stranic piramide, se lahko stvori več vozlov med sosednjimi medsebojno povezanimi spoji v izdelanem materialu.Fig. 16 shows a horizontal projection of the topographic support element of the present invention, and Fig. 17 shows a cross-section along line 17-17 of Fig. 16. In this embodiment, the pyramids 120 have the same sides, each side having a horizontal angle of about 70 °. There are two openings along each side of the pyramid. By placing two openings on each side of the pyramid, several knots can be created between adjacent interconnected joints in the fabricated material.
Sliki 18 in 19 sta vodoravni projekciji prednostnih izvedbenih primerov topografskih elementov po predloženem izumu. Na obeh slikah so piramide štiristranične in pravilne oblike. Na sliki 18 je po ena odprtina 126 nameščena ali razporejena ob vsako izmed stranic piramide. Na sliki 19 so odprtine 128 ob stranicah piramid. Tu so tudi odprtine 129 na vogalih, kjer se srečujejo po štiri piramide. Odprtine pri stranicah piramid so nekoliko večjega premera kot odprtine pri vogalih piramid.18 and 19 are horizontal projections of preferred embodiments of the topographic elements of the present invention. In both figures, the pyramids are four-sided and regular in shape. In Fig. 18, one opening 126 is positioned or arranged along each side of the pyramid. In Fig. 19, the openings are 128 along the sides of the pyramids. There are also openings 129 at the corners, where four pyramids meet. The openings at the sides of the pyramids are slightly larger in diameter than the openings at the corners of the pyramids.
Topografski oporni elementi po predloženem izumu so lahko izdelani iz najrazličnejših materialov, kot so plastične mase, kovine ipd. Uporabljeni materiali se ne smejo znatneje deformirati pod vplivom tekočine, ki udarja na površino. Površina opornega elementa ne sme vsebovati ostrih sledov strojne obdelave ali drugačnih napak, temveč mora biti sorazmerno gladka površina. Priporočljivo je, da oporni element ni zelo zglajen, ker se domneva, da je površina, ki ima določene lastnosti trenja zaželjena pri izdelavi materiala po predlaganem izumu. Izkazalo se je, da so strojno obdelane površine posebno primerne za izdelovanje materiala po tem izumu.The topographic support elements of the present invention can be made of a wide variety of materials, such as plastics, metals, and the like. The materials used must not be significantly deformed under the influence of the liquid which strikes the surface. The surface of the support element must not contain sharp traces of machining or other defects, but must be a relatively smooth surface. It is advisable that the support element is not very smooth because it is believed that a surface having certain friction properties is desirable in the fabrication of the present invention. Machined surfaces have proven to be particularly suitable for the fabrication of the material of the invention.
V vseh primerih ima topografski oporni element več odprtin, ki so razporejene po vnaprej določeni shemi, kakor tudi več piramid, štiristraničnih ali tristraničnih, kot se želi, pri čemer piramide z vodoravnico tvorijo kot vsaj 55°, prednostno pa med 60° in 75°. Zaželjeno je, da se odprtine v plošči raztezajo vzdolž stranic piramid, čeprav to ni absolutno nujno, ampak se domneva, da se s tem laže doseže želeno zbijanje prepletenih vlaken.In all cases, the topographic support element has several openings arranged according to a predetermined scheme, as well as more pyramids, four or three-sided, as desired, with pyramids with a horizontal angle of at least 55 ° and preferably between 60 ° and 75 °. . It is desirable that the openings in the plate extend along the sides of the pyramids, although this is not absolutely necessary but is assumed to make it easier to achieve the desired compaction of the interwoven fibers.
Treba je pripomniti, da ni potrebno, da bi se vse luknje ali odprtine v opornem elementu v celoti raztezale preko opornega elementa. Vsaj nekatere izmed odprtin se lahko samo delno raztezajo vzdolž opornega elementa pod pogojem, da imajo zadostno globino, da zmanjšajo ali preprečijo neželen povratni tok tekočine. Če se prevelika količina tekočine ali pa tekočina s preveliko silo vrne v področje prelaganja vlaken, lahko zmoti želeno prelaganje vlaken.It should be noted that it is not necessary for all holes or openings in the support element to extend completely beyond the support element. At least some of the openings may extend only partially along the support member provided that they have sufficient depth to reduce or prevent unwanted fluid flow. If too much fluid is returned or the fluid returns with excessive force to the fiber trapping area, it may interfere with the desired fiber trailing.
Slike 20 do 23 predstavljajo mikrofotografije materiala po predloženem izumu. Material je kakovosti 46,5 g/m2 in je stvorjen iz rajonskih vlaken, pri čemer so vlakna 1,5 deniera in imajo dolžino 32 mm. Material je stvorjen na plošči, ki je podobna tisti, ki je prikazana na sliki 3, z odprtinami pri stranicah piramid z nekoliko večjim premerom od odprtin pri vogalih piramid. Plošča je imela štiristranične piramide, katerih stranice so z vodoravnico oklepale kot približno 75°. Slika 20 prikazuje mikrofotografijo vodoravne projekcije materiala s povečavo okoli 20-krat. Kot je razvidno, so vlakneni deli materiala zelo gosti in zbiti, medtem ko je odprto področje sorazmerno brez koncev vlaken in je dobro definirano ter jasno. Material vsebuje večje število skupin po 200 vlaken v obliki, ki je podobna preji. Te skupine so medsebojno povezane v spojih 201 z vlakni, ki so skupna za več skupin ter tako tvorijo pravilno kvadratasto shemo odprtin. Med medsebojno povezanimi spoji so področja 202 z vozli”.20 to 23 are microphotographs of the material of the present invention. The material has a quality of 46.5 g / m 2 and is made of rayon fibers, with fibers of 1.5 denier and a length of 32 mm. The material is created on a plate similar to the one shown in Figure 3, with openings at the sides of the pyramids with a slightly larger diameter than the openings at the corners of the pyramids. The board had four-sided pyramids, the sides of which were enclosed by a horizontal angle of about 75 °. Figure 20 shows a micrograph of a horizontal projection of the material at about 20 times magnification. As can be seen, the fibrous parts of the material are very dense and compact, while the open area is relatively free of fiber ends and is well defined and clear. The material contains a large number of groups of 200 fibers in a yarn-like shape. These groups are interconnected in joints 201 with fibers common to several groups to form a correct squared pattern of openings. Among the interconnected joints are areas 202 with knots ”.
Slika 21 predstavlja povečavo materiala s slike 20 ob 76-kratnem povečanju in prikazuje eno izmed skupin vlaken ali področje vozlov materiala. Kot se vidi, se približno v središču te skupine vlaken nahajajo vlakneni segmenti, ki so oviti vsaj okoli dela zunanje površine vzporednih in gosto zbitih vlaknenih segmentov, ki tvorijo to skupino vlaken, ki je podobna preji, to se pravi vozel. Slika 22 je povečava enega izmed spojev materiala, ki je prikazan na sliki 20. Spoj obsega več vlaknenih segmentov, od katerih se nekateri, kot izgleda, raztezajo v glavnem naravnost skozi spoj, medtem ko drugi segmenti navidez tvorijo zavoje pod skoraj 90° znotraj strukture in medtem ko nekateri drugi segmenti sledijo neko diagonalno pot pri prehodu skozi spoj.Figure 21 is an enlargement of the material of Figure 20 at a magnification of 76 times and shows one of the fiber groups or the node region of the material. As can be seen, at about the center of this group of fibers are fiber segments that are wrapped at least around a portion of the outer surface of parallel and densely compacted fiber segments, forming this group of fibers that resemble a yarn, i.e. a knot. Fig. 22 is an enlargement of one of the joints of the material shown in Fig. 20. The joint comprises several fibrous segments, some of which appear to extend mainly straight through the joint, while other segments seem to form turns below 90 ° within the structure. and while some other segments follow some diagonal path when passing through the joint.
Slika 23 predstavlja prerez skozi področje vozla s slik 20 in 21. V glavnem vzporedni vlakneni vlakneni segmenti vstopajo in v nekaterih primerih prehajajo skozi področje vozla. Prav tako obstoje vlakneni segmenti v področju vozla, ki so krožno oviti okoli skupine vlaken,ki so podobna preji.Figure 23 is a cross-section through the knot region of Figures 20 and 21. In the main, parallel fibrous fiber segments enter and in some cases pass through the knot region. There are also fiber segments in the knot region that are circularly wrapped around a group of yarn-like fibers.
Sledijo štirje specifični primeri postopka za izdelovanje materiala po predloženem izumu.The following are four specific examples of a process for manufacturing a material of the present invention.
Primer 1Example 1
Za izdelovanje materiala se uporablja pripravo, ki je prikazana na sliki 2. Trak iz enakomerno grebenanih rajonskih vlaken s 23 g/m2, pri čemer so vlakna 1,5 denijera, dolžine 32 mm, stvorjen s postopkom, kije opisan v ameriškem patentu št. 4,475,271. Trak je postavljen preko plošče za oblikovanje, ki je oprta na žični transportni trak.The material shown in Figure 2 is used for the fabrication of the material. A strip of uniformly scratched rayon fibers of 23 g / m 2 , wherein the fibers are 1.5 denier, 32 mm long, created by the process described in U.S. Pat. . No. 4,475,271. The strap is placed over a molding board that is supported by a wire conveyor belt.
Transportni trak je trak iz 12 x 10 ravne žice iz poliesterskega enojnega vlakna, ki ga proizvaja Appleton Wire Works, Appleton, Wisconsin, ZDA. Trak ima osnovo in votek premera po 0,2 mm in odprt prostor z okoli 44% celotne površine. Plošča za oblikovanje ina profil, ki je prikazan na sliki 12. Spodnja stran 105 piramide z vodoravnico oklepa kot 74°, medtem ko zgornja stranica 107 z vodoravnico oklepa kot 56°. Vertikalno merjena dolžina stranice 105 je 0,114 cm, vertikalna višina od dna 106 poglobitve do vrha 108 piramide pa je 0,229 cm. Dno poglobitve ima premer 0,0076 cm. Piramide so razporejene po kvadratni shemi 12 x 12, kot je prikazano na sliki 13. Središča piramid so na medsebojni razdalji po 0,21 cm. Odprtine pri stranicah piramid imajo premer 0,08 cm, odprtine pri vogalih piramid pa imajo premer 0,064 cm. Zbiralnik ima 11,8 šob na dolžinski centimeter, pri čemer ima vsaka šoba premer 0,018 cm. Vlaknen trak na plošči prehaja izpod zbiralnika in se ga moči z vodo, nakar se ga postavi na element za oblikovanje. Zaporedni prehodi se izvajajo pri 7 bar, 42 bar in končno trije prehodi pri 70 bar. Vsi prehodi so izvedeni pri hitrosti 9,1 m/min in pri vakuumu 0,61 bar. Mikrofotografije dobljenega materiala, so prikazane na slikah 24, 25 in 26. Slika 24 je mikrofotografija vodoravne projekcije ob 25-kratni povečavi izdelanega materiala. Material vsebuje večje število skupin ali snopov 205 vlaken, ki so podobna preji. Snopi so medsebojno povezani v spojih 206 z vlakni, ki so skupna več snopom, da bi se stvorilo shemo v glavnem kvadratastih odprtin 207. Na sredini vsakega izmed snopov se nahaja eno prepleteno področje (vozel) 208 m od tega prepletenega področja se snop razteza v nasprotnih smereh. Kot je jasno razvidno iz povečave s slike 25, ki predstavlja okoli 70-kratno povečavo področja voda materiala s slike 24, prepleteno področje vsebuje več vlaknenih segmentov, ki so zviti v pentljo in so medsebojno prepleteni in ki se raztezajo okoli dela zunanje površine snopa, da vlakna držijo zelo gosto zbita. Slika 26 predstavlja okoli 70-kratno povečavo enega izmed medsebojno povezanih spojev materiala iz tega izvedbenega primera. Nekateri izmed vlaknenih segmentov se raztezajo naravnost skozi spoj, medtem ko se drugi vlakneni segmenti raztezajo skozi spoj pod kotom 90°, nekateri drugi deli vlaken pa so zviti v majhne pentlje in so trdno prepleteni znotraj spoja.The conveyor belt is a 12 x 10 straight polyester single fiber ribbon manufactured by Appleton Wire Works, Appleton, Wisconsin, USA. The strap has a base and weft of 0.2 mm diameter and an open space of about 44% of the total surface area. The molding plate ina profile shown in Figure 12. The lower side 105 of the pyramid with a horizontal angle of 74 °, while the upper side 107 with a horizontal angle of 56 °. The vertically measured length of page 105 is 0.114 cm, and the vertical height from the bottom 106 of the recess to the top 108 of the pyramid is 0.229 cm. The bottom of the recess is 0.0076 cm in diameter. The pyramids are arranged in a 12 x 12 square pattern, as shown in Figure 13. The centers of the pyramids are 0.21 cm apart from each other. The openings at the sides of the pyramids are 0.08 cm in diameter, and the openings at the corners of the pyramids are 0.064 cm in diameter. The sump has 11.8 nozzles per centimeter in length, each nozzle having a diameter of 0.018 cm. The fibreboard on the board passes from the reservoir and is wetted with water and then placed on the molding element. Sequential passes are made at 7 bar, 42 bar and finally three passes at 70 bar. All transitions were performed at a speed of 9.1 m / min and a vacuum of 0.61 bar. Photomicrographs of the material obtained are shown in Figures 24, 25 and 26. Figure 24 is a photomicrograph of a horizontal projection at 25 times magnification of the fabricated material. The material contains a large number of groups or bundles of 205 yarn-like fibers. The bundles are interconnected in joints 206 with fibers common to several bundles to form a pattern in the main square openings 207. In the middle of each bundle there is one interwoven area (knot) 208 m from this interwoven area, the bundle extends into opposite directions. As is clear from the magnification of Fig. 25, which represents about 70 times the magnification of the water conduit of the material of Fig. 24, the interlaced region contains several fibrous segments that are twisted into a loop and intertwined and extend around a portion of the outer surface of the beam, to keep the fibers tightly packed. Figure 26 represents about 70x magnification of one of the interconnected joints of the material of this embodiment. Some of the fiber segments extend straight through the joint, while other fiber segments extend through the joint at an angle of 90 °, and some other parts of the fibers are rolled into small loops and are tightly interwoven within the joint.
Dobljeni material je preizkušen na izračunano gostoto vlaken in na indeks prosojnosti na pozneje opisani način. Izračunana gostota vlaken tega materiala je 0,192 g/cm3, medtem ko je indeks prosojnosti materiala 1,119.The material obtained was tested for the calculated fiber density and the transparency index in the manner described later. The calculated fiber density of this material is 0.192 g / cm 3 , while the material transparency index is 1.119.
Primer 2Example 2
Izdelan je material s pripravo, ki je opisana v povezavi s primerom 1. Vsi pogoji in parametri so isti z izjemo traku, ki ima maso 124 g/m2. V teku postopka je trak po prehodu pri 7 bar in prehodu pri 42 bar izpostavljen nizu 9 prehodov pri 70 bar.Mikrofotografija v ravnini dobljenega materiala je prikazana na sliki 27. Čeprav je ta material več kot 5-krat težji od materiala, ki je prikazan na sliki 24, ima material izjemno prosojnost, kot se vidi, deli vlaken pa so zelo gosti in zbiti. Material vsebuje skupine vlaknenih segmentov, v katerih so vlakneni segmenti v glavnem vzporedbi in gosto zbiti. Na sredini vsake od teh skupin se nahaja prepleteno področje z ddom vlaknenih segmentov, ki so krožno oviti okoli dela zunanje površine vlaknene skupine podobno kot pri preji, to se pravi eno področje vozla. Te skupine vlaken so medsebojno povezane v spojih z vlakni, ki so skupna za več skupin, da bi se stvnrilo vnaprej določeno shemo v glavnem kvadratastih odprtin. S presenečenjem se je ugotovilo, da se jasnost sheme ne zmanjšuje v kolikor toliko znatni meri s prirastkom debeline materiala. To je vsekakor v nasprotju z večino postopkov za izdelovanje prepletenih ali netkanih materialov, pri katerih se z naraščanjem debeline materiala precej hitro zmanjšuje jasnost sheme.A fabrication of the apparatus described in connection with Example 1 is made. All conditions and parameters are the same except for a tape having a mass of 124 g / m 2 . During the process, after passing at 7 bar and passing at 42 bar, the strip is exposed to a series of 9 passes at 70 bar. The microphotography in the plane of the material obtained is shown in Figure 27. Although this material is more than 5 times heavier than the material shown in Figure 24, the material has an extremely translucent appearance, and the fiber parts are very dense and compact. The material contains groups of fiber segments in which the fiber segments are mainly parallel and densely compacted. In the middle of each of these groups there is an interwoven area with the bottom of the fibrous segments, which are circularly wrapped around a portion of the outer surface of the fibrous group, similar to that of yarns, that is, one knot area. These fiber groups are interconnected in fiber joints common to several groups in order to create a predetermined pattern in substantially square openings. It is a surprise to find that the clarity of the scheme does not diminish as much as the thickness of the material increases. This is in contrast to most procedures for making interlaced or non-woven fabrics, in which the clarity of the scheme decreases quite rapidly with increasing material thickness.
Material iz tega primera se preizkusi na izračunano gostoto vlaken in indeks prosojnosti, kot je bilo opisano. Izračunana gostota vlaken je 0,256 g/cm3, medtem ko je indeks prosojnosti materiala 0,462.The material of this example is tested for the calculated fiber density and transparency index as described. The calculated fiber density is 0.256 g / cm 3 while the material transparency index is 0.462.
Slika 28 predstavlja mikrofotografijo pri okoli 50-kratni povečavi drugega izvedbenega primera vozla materiala po predloženem izumu. Pri tem izvedbenem primeru je uporabljen tisti topografski oporni element, ki se uporablja za izdelovanje materiala in ki je opisan v povezavi s sliko 16. Obstojita dve prepleteni področji v skupini vlaken, ki sta podobni preji, pri Čemer vsako od prepletenih področij vsebuje več vlaknenih segmentov, ki so krožno oviti okoli dela zunanje površine vzporednih in gosto zabitih vlaknenih segmentov znotraj skupine vlaken, ki so podobna prejiFigure 28 is a micrograph at about 50x magnification of another embodiment of a knot of material of the present invention. In this embodiment, the topographic support element used in the fabrication of the material is used, which is described in connection with Figure 16. There are two interlaced regions in the yarn-like fiber group, each of which comprises several fiber segments , which are circularly wrapped around a portion of the outer surface of parallel and densely stranded fiber segments within a group of yarn-like fibers
Na slikah 29 in 30 je prikazan še nadaljnji izvedbeni primer materiala po predloženem izumu. Slika 29 predstavlja ravninski izgled pri 20-kratni povečavi materiala, ki je stvorjen iz traku iz vlaken z maso 42 g/m2, pri čemer so vlakna iz rajona in 1,5 denijera ter dolžine 32 mm. Vlaknen trak je obdelan po predloženem izumu ob uporabi topografskega opornega elementa, ki je podoben tistemu, ki je prikazan na slikah 10 in 11, le da so bile odprtine v obliki sorazmerno dolgih, ozkih špranj, namesto da bi bile prožne. Špranje imajo enakomerno širino in so zaobljene na koncih. Špranje so dovolj dolge, da se raztezajo vzdolž dna poglobitve od središča stranic med dvema piramidama, preko križanja do središča stranic sosednjih piramid. Na sliki 29 material vsebuje večje število vlaknenih skupin, ki so podobne preji in v katerih so vlakneni segmenti sorazmerno vzporedni in zbiti. Skupine so v spojih medsebojno povezane z vlakni, ki so skupna za več skupin, da bi se stvorilo vnaprej določeno shemo obrobljenih kvadradastih odprtin. Kot je jasneje prikazano na mikrofotografiji na sliki 30, ki predstavlja 50-kratno povečavo ene izmed skupin, ki so podobne preji, se skupina vlaken, ki so podobna preji, zožuje pri prehodu od enega medsebojno povezanega spoja do sosednjega medsebojno povezanega spoja. Splošno vzeto se na sredini takšne grupe vlaken, ki so podobna preji, nahaja zelo prepleteno področje, ki obsega določene vlaknene segmente, ki so krožno oviti okoli dela zunanje površine skupin vlaken, ki so podobna preji. Kot je razvidno s te mikrofotografije, je v zoženih področjih zoženih skupin vlaken, ki so podobna preji, večina vlaknenih segmentov v glavnem vzporedna z enim ali več sosednjih vlaknenih segmentov, medtem ko v širšem delu zoženega dela zunanja površina tega zoženega dela obsega vzporedno nameščene vlaknene segmente, medtem ko je notranji del te površine prepleteno področje. Zožena in zelo zgoščena področja skupin vlaken, ki so podobna preji, imajo fino kapilarno strukturo in veliko stopnjo vpijanja v material. Širši in manj zgoščeni del daje strukturo večjih kapilar in večjo zmogljivost vpijanja. Na ta način se lahko lastnost vpijanja materiala projektira po želji.Figures 29 and 30 show another embodiment of the material of the present invention. Figure 29 presents a planar appearance at a magnification of 20 times of material created from a 42 g / m 2 fiber strip, with rayon and 1.5 denier fibers and 32 mm in length. The fiber strip was machined according to the present invention using a topographic support element similar to that shown in FIGS. 10 and 11, except that the openings were in the form of relatively long, narrow slots rather than being flexible. The slits have a uniform width and are rounded at the ends. The slits are long enough to extend along the bottom of the recess from the center of the sides between the two pyramids, through the intersection to the center of the sides of the adjacent pyramids. In Figure 29, the material contains a large number of yarn-like fiber groups in which the fiber segments are relatively parallel and compacted. The groups in the joints are interconnected with fibers common to several groups in order to create a predetermined pattern of fringed quadrilateral openings. As more clearly shown in the micrograph of Figure 30, which represents a 50x magnification of one of the yarn-like groups, the yarn-like fiber group narrows as it passes from one interconnected joint to an adjacent interconnected joint. Generally, in the middle of such a group of yarn-like fibers, there is a very intertwined area comprising certain fiber segments that are circularly wrapped around a portion of the outer surface of the yarn-like fiber groups. As can be seen from this micrograph, in the narrowed areas of the narrowed yarn-like fiber groups, most of the fiber segments are substantially parallel to one or more adjacent fiber segments, while in the wider portion of the tapered portion, the outer surface of this tapered portion comprises parallelly arranged fibrous segments, while the inside of this surface is an intertwined area. The narrow and highly concentrated areas of the yarn-like fiber groups have a fine capillary structure and a high degree of absorption into the material. The wider and less condensed part gives the structure of larger capillaries and higher absorption capacity. In this way, the material's absorption property can be designed as desired.
Kot se lahko predpostavi je ena od stvari, ki zagotavljajo izjemno jakost tkanega ali prepletenega materiala, v tem da je iz vlaken izdelana preja sukana. To seveda zbija vlakna v preji do neke stopnje in jih dovaja v bližnji dotik, da bi se povečala povezava s trenjem med vlakni. Ko se to prejo zategne ali potegne, ta povezava s trenjem poveča jakost preje. Pri nekaterih izvedbah materiala po predloženem izumu lahko dosežemo sukanje v skupinah vlaken, ki so podobna preji, raztezajočih se med spoji. Na slikah 31 in 32 je prikazan material po predloženem izumu, pri katerem so vlakneni segmenti med medsebojno povezanimi spoji sukani. Slika 32 predstavlja povečani del materiala s slike 31. Na obeh slikah je material fotografiran, dokler je še na plošči za oblikovanje.As one might assume, one of the things that provide exceptional strength for woven or interlaced material is that the yarn is made from fiber yarn. This, of course, compresses the fibers in the yarn to some degree and puts them in close contact to increase the connection with the friction between the fibers. When this yarn is tightened or pulled, this friction connection increases the yarn strength. In some embodiments of the material of the present invention, twisting can be achieved in groups of fibers similar to yarns extending between joints. Figures 31 and 32 show a material of the present invention wherein the fiber segments are twisted between the interconnected joints. Figure 32 represents a magnified portion of the material of Figure 31. In both figures, the material is photographed while still on the molding board.
V nadaljnjem je opisan specifičen primer postopka za izdelovanje materiala po predloženem izumu, pri katerem so vlakneni segmenti sukani med medsebojno povezanimi spoji.The following describes a specific example of a process for manufacturing a material of the present invention, wherein the fiber segments are twisted between interconnected joints.
Primer 3Example 3
Parametri postopka, pogoji in oprema, ki se jih uporablja pri tem primeru, so kot pri predhodnih primerih, le daje začeten trak mase 23 g/m2 stvorjen iz belih bombažnih vlaken debeline 4,8 mikronera in dolžine vlaken 23,8 mm ter jakosti 22 g na teks. Element za oblikovanje ima shemo 12 x 12 piramid kvadrataste konfiguracije. Vsaka od piramid ima navpično višino 0,39 cm, ki je merjena od dna poglobitve do vrha piramide. Stranice piramide z vodoravnico tvorijo kot 75°. Dno poglobitev ima širino 0,015 cm. Odprtine so pri vogalih piramid in imajo premer 0,1 cm. Postopek obsega prehod pri 1,2 bar brez vakuuma, čemur sledijo po vrsti prehod pri 7 bar, prehod pri 42 bar in trije prehodi pri 70 bar, vsi pri vakuumu 0,64 bar. Slika 33 je mikrofotografija v ravnini pri 15-kratni povečavi dobljenega materiala, na kateri se med križanji vidi sukanje podobno kot pri preji. Material iz tega primera je preizkušan na izračunano gostoto vlaken in indeks prosojnosti, kot je bilo opisano. Izračunana gostota vlaken materiala je Ο,Ρ? g/cm3, indeks prosojnosti pa 1,080.The process parameters, conditions and equipment used in this case are as in the preceding examples, except that the initial strip of mass 23 g / m 2 is made of white cotton fibers of 4.8 microns thickness and fiber length of 23.8 mm and of strength 22 g per tex. The design element has a 12 x 12 pyramid scheme of square configuration. Each of the pyramids has a vertical height of 0.39 cm, which is measured from the bottom of the recess to the top of the pyramid. The sides of the pyramid with the horizontal form an angle of 75 °. The bottom of the recess has a width of 0.015 cm. The holes are at the corners of the pyramids and have a diameter of 0.1 cm. The process comprises a pass at 1.2 bar without vacuum, followed by a pass at 7 bar, a pass at 42 bar and three passes at 70 bar, all at a vacuum of 0.64 bar. Figure 33 is a planar micrograph of a material obtained at 15x magnification, which shows a twist during the crossings, similar to that of yarn. The material of this example is tested for the calculated fiber density and transparency index as described. The calculated fiber density of the material is Ο, Ρ? g / cm 3 and a transparency index of 1,080.
Medtem ko so vsi predhodni materiali stvorjeni s topografskimi ploščami, pri katerih so uporabljane štiristrane piramide s kvadratasto osnovnico, je na sliki 34 prikazana mikrofotografija pri 15-kratni povečavi materiala, ki je stvorjen z uporabo topografske plošče, pri kateri imajo piramide trikotno namesto kvadrataste osnove. V tem primeru ima material tri osi namesto običajnih dveh. To izdelku daje zelo drugačne in nenavadne lastnosti pri zatezanju, ki so trismerne. Ta konfiguracija zmanjšuje primernost materiala za krojenje. Kot se vidi na sliki 34, ima vsak od spojev šest skupin vlaken, ki so podobna preji in ki se širijo od spojev. Vsaka od skupin vlaken, ki so podobne preji, ima področje prepletenosti, kjer so vsaj nekateri izmed vlaknenih segmentov oviti okoli dela zunanje površine skupin vlaken, ki so podobna preji.While all precursor materials are created with topographic panels using four-sided pyramids with a square base, Figure 34 shows a micrograph of a 15x magnification of material created using a topographic plate, in which the pyramids have a triangular instead of a square base . In this case, the material has three axes instead of the usual two. This gives the product very different and unusual three-way tensile properties. This configuration reduces the suitability of the material for tailoring. As can be seen in Figure 34, each of the joints has six groups of yarn-like fibers extending from the joints. Each of the yarn-like fiber groups has an interlocking region where at least some of the fiber segments are wrapped around a portion of the outer surface of the yarn-like fiber groups.
Zanimivo je ugotoviti, da so v spojih materiala po predloženem izumu vlakna skrajno zbita in enakomerno gosta. Nekateri izmed vlaknenih segmentov prehajajo neposredno skozi spoj, medtem ko drugi vlakneni segmenti tvorijo odmike pod pravim kotom ob prehodu skozi spoj, medtem ko še nekateri drugi vlakneni segmenti prehajajo skozi Z ravnino spoja, tako da spoj zategnejo in tvorijo zelo prepleteno področje. Sliki 35 in 36 sta mikrofotografiji preseka pri 88-kratni povečavi. Slika 35 je mikrofotografija spoja materiala po predloženem izumu. Ta material je stvorjen iz vlaknenega traku z maso 31 g/m2, pri čemer so vlakna iz rajona, 1,5 denierja in dolžine 3,8 cm. Plošča za oblikovanje ima piramide kvadrataste sheme 12 x 12 z razmikom središč po 0,21 cm, pri čemer stranice z vodoravnico oklepajo kot 75°. Odprtine pri sredini stranic piramide imajo premer 0,08 cm. Odprtine pri vogalih piramid imajo premer 0,06 cm. Odpritne, nosilen transportni trak in ostalo je isto, kot je bilo opisano v povezavi s predhodnimi izvedbenimi primeri. Postopek obstoji iz enega prehoda pri 7 bar, enega prehoda pri 42 bar in treh prehodov pri 70 bar, vse pri vakuumu 0,64 bar. Mikrofotografija prikazuje vzporedno razporejene vlaknene segmente, ki se raztezajo skozi spoj, kot tudi vlaknene segmente, ki skozi spoj prehajajo pod kotom 90°. Prav tako prikazuje veliko število vlaknenih segmentov, ki prehajajo skozi Z ravnino spoja, pri čemer vsi tvorijo zelo prepleten spoj. Nasprotno temu slika 36 prikazuje spoj materiala, ki je stvoijen po obstoječem stanju tehnike. Ta material je izdelan, kot je opisano v ameriškem patentu št. 3,485,706. Element za oblikovanje je 12 x 12 kvadratno tkan trak iz poliestrskih vlaken. Vlaknen trak je izdelan iz enakomerno grebenanih rajonskih vlaken 1,5 denijerja in dolžine 3,8 cm. Trak ima maso 31 g/m2. Prvi zbiralnik je delal pri 7 bar, drugi pri 42 bar, tretji, četrti in peti zbiralnik pa pri 70 bar. Pod vsakim izmed zbiralnikov se uporablja vakuum 0,64 bar. Kot je razvidno, je nekaj prepletenosti v spoju kot tudi nekaj vzporedno nameščenih vlaknenih segmentov. Toda spoj niti zdaleč ni tako zbit in zgoščen in nastopa znatno več poljubnosti v razporeditvi vlaken v tem spoju kot pri spojih pri materialu po predloženem izumu.It is interesting to note that, in the joints of the material of the present invention, the fibers are extremely dense and uniformly dense. Some of the fiber segments pass directly through the joint, while other fiber segments form right angles when passing through the joint, while some other fiber segments pass through the Z plane of the joint, so that the joint tightens and forms a very intertwined area. 35 and 36 are cross-sectional micrographs at 88x magnification. Figure 35 is a micrograph of a joint of a material of the present invention. This material is made of fiber tape with a mass of 31 g / m 2 , with fibers of rayon, 1.5 denier and 3.8 cm in length. The design panel has 12 x 12 square pyramids with 0.21 cm center spacing, with horizontal sides flipped at 75 °. The holes in the middle of the sides of the pyramid are 0.08 cm in diameter. The openings at the corners of the pyramids are 0.06 cm in diameter. The open conveyor belt and the rest are the same as described in connection with the preceding embodiments. The process consists of one pass at 7 bar, one pass at 42 bar and three passes at 70 bar, all at a vacuum of 0.64 bar. The micrograph shows parallel fiber segments extending through the joint, as well as fiber segments extending through the joint at a 90 ° angle. It also shows a large number of fiber segments that pass through the Z plane of the joint, all of which form a very intertwined joint. In contrast, Figure 36 shows a joint of a material that is inherent in the prior art. This material is manufactured as described in U.S. Pat. 3,485,706. The design element is a 12 x 12 square woven polyester fiber ribbon. The fiber strip is made of evenly ridged rayon fibers of 1.5 denier and 3.8 cm in length. The tape has a mass of 31 g / m 2 . The first manifold operated at 7 bar, the second manifold at 42 bar, and the third, fourth and fifth manifold at 70 bar. A 0.64 bar vacuum is used under each tank. As can be seen, there is some intertwining in the joint as well as some fiber segments in parallel. However, the joint is not nearly so compacted and thickened, and there is significantly more freedom in the arrangement of fibers in this joint than in the joints of the material of the present invention.
Kot se vidi na mikrofotografijah na slikah od 20 do 34, so materiali po predloženem izumu edinstvenih strukturnih značilnosti. Po teh značilnostih so vlaknena področja materiala zelo zgoščena in kompaktna, v mnogo večji stopnji kot pri znanih netkanih materialih. Gostota in kompaktnost v vlaknenih skupinah je enakomerna in podobna tisti, ki se pojavlja pri predenih nitih iz podobnih vlaken podobne debeline. Druga posebna značilnost, ki se pojavlja pri vseh materialih po predloženem izumu je stopnja prosojnosti odprtih področij materiala. Je zelo malo koncev vlaken, malih pentelj ali segmentov, ki se raztezajo v odprto področje in ki bi zmanjšala prosojnost materiala. To dejstvo povzroča, da je izdelan material podoben tkanemu materialu. Prav tako medsebojno povezana področja materiala niso toliko povečana kot pri materialih, ki so izdelani po sedanjem stanju tehnike. To nadalje prispeva k tkanemu izgledu materiala po predloženem izumu. Te strukturne značilnosti omogočajo, da se ustvarijo znatno izboljšane fizikalne lastnosti pri izdelanem materialu. Materiali po izumu imajo dobro jakost. Prav tako imajo lahko materiali po izumu nadzorovane in dobre lastnosti vpijanja, predvsem kapilarne lastnosti.As can be seen from the micrographs in Figures 20 to 34, the materials of the present invention have unique structural features. According to these characteristics, the fibrous areas of the material are very thick and compact, to a much greater degree than that of known nonwovens. The density and compactness in the fiber groups is uniform and similar to that occurring in spinning filaments of similar fibers of similar thickness. Another particular feature that occurs in all materials of the present invention is the degree of transparency of the open areas of the material. There are very few ends of fibers, small loops or segments that extend into the open area and which would reduce the transparency of the material. This fact causes the fabric to be made to resemble a woven fabric. Likewise, the interrelated areas of the material are not as enlarged as those of materials manufactured according to the present state of the art. This further contributes to the woven appearance of the material of the present invention. These structural features make it possible to create significantly improved physical properties in the fabricated material. The materials of the invention have good strength. Also, the materials of the invention may have controlled and good absorption properties, in particular capillary properties.
Primer 4Example 4
V naslednjem je opisan še en izvedbeni primer materiala po predloženem izumu. Trak iz beljenega bombaža je izdelan po postopku, ki je prikazan v ameriškem patentu št. 4,475,271 (Lovgren i drugi). Trak ima maso 40,7 g/m2 in vsebuje beljena bombažna vlakna debeline 5,0 mikronera ter dolžine 2,54 cm. Začeten trak je postavljen na trak za oblikovanje, ki je tipa 103 x 88 (nominalno 100 zank) iz poliestrskega enojnega ravnotkanega vlakna, ki ga proizvaja Appleton Wire, Portland, Tennessee, ZDA. Trak za oblikovanje ima prerez žice z osnovo 0,15 mm, in prerez žice votka 0,15 mm in odprto površino velikosti 17,4% celotne površine. Zbiralnik za dovajanje tekočine, ki je povezan s trakom, obsega deset vrst šob. Na vsaki izmed vrst je po 11,8 šob na dolžinski centimeter, pri čemer ima vsaka izmed šob premer približno 0,018 cm. Vrste šob so v medsebojni razdalji okoli 5,1 cm. Vlaknen trak je postavljen na trak za oblikovanje, je navlažen z vodo, in se postavi v položaj na trak ter se spušča izpod zbiralnika za dovajanje tekočine s hitrostjo 91,4 m/min. Šobe prve vrste dovajajo vodo pri tlaku 7 bar, šobe naslednje vrste dovajajo vodo pod tlakom 28 bar, šobe v zadnjih osem vrstah pa dovajajo vodo pod tlakom 56 bar. Sesalni zbiralnik je postavljen pod trakom za oblikovanje in pod zbiralnikom za dovajanje tekočine ter se vzdržuje v njem vakuum pri 0,64 bar. Izoblikovan material se obrača in obdeluje na drugi strani, t.j. na strani traku, ki je v dotiku z oblikovalnim trakom med prvo stopnjo obdelave, sedaj pa je podvržena curku vode v drugi stopnji obdelave. V drugi stopnji obdelave se material postavlja na drugo površino za oblikovanje. Druga površina za oblikovanje obsega vrste piramid, pri katerih so vrhovi piramid poravnani v dveh medsebojno pravokotnih smereh. Vsaka izmed piramid ima v glavnem kvadratasto osnovnico. Na površini je po 3,1 piramid na centimeter v smeri delovanja stroja in 7,8 piramid v prečni smeri. Osnovnica piramid je 3,18 mm v smeri delovanja stroja in 1,27 mm v prečni smeri. Dno poglobitve med piramidami je zaobljeno s polmerom 0,08 mm, vsaka od piramid pa ima višino od poglobitve do vrha enako 1,65 mm. Odprtine so razporejene po površini oblikovanja po pravilni shemi, t.j. v poglobitvah pri središčih daljših stranic sosednjih piramid in na mestu srečavanja štirih piramid. Vsaka izmed odprtin ima premer 0,84 mm. Zbiralnik za dovajanje tekočine, ki je priključen k drugi površini za oblikovanje, obsega devet vrst šob. V vsaki od vrst je po 11,8 šob na dolžinski centimeter, pri čemer ima vsaka šoba premer okoli 0,018 cm. Že izoblikovan trak se vlaži z vodo in se prepušča izpod sprejemnika za dovajanje tekočine s hitrostjo 91,4 m/min. Šobe v prvi vrsti dovajajo vodo pod tlakom 28 bar, medtem ko v ostalih 8 vrstah dovajajo vodo pod tlakom 112,5 bar. Sesalni zbiralnik pod drugo površino za oblikovanje se vzdržuje pri vakuumu 0,64 bar. Dobljen izdelan material ima srednjo izračunano gostoto vlaken 0,154 g/cm3 in indeks prosojnosti 0,66, kadar se preizkuša, kot bo opisano v nadaljnjem.The following describes another embodiment of the material of the present invention. Bleached cotton ribbon is made according to the process shown in U.S. Pat. No. 4,475,271 (Lovgren et al.). The band has a mass of 40.7 g / m 2 and contains bleached cotton fibers of 5.0 microns and a length of 2.54 cm. The initial strip is placed on a 103 x 88 (nominal 100 loops) design strip of polyester single straight fiber manufactured by Appleton Wire, Portland, Tennessee, USA. The molding strip has a cross section of 0.15 mm base wire and a weft wire cross section of 0.15 mm and an open area of 17.4% of the total surface area. The tape feeder reservoir comprises ten types of nozzles. Each nozzle has 11.8 nozzles per centimeter in length, each nozzle having a diameter of approximately 0.018 cm. The nozzle types are approximately 5.1 cm apart. The fiber strip is placed on the forming strip, moistened with water, and placed in position on the strip and lowered from below the fluid delivery reservoir at a rate of 91.4 m / min. Nozzles of the first type supply water at a pressure of 7 bar, nozzles of the next type supply water at a pressure of 28 bar, and nozzles in the last eight rows supply water at a pressure of 56 bar. The intake manifold is positioned under the molding strip and under the fluid intake manifold and maintained at a vacuum of 0.64 bar. The molded material is turned and treated on the other side, ie on the side of the strip which is in contact with the forming tape during the first stage of processing and is now subjected to a jet of water in the second stage of processing. In the second stage of machining, the material is placed on another surface for molding. The second design surface comprises a series of pyramids in which the vertices of the pyramids are aligned in two orthogonal directions. Each of the pyramids mainly has a square base. On the surface, there are 3.1 pyramids per centimeter in the machine direction and 7.8 pyramids in the transverse direction. The base of the pyramids is 3.18 mm in the machine direction and 1.27 mm in the transverse direction. The bottom of the recesses between the pyramids is rounded to a radius of 0.08 mm, and each of the pyramids has a height of 1.65 mm from the recess to the top. The openings are arranged along the design surface according to the correct scheme, ie in the recesses at the centers of the long sides of the adjacent pyramids and at the meeting point of the four pyramids. Each of the openings has a diameter of 0.84 mm. The fluid intake manifold connected to the second molding surface comprises nine types of nozzles. Each nozzle has 11.8 nozzles per centimeter in length, each nozzle having a diameter of about 0.018 cm. The already formed tape is moistened with water and passed under the liquid feeder at 91.4 m / min. The nozzles primarily supply 28 bar water while the other 8 types supply 112.5 bar. The intake manifold under the second molding surface is maintained at a vacuum of 0.64 bar. The fabricated material obtained has a mean calculated fiber density of 0.154 g / cm 3 and a transparency index of 0.66 when tested as described below.
Določanje indeksa prosojnostiDetermination of the transparency index
Opisana bo slikovna analiza, ki je specificirana za določanje indeksa prosojnosti perforiranega netkanega materiala. Indeks prosojnosti se meri na perforiranem netkanem materialu, ki ne vsebuje veziva. Prosojnost nalepljenega perforiranega materiala je funkcija razporeditve vlaken v nekem materialu, pri čemer se indeks prosojnosti povečuje, v kolikor je večji del vlaken postavljen v določena področja pokritosti z vlakni, ki obkrožajo odprtine v materialu.An image analysis that is specified for determining the transparency index of perforated nonwoven fabric will be described. The transparency index is measured on perforated non-woven non-binder material. The transparency of the glued perforated material is a function of the arrangement of fibers in a material, with the transparency index increasing to the extent that most of the fibers are placed in specific areas of coverage with fibers surrounding the openings in the material.
Da bi se določilo indeks prosojnosti nelepljenega perforiranega materiala, se meri nekoliko predelov površine. Vlakneni pokrov (FC - Fiber Cover) je del površine, ki predstavlja, npr. niti tkane gaze ali posamezne snope vlaken perforiranih netkanih materialov. Vlakna v odprtinah (FA - Fiber in Apertures) je del površine, ki predstavlja vlakno, ki ni v snopih vlaken, temveč se razteza v odprte prostore, npr. med niti tkane gaze ali v odprtine netkanih materialov. Področje čistih odprtin (CA Cleared Apertures) predstavlja del površine materiala, ki ga zavzemajo odprtine v materialu (vsota odprte površine (OA - Open Area) in dela površine FA). Indeks prosojnosti (CI - Clarity Index) perforiranega materiala se računa kot razmerje čistih odprtin (CA) in vsote vlaken v odprtinah (FA) ter vlaknenega pokrova (FC) s pomočjo naslednje formule:Several areas of the surface are measured in order to determine the transparency of the non-glued perforated material. The FC (Fiber Cover) is the part of the surface that represents, e.g. nor woven gauze or individual fiber bundles of perforated nonwovens. Fiber in openings (FA - Fiber in Apertures) is a part of the surface that represents a fiber that is not in bundles of fibers but extends into open spaces, e.g. between strands of woven gauze or into openings of nonwovens. The CA Cleared Apertures represents the part of the material surface occupied by the openings in the material (sum of the Open Area (OA) and part of the FA surface). The Clarity Index of the perforated material is calculated as the ratio of clear openings (CA) to the sum of fibers in the openings (FA) and the fiber cover (FC) using the following formula:
CI = CA / (FA + FC).CI = CA / (FA + FC).
Dobljeni indeks prosojnosti se povečuje s prosojnostjo strukture perforiranega materiala.The resulting transparency index increases with the transparency of the structure of the perforated material.
Indeks prosojnosti perforirane tkanine se lahko meri s slikovno analizo. Bistvo je v tem, da slikovna analiza zahteva uporabo računalnika, da se dobijo številčne informacije iz slik. Material se snema skozi mikroskop, ki je naravnan na takšno povečavo, da se na ekranu prikaže nekaj ponovljenih shem, pri čemer se hkrati omogoča ugotavljanje posameznih vlaken v materialu. Optična slika materiala se tvori s pomočjo leče na katodni elektronki video kamere in se pretvarja v elektronski signal, ki je primeren za analizo. Na mikroskopu se uporablja izvor stabilmrane sevane svetlobe, da bi se na monitorju dobilo sliko takšnih kontrastov, da imajo področja, ki so pokrita z vlakni, različne nianse od sive do črne, medtem ko so odprta področja ali področja brez vlaken bela. Vsaka linija slike je razdeljena na tcfte za jemanje vzorcev oz. piksle, da se izvaja merjenja.The transparency index of the perforated fabric can be measured by image analysis. The bottom line is that image analysis requires the use of a computer to obtain numerical information from images. The material is recorded through a microscope that is adjusted to such an magnification that some repeated schemes are displayed on the screen, while allowing the individual fibers in the material to be identified. The optical image of the material is generated by the lens on the cathode tube of the video camera and converted into an electronic signal suitable for analysis. The microscope uses a source of stabilized light to give the monitor an image of such contrasts that the areas covered with fibers have different shades from gray to black, while the open areas or areas without fibers are white. Each image line is divided into tcfte for sampling and / or sampling. pixels to take measurements.
Srednja površina odprtin se lahko določi s slikovno analizo kot srednja vrednost posameznih površin v mm2, ki predstavljajo odprtine, ki so obkrožene s površinami, pokritimi z vlakni in določenimi kot z vlakni pokrita področja FC.The mean surface area of the openings can be determined by image analysis as the mean of the individual surfaces in mm 2 , which represent openings surrounded by fiber covered surfaces and defined as fiber covered areas FC.
Vse te analize se izvaja z uporabo Leica Quantimet Q520 slikovnega analizatoqa, ki je opremljen s spominom sivih barv, in s programskim paketom 4.02, kar se hhko nabavi pri firmi Leica Inc., Deerfield, Illinois, ZDA. Kot svetlobni mikroskop se uporablja mikroskop Olympus SZH, ki je naravnan na 10-kratno povečanje; ob uporabi 0,5-kratnega objektiva in z naravnavanjem skale na 20Χ. Mikroskop je opremljen z izvorom stabilizirane sevane svetlobe. Video kamera Čohu model 4812 predstavlja povezavo med mikroskopom in analizatorjem slike.All these analyzes are performed using a Leica Quantimet Q520 image analyzer equipped with gray memory and software package 4.02, which is available from Leica Inc., Deerfield, Illinois, USA. An Olympus SZH microscope is used as a light microscope, with a 10x magnification; using a 0.5x lens and adjusting the scale to 20Χ. The microscope is equipped with a stabilized light source. The Choch 4812 video camera represents the connection between the microscope and the image analyzer.
Komercialno dostopna tkana gaza vrste U.S.P. vrste VII je primerna kot referenca pri naravnavanju slikovnega analizatorja. Paket tkane gaze se odpre in izvleče se en sam tampon ter se razvije do debeline enega sloja. Sloj tkane gaze se namesti med dve čisti stekleni plošči na mizici mikroskopa in se njegova slika izostri na video zaslonu. Shema materiala se namesti tako, da se vidi nekaj teh shem na zaslonu. Glej sliko 37A. Uporaba Leica Quantimet Q520 slikovnega analizatorja, ki je dopolnjen z mikroskopom Olympus SZH z vnaprej opisanim naravnavanjem povečave, daje kalibracijo analizatorja od 0,021 mm/piksel in omogoča analizo površine, ki vsebuje od 14 do 24 celih ponovljenih shem U.S.P. tipa VII gaze v enem samem polju. Osvetljenost in kontrast slike sta naravnana tako, da obsegata cel obseg sivega nivoja v prikazani sliki (prikaz histograma nivojev sivega vsebuje vse mogoče nivoje sivega v skali). Takšna prilagojenost omogoča odkrivanje niti, površin čistih odprtin kot tudi vlaken, ki se raztezajo iz niti v področja odprtin. Zatem se vzorec jemlje iz mikroskopa in uporabi se dve čisti stekleni ploščici, da se izvrši korekcija po niansah, da bi se eliminiralo vsako neenakomerno osvetljenost v vidnem polju. Vzorec se nato vrne na mizico v mikroskopu.Commercially available woven gauze of U.S.P. type VII is suitable as a reference when adjusting the image analyzer. A package of woven gauze is opened and a single pad is removed and developed to a thickness of one layer. A layer of woven gauze is placed between two clear glass panels on a microscope table and its image is sharpened on a video screen. The material scheme is positioned so that some of these schemes can be seen on the screen. See Figure 37A. The use of the Leica Quantimet Q520 imaging analyzer, supplemented with the Olympus SZH microscope with the magnification adjustment described previously, provides an analyzer calibration of 0.021 mm / pixel and allows surface analysis containing 14 to 24 whole repeats of U.S.P schemes. Type VII gauze in a single field. The brightness and contrast of the image are adjusted to encompass the full range of the gray level in the displayed image (displaying a histogram of gray levels contains all possible levels of gray in the scale). Such adaptation enables the detection of threads, surfaces of clean openings as well as fibers extending from the threads into the openings. The sample is then taken from a microscope and two clear glass tiles are used to correct the tint to eliminate any uneven illumination in the field of view. The sample is then returned to the table in the microscope.
Da bi se izmerilo indeks prosojnosti, se vrši nekaj operacij snemanja na naslednji način:In order to measure the transparency index, some recording operations are performed as follows:
1. Najprej se naravna nivo detektiranja področja črne barve, da bo enak samo vlaknenim snopom in medsebojno povezanim spojem, brez detektiranja posameznih vlaken, ki se raztezajo iz niti v odprtine. Glej sliko 37B. Vrednost nivojev sivega za detektiranje črne barve se zabeleži kot referenco za pozneje.1. First, the natural detection level of the black area is equal to only the fiber bundles and interconnected joints, without detecting individual fibers extending from the filaments to the openings. See Figure 37B. The value of gray levels for detecting black is recorded as a reference for later.
2. Uporabljajoč funkcijo korigiranja se zaznana slika niti v detektirani ravnini 1 shrani v ravnini 3 slike zaradi poznejšega merjenja. Ta slika v ravnini 3 slike predstavlja z vlaknom pokrito površino (FC). Glej sliko 37C. Opomba: če je potrebno, da bi se popolno detektiralo z vlaknom pokrito površino, se slika v ravnini 1 večkrat razširi, vse dokler se ne odstrani lukenj v področju, ki je pokrito z vlakni. Zatem se sliko erodira isto število ciklov, tako da se robovi z vlakni pokrite površine vrnejo v prvotne meje, ki so določene v meniju detektiranja.2. Using the correction function, the detected image in the detected plane 1 is stored in the plane 3 of the image for later measurement. This image in plane 3 of the image represents a fiber-coated surface (FC). See Figure 37C. Note: If necessary to fully detect the fiber-covered surface, the image in plane 1 is expanded several times until the holes in the fiber-covered area are removed. The image is then eroded by the same number of cycles, so that the edges with the fibers of the covered surface return to the original limits specified in the detection menu.
3. Nato se naravna nivo detektiranja bele barve, da bo enak področjem brez vlaken znotraj vsake od odprtin v vidnem polju. Ta slika detektiranja v ravnini 1 slike predstavlja odprto področje OA materiala. Glej sliko 37D.3. The white level of detection is then adjusted to be equal to the areas without fibers within each of the openings in the field of view. This detection plane in the image plane 1 represents the open area of the OA material. See Figure 37D.
4. Ob uporabi logične funkcije se kombinirajo slike v ravnini 1 in v ravnini 3 po formuli: Invert (Plane 1 XOR Plane 3). To se pravi, stvori se slika vseh pikslov, ki niso v ravnini 1, niti v ravnini 3. Ta operacija generira sliko v ravnini 4 slike vlaken, ki se raztezajo izven niti v odprtine materiala ali Vlakno v odprtinah (FA). Glej sliko 37E.4. Using the logic function, the images in plane 1 and plane 3 are combined according to the formula: Invert (Plane 1 XOR Plane 3). That is, an image is created of all pixels that are not in plane 1 or in plane 3. This operation generates an image in plane 4 of an image of fibers extending beyond the threads into material openings or fiber in openings (FA). See Figure 37E.
5. Vršijo se naslednja merjenja slikovnega polja in se beležijo velikosti delov površin za izračun indeksa prosojnosti:5. The following measurements of the image field shall be made and the particle size of the surfaces calculated for the transparency index to be recorded:
Področje čistih odprtin CA se izračunava kot vsoto odprte površine O A in vlaken v odprtinah FA. Indeks CI prosojnosti se izračunava kot razmerje med področjem CA čistih odprtin in vsote dveh delov površine, to je vlaken FA v odprtinah in vlaknastega pokrivala FC:The area of clean CA openings is calculated as the sum of the open area O A and the fibers in the FA openings. The CI transparency index is calculated as the ratio of the area CA of the clear openings to the sum of two parts of the surface, that is, the FA fibers in the openings and the FC fiber cover:
CI = CA/(FA + FC).CI = CA / (FA + FC).
Dodatna polja tkane gaze se meri na enak način ob uporabi nivojev detektiranja črne in bele, ki so izbrani v stopnjah 1 in 3. Rezultati z več reprezentativnih področij materiala (analizira se najmanj deset polj za vsak material) se poprečij o, da se dobi srednji indeks prosojnosti.The extra woven gauge fields are measured in the same way using the black and white detection levels selected in stages 1 and 3. Results from several representative material areas (at least ten fields for each material are analyzed) are averaged to obtain a mean the transparency index.
Analize slik se prav tako uporabljajo za določanje velikosti odprtin kot srednja površina odprtin v mm2. Za vsako od polj, ki so preizkušana v stopnjah 1 do 5, se izvede naslednje stopnje po beleženju merjenja polja in pred premikanjem tkanine v naslednje polje.Image analyzes are also used to determine the aperture size as the mean aperture area in mm 2 . For each of the fields tested in steps 1 to 5, the following steps are performed after recording the measurement of the field and before moving the fabric to the next field.
6. Ponovno se koristi logično funkcijo in se kombinira slike iz ravni 1 (OA) (slika 37D) in ravni 4 (FA) (slika 37D) preko funkcije (OR) dodajanja slike, da bi se dobilo sliko dela površine čiste odprtine (CA) v ravnini 5. Glej sliko 37F. Enačba slike je:6. The logical function is reused, and images from Level 1 (OA) (Figure 37D) and Level 4 (FA) (Figure 37D) are combined via the Image Add Function (OR) to give a picture of a portion of the clear aperture surface (CA ) in plane 5. See Figure 37F. The image equation is:
ravnina 5 (CA) = ravnina 1 (OA) OR ravnina 4 (FA).plane 5 (CA) = plane 1 (OA) OR plane 4 (FA).
7. V meniju meritev značilnosti se postavi parametre za merjenje ravnine 5 (CA).7. Parameters for measuring plane 5 (CA) are set in the feature measurement menu.
8. V meniju histograma se izbere parameter področja in se ga označi kot izbor grafike. Potem se izbere Meritev za analizo slike ravni 5, CA v pogledu posameznih področij lastnosti.8. In the histogram menu, select an area parameter and mark it as a graphic selection. Then, Measure is selected to analyze the Level 5, CA image in the view of individual property areas.
9. S ponavljanjem stopenj 6 do 8 za vsako od polj po analizi za indeks prosojnosti (stopnje 1 do 6) se bo generiral kumulativni histogram CA področja s srednjimi vrednostmi in vrednostmi standardnega odstopanja (histogram ni razdeljen na posamezna področja istega vzorca materiala).9. Repeating steps 6 to 8 for each of the fields after analysis for the transparency index (stages 1 to 6) will generate a cumulative histogram of the CA areas with mean and standard deviation values (the histogram is not divided into individual areas of the same material sample).
10. Na koncu niza polj tkane gaze se beležijo srednje površine odprtin in standardni odmik, ki sta podana v mm2.10. At the end of a series of fields of woven gauze, the mean openings and the standard deviation given in mm 2 are recorded.
Indeks prosojnosti in srednje površine odprtin za materiale po predloženem izumu in za materiale po znanih postopkih se analizirajo na isti način, pri čemer se uporablja nivoje detektiranja, ki so določeni pri analizi tkane gaze. Izmerke indeksa prosojnosti polja se shranjuje in rezultati se izračunavajo npr. na delovnem obrazcu programa Lotus 1-2-3. Indeks prosojnosti je za vsak material dan kot srednji indeks prosojnosti.The transparency index and the mean surface area of the openings for the materials of the present invention and for materials of known methods are analyzed in the same manner, using the detection levels determined in the analysis of woven gauze. Field transparency index measurements are stored and results are calculated e.g. on the Lotus 1-2-3 application form. The transparency index is given for each material as the mean transparency index.
Po končanem zbiranju podatkov o značilnostih vsakega polja se v delovni obrazec vneseta srednji in standardni odmik ter se podata kot srednje površine odprtine.After collecting data on the characteristics of each field, the mean and standard deviation are entered in the working form and are given as the mean surfaces of the aperture.
Materiali po predloženem izumu imajo indeks prosojnosti, ki se ga izmeri na opisan način, enak 0,5 ali več. Željeni materiali po predloženem izumu imajo indeks prosojnosti enak 0,6 ali več, medtem ko imajo priporočeni materiali po predloženem izumu indeks prosojnosti enak 0,75 ali več.The materials of the present invention have an opacity index, which is measured in the manner described, equal to or greater than 0.5. The desired materials of the present invention have a transparency index of 0.6 or greater, while the recommended materials of the present invention have a transparency index of 0.75 or more.
Določanja izračunane gostote vlakenDetermination of the calculated fiber density
Izračunana gostota vlaken se nanaša na gostoto vlaknenega snopa v nelepljenem perforiranem materialu. Izračunana gostota vlaken se določa iz dela površine, ki predstavlja z vlakni pokrito področje sheme, in gostote materiala, ki sejo izračuna ob uporabi mase materiala v g/cm2, deljene s srednjo debelino v cm, vlaknenih snopov. V naslednjem je opisan postopek za določanje izračunane gostota vlaken, izražene v g/cm3, za perforirane netkane materiale.The calculated fiber density refers to the density of the fiber bundle in the non-glued perforated material. The calculated fiber density is determined from the part of the surface representing the fiber covered area of the scheme and the material density calculated using the mass of material in g / cm 2 divided by the average thickness in cm of fiber bundles. The following describes a procedure for determining the calculated fiber density, expressed in g / cm 3 , for perforated nonwovens.
Analiza zahteva določanje mase WT materiala v g/cm2, merjenje debeline Z vlaknenih snopov v cm in indeksa prosojnosti, da bi se dobilo del površine FC, ki predstavlja področje, kije pokrito z vlakni.The analysis requires the determination of the mass of the WT material in g / cm 2 , the measurement of the thickness of the Z fiber bundles in cm and the transparency index to obtain a portion of the surface FC representing the area covered by the fibers.
Uporablja se standarden postopek preizkušanja, kot je ASTM D-3776, za določanje mase materiala. Debelina vlaknenih snopov se lahko določi z uporabo Leica Quantimet Q520 slikovnega analizatorja, da bi se izmerilo presek vlaknenih snopov.A standard test procedure, such as ASTM D-3776, is used to determine the mass of the material. The fiber bundle thickness can be determined using a Leica Quantimet Q520 imaging analyzer to measure the fiber bundle cross-section.
Da bi se določen material pripravilo za slikovno analizo za določene debeline vlaknenih snopov, se značilen vzorec materiala zalije s prozorno smolo (npr. z Aralditno™ smolo) in se nato izdela prereze bloka material/smola, pri čemer se koristi žago majhne hitrosti, kot je žaga Buehler Isomet, ki je opremljena z diamantnim rezilom. Odreže se vrsto odrezov debeline po 0,027 mm tako v smeri gibanja materiala v stroju in prečno na material ter se postavlja na steklene ploščice za mikroskop s pomočjo npr. Norland Optical Adhesive 60 lepila kot sredstva za pritrjevanje. Na osnovi mikroskopskega preizkušanja vrste odsekov, ki so primerjani s koščkom originalnega materiala, ki se analizira, se za meritev označujejo preseki, ki predstavljajo snope vlaken. Odseki snopov vlaken v netkanem materialu se izbirajo tako, da je rez izveden v področju, ki je približno na sredini med vozelno konfiguracijo in enim medsebojno povezanim spojem ali, če ni vozelne konfiguracije, med dvema medsebojno povezanima spojema. Odseki snopov vlaken pri netkanih materialih po znanem stanju tehnike se izbirajo tako, da se rez izvede približno na sredini med medsebojno povezanimi spoji.In order to prepare a specific material for imaging for specific fiber bundles, a typical material sample is poured with a transparent resin (e.g., with an Araldit ™ resin) and then fabricated cross sections of the material / resin block using a low speed saw, such as is a Buehler Isomet saw that comes with a diamond blade. A series of 0.027 mm thick sections are cut both in the direction of material movement in the machine and transversely to the material, and placed on glass microscope tiles using e.g. Norland Optical Adhesive 60 adhesives as fasteners. On the basis of microscopic examination of the series of sections that are compared with the piece of original material under analysis, cross sections representing the fiber bundles are indicated for measurement. The fiber bundle sections in the nonwoven fabric are selected such that the incision is made in a region approximately midway between the knot configuration and one interconnected joint or, in the absence of knot configuration, between two interconnected joints. The sections of fiber bundles for nonwovens are selected by the prior art in such a way that the incision is made approximately midway between the interconnected joints.
Debelina vsakega od izbranih vlaknenih snopov je označena kot dolžina linije, ki se jo potegne skozi prečni prerez od meje, ki predstavlja eno površino materiala, do meje, ki predstavlja nasprotno površino. Merijo se dolžine linij, ki predstavljajo debelino vsakega od snopov vlaken in se beleži srednjo debelino Z snopov vlaken v cm. Del področja FC, ki predstavlja področje sheme, ki je pokrito z vzorcem vlaken, se dobiva iz analize indeksa prosojnosti.The thickness of each of the selected fiber bundles is denoted as the length of a line drawn through a cross-section from the boundary representing one surface of the material to the boundary representing the opposite surface. The lengths of the lines representing the thickness of each of the fiber bundles are measured and the mean thickness Z of fiber bundles in cm is recorded. Part of FC area, which is the area of the scheme covered by the fiber sample, is obtained from the transparency index analysis.
Nato se izračunano gostoto materiala, ki je izražena v gramih na kubični cm (g/cm3), izračunava po naslednji formuli:Then the calculated material density, expressed in grams per cubic cm (g / cm 3 ), is calculated using the following formula:
izračunana gostota materiala = WT / (Z - FC).calculated material density = WT / (Z - FC).
Določanje gostote materialaDetermination of material density
Opisan bo postopek za določanje gostote materiala perforiranega in netkanega materiala. Gostota materiala je vrednost, kije izračunana iz mase materiala na enoto površine in je v g/cm2, debeline materiala v cm in dela površine, ki predstavlja z materialom pokrit del sheme na materialu. Enote gostote materiala so grami na kubični cm.A process for determining the material density of perforated and nonwoven fabric will be described. Material density is the value calculated from the mass of the material per unit area and is in g / cm 2 , the thickness of the material in cm and the part of the surface that represents the material covered part of the scheme on the material. Material density units are grams per cubic cm.
Uporabljajo se standardni postopki preizkušanja (npr. ASTM D-1777 in D-3776), da bi se izmerilo maso po enoti površine in debelino. Gostotna masa materiala se nato izračuna z deljenjem mase na enoto površine z debelino, izraža pa se v gramih na kubični cm. Del površine, ki predstavlja površino sheme, ki je pokrita z vlakni na materialu, je vrednost vlaknenega pokrova (FC), ki se jo dobi iz analize za določanje indeksa prosojnosti. Glej zgoraj. Nato se izračuna gostoto materiala z deljenjem volumske mase materiala z deležem površine (FC).Standard test procedures (eg, ASTM D-1777 and D-3776) are used to measure mass per unit area and thickness. The density of the material is then calculated by dividing the mass per unit area by thickness, and is expressed in grams per cubic cm. The part of the surface that represents the surface area of the fiber covered scheme on the material is the value of the fiber cover (FC) obtained from the analysis to determine the transparency index. See above. The density of the material is then calculated by dividing the volume mass of the material by the fraction of surface area (FC).
Materiali po predloženem izumu imajo izračunano gostoto vlaken, ki je merjena na opisan način, od najmanjše 0,14 g/cm3. Bolj zaželjeni materiali po predloženem izumu imajo izračunano gostoto vlaken od 0,15 g/cm3, priporočeni materiali po predloženem izumu imajo izračunano gostoto vlaken vsaj 0,17 g/cm3.The materials of the present invention have a calculated fiber density, measured in the manner described, of a minimum of 0.14 g / cm 3 . More desirable materials of the present invention have a calculated fiber density of 0.15 g / cm 3 , and the preferred materials of the present invention have a calculated fiber density of at least 0.17 g / cm 3 .
Potem ko je bil izum opisan s pomočjo specifičnih izvedbenih primerov in je bil podan z izvedbenimi primeri na način, ki se lahko praktično izvede, bo strokovnjakom takoj jasno, da se lahko naredi številne variacije, uporabe, modifikacije in razširitve osnovnih principov, o katerih je govora, ne da bi se odmaknilo od njegovega duha ali obsega.After the invention has been described by means of specific embodiments and provided with embodiments in a practicable manner, it will be readily apparent to those skilled in the art that a number of variations, uses, modifications and extensions of the underlying principles can be made of which of speech without departing from its spirit or scope.
Claims (27)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
YU16192A YU48211B (en) | 1992-02-18 | 1992-02-18 | PERFORATED NON-WOVEN MATERIAL AND DEVICE FOR ITS MAKING |
Publications (2)
Publication Number | Publication Date |
---|---|
SI9210161A true SI9210161A (en) | 1994-09-30 |
SI9210161B SI9210161B (en) | 2001-04-30 |
Family
ID=25548626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI9210161A SI9210161B (en) | 1992-02-18 | 1992-02-18 | Novel apertured non-woven fabric |
Country Status (2)
Country | Link |
---|---|
SI (1) | SI9210161B (en) |
YU (1) | YU48211B (en) |
-
1992
- 1992-02-18 SI SI9210161A patent/SI9210161B/en unknown
- 1992-02-18 YU YU16192A patent/YU48211B/en unknown
Also Published As
Publication number | Publication date |
---|---|
YU48211B (en) | 1997-08-22 |
YU16192A (en) | 1994-09-09 |
SI9210161B (en) | 2001-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FI117340B (en) | Nonwoven fabric and apparatus and method for making nonwoven fabric | |
US5244711A (en) | Apertured non-woven fabric | |
CA1234484A (en) | Ribbed terry cloth-like nonwoven fabric | |
US4297404A (en) | Non-woven fabric comprising buds and bundles connected by highly entangled fibrous areas and methods of manufacturing the same | |
CA2010080C (en) | Method and apparatus for forming three dimensional composite webs | |
RU2132893C1 (en) | Nonwoven material (versions) | |
CA1273190A (en) | Light weight entangled non-woven fabric having excellent machine direction and cross direction strength and process | |
US3769659A (en) | Method and apparatus (continuous imperforate portions on backing means of open sandwich) | |
US3679536A (en) | Nonwoven fabric comprising buds plus bundles connected by aligned fibers including bundles | |
GB1596718A (en) | Non-woven fabric comprising buds and bundles connected by highly entangled fibous areas and methods of manufacturing the same | |
SK392192A3 (en) | Method and arrangement for producing spunlace and material produced thereby | |
SI9210161A (en) | Novel apertured non-woven fabric | |
JP2001288671A (en) | Device and method for producing nonwoven fabric having opening | |
KR100195851B1 (en) | Novel apertured non-woven fabric | |
AU716616B2 (en) | Non-woven fabric | |
PL169868B1 (en) | Method of and apparatus for manufacturing non-woveen fabrics and non-woven fabric as such | |
NZ241649A (en) | Binderless, apertured, non-woven fabrics; apparatus and method of production | |
IE920512A1 (en) | Novel apertured non-woven fabric | |
CA1143929A (en) | Non-woven fabric comprising buds and bundles connected by highly entangled fibrous areas and method of manufacturing the same | |
HU216421B (en) | Novel apertured non-woven fabric | |
TW199190B (en) | Novel apertured non-woven fabric |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
IF | Valid on the prs date |