SI9200069A - Light regulated gene expression in the transgenic plants - Google Patents

Light regulated gene expression in the transgenic plants Download PDF

Info

Publication number
SI9200069A
SI9200069A SI9200069A SI9200069A SI9200069A SI 9200069 A SI9200069 A SI 9200069A SI 9200069 A SI9200069 A SI 9200069A SI 9200069 A SI9200069 A SI 9200069A SI 9200069 A SI9200069 A SI 9200069A
Authority
SI
Slovenia
Prior art keywords
light
gus
plant
sequence
gene
Prior art date
Application number
SI9200069A
Other languages
Slovenian (sl)
Inventor
Rhonda L. Freinbaum
Gisela Storz
Frederick M. Ausubel
Original Assignee
The General Hospital Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The General Hospital Corporation filed Critical The General Hospital Corporation
Publication of SI9200069A publication Critical patent/SI9200069A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12N9/1037Naringenin-chalcone synthase (2.3.1.74), i.e. chalcone synthase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8237Externally regulated expression systems

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A genetic system utilizing the light-regulated expression of the Arabidopsis thaliana chalcone synthase (CHS) gene is described. Two elements within the CHS control region have been identified which are capable of promoting the expression of an operably linked gene, in a plant, in response to stimulation by light. Using these sequences it is possible to create transgenic and chimeric plants which contain one or more exogenously supplied gene whose expression can be inducted by blue, UV or high intensity light.

Description

Svetlobno regulirana genska ekspresija v transgenskih rastlinahLight-regulated gene expression in transgenic plants

Področje izumaFIELD OF THE INVENTION

Predloženi izum se nanaša na transgenske in kimerne rastline. Posebno se izum nanaša na sekvence DNA, ki so sposobne promocije ekspresije funkcionalno vezanega heterolognega gena v rastlini, kot odziv na stimulacijo s svetlobo. Predloženi izum se tudi nanaša na sistem za skrining mutantov dovzetnih za svetlobo teh sekvenc.The present invention relates to transgenic and chimeric plants. In particular, the invention relates to DNA sequences capable of promoting the expression of a functionally coupled heterologous gene in a plant in response to stimulation by light. The present invention also relates to a screening system for light-sensitive mutants of these sequences.

Predloženi izum prikazuje kimerne plazmide, ki vsebuje 1975 ali 523 bp promotorja kalkonske sintaze (CHS) iz A.thaliana. Heterologni geni funkcionalno vezani na 1975 ali 523 bp promotorsko sekvenco so izraženi v rastlini kot odziv na modro svetlobo specifične valovne dolžine. Predloženi izum prikazuje tudi kimerni plazmid, ki vsebuje 186 bp promotorja CHS. Heterologni geni funkcionalno vezani na 186 bp promotorski fragment so izraženi v rastlini kot odziv na visoko intenzitetno svetlobo.The present invention provides chimeric plasmids containing the 1975 or 523 bp chalkon synthase (CHS) promoter from A.thalian. Heterologous genes functionally linked to the 1975 or 523 bp promoter sequence are expressed in the plant in response to blue light of a specific wavelength. The present invention also provides a chimeric plasmid containing 186 bp of the CHS promoter. Heterologous genes functionally bound to the 186 bp promoter fragment are expressed in the plant in response to high-intensity light.

Ozadje izumaBACKGROUND OF THE INVENTION

I. Kimerne rastlineI. Chimera plants

Nedavni napredki v rekombinantni DNA in genetskih tehnologijah so omogočili uvedbo in izražanje želene genske sekvence v recipientni rastlini. Z uporabo takih postopkov skontruirajo rastline, ki vsebujejo genske sekvence, ki niso normalno ali naravno prisotne v nespremenjeni rastlini. Dodatno te tehnike uporabljajo, da izdelajo rastline, ki kažejo spremenjeno ekspresijo naravno prisotnih genskih sekvenc.Recent advances in recombinant DNA and genetic technologies have enabled the introduction and expression of the desired gene sequence in the recipient plant. Using such methods, they control plants containing gene sequences that are not normally or naturally present in the unaltered plant. Additionally, they use these techniques to produce plants that show altered expression of naturally occurring gene sequences.

Rastline izdelane z uporabo takih postopkov so znane bodisi kot kimeme ali transgenske rastline. V kimemi rastlini samo nekatere od rastlinskih celic vsebujejo in izražajo uvedeno gensko sekvenco, medtem ko druge celice ostanejo nespremenjene. Sposobnost kimeme rastline, da prenese uvedeno gensko sekvenco na njene potomce je odvisna od tega, če so uvedene genske sekvence prisotne v klicnih celicah rastline. Torej samo določene kimeme rastline lahko predajo želeno gensko sekvenco k njihovim potomcem.Plants made using such methods are known as chimeras or transgenic plants. In a chimera plant, only some of the plant cells contain and express the introduced gene sequence, while other cells remain unchanged. The ability of a plant chimera to transmit an introduced gene sequence to its offspring depends on whether the introduced gene sequences are present in the plant's germ cells. So only certain nods of plants can transmit the desired gene sequence to their offspring.

Nasprotno vse celice transgenske rastline vsebujejo uvedeno gensko sekvenco. Torej je transgenska rastlina sposobna prenašanja uvedene genske sekvence na svoje potomce.In contrast, all cells of a transgenic plant contain an introduced gene sequence. Thus, the transgenic plant is capable of transmitting the introduced gene sequence to its offspring.

Transgenske rastline na splošno proizvajajo iz transformirane enojne rastlinske celice. Mnogo rodov rastlin je proizvedenih iz posamezne celice. (Friedt, W. et al. Prog. Botany 49:192-215 (1987); Brunold, C. et al., Moleč, Gen. Genet. 208:469-473 (1987); Durand, J. et al., Plant Sci. 62:263-272 (1989), te reference pa so vsebovane tukaj z referenco.Transgenic plants are generally produced from a transformed single plant cell. Many genera of plants are produced from a single cell. (Friedt, W. et al. Prog. Botany 49: 192-215 (1987); Brunold, C. et al., Molech, Gen. Genet. 208: 469-473 (1987); Durand, J. et al. , Plant Sci 62: 263-272 (1989), and these references are incorporated herein by reference.

Različne postopke lahko uporabijo za dostavo in izražanje tujega gena v rastlinsko celico. Najširše uporabljen postopek uporablja kloniranje želene genske sekvence v Ti plazmid bakterije prsti A. tumefaciens (Komari, T. et al., J. Bacteriol. 166:88-94 (1986); Czako, M. et al., Plant Mol. Biol. 6:101-109 (1986); Jones, J.D.G. et al., EMBO J. 4:2411-2418 (1985).They can use different procedures to deliver and express a foreign gene to a plant cell. The most widely used procedure uses the cloning of the desired gene sequence in the Ti plasmid of the soil bacterium A. tumefaciens (Komari, T. et al., J. Bacteriol. 166: 88-94 (1986); Czako, M. et al., Plant Mol. Biol 6: 101-109 (1986); Jones, JDG et al., EMBO J. 4: 2411-2418 (1985).

Drugi postopek prenosa genske sekvence v rastlino uporablja konstruiran rastlinski virus. Rastlinski virusi kot mozaični virus cvetače (Brisson, N. et al., Nature 310:511514 (1984)) so posebno uporabni za ustvaijanje transgenskih rastlin (Shah, D.M. et al., Science 233:478-481 (1986)); Shevvmaker, C.K. et al., Virol. 140:281-288 (1985)). RNA virusi so prav tako konstruirani za dostavo DNA v rastlino (French, R. et al., Science 231:1294-1297 (1986)).The second process of transmitting a gene sequence to a plant uses a constructed plant virus. Plant viruses as cauliflower mosaic virus (Brisson, N. et al., Nature 310: 511514 (1984)) are particularly useful for transgenic plants (Shah, D.M. et al., Science 233: 478-481 (1986)); Shevvmaker, C.K. et al., Virol. 140: 281-288 (1985). RNA viruses are also engineered to deliver DNA to a plant (French, R. et al., Science 231: 1294-1297 (1986)).

Tretji postopek, kije uporabljen za prenos genskih sekvenc v rastlinske celice je mikroinjiciranje (Crossway, A et al., Moleč. Gen. Genet. 202:179-185 (1986); Potiykus, I. et al., Moleč. Gen. Genet. 199:169-177 (1985)).The third process used to transmit gene sequences into plant cells is microinjection (Crossway, A et al., Mol. Gen. Gen. 202: 179-185 (1986); Potiykus, I. et al., Mol. Gen. Genet. 199: 169-177 (1985).

In končno je četrti običajno uporabljen postopek prenašanje sekvence DNA v rastlino, elektroporacija (Fromm, M.E. et al., Nature 319:791-793 (1986); Morikawa, H. et al., Gene 41:121-124 (1986)).Finally, the fourth commonly used process is the transfer of a DNA sequence to a plant, electroporation (Fromm, ME et al., Nature 319: 791-793 (1986); Morikawa, H. et al., Gene 41: 121-124 (1986)). .

II. Svetlobno inducibilni promotorjiII. Light-inducible promoters

Svetloba je ključni okoliški signal, ki je pomembna pri skoraj vseh aspektih rasti in razvoja rastline. Veliko število nuklearno in kloroplastno kodiranih fotoreguliranih genov je indentificiranih v rastlinah. Vendar z izjemo fotoreceptoija rdeče svetlobe, fitokroma komponente signalnih transdukcijskih poti odgovornih za fotoregulacijo genskega izražanja, ostajajo večinoma neznane.Light is a key environmental signal that is important in almost every aspect of plant growth and development. A large number of nuclear and chloroplast encoded photoregulated genes have been identified in plants. However, with the exception of photorecepto red light, the phytochrome components of the signal transduction pathways responsible for the photoregulation of gene expression remain largely unknown.

Gen kalkonske sintaze (CHS) kodira prvi encim edinstven za flavonoidno biosintezo. Svetloba inducira izdelavo flavona in flavonolov v tkivnih celicah kulture petršilja in akumulacijo antocianinskih pigmentov v mnogih rastlinskih vrstah (Wellmann, E., Planta 101:283-2886 (1971); Beggs et al., Photochem. Photobiol. 41:481-486 (1985); Wellmann, E., FEBS Lett 51:105-107 (1975); Oelmuller et al., Proč. Natl. Acad. Sci. USA 82:6124-6128 (1985); Rabino et al., Plant Physiol 81:922-924 (1986); Sponga et al., Plant Physiol 82:952-955 (1986)). V različnih rastlinah, ki so jih doslej proučevali je fotoregulirana izdelava flavonoidov vsaj delno zaradi transkripcijske indukcije CHS (Chappell et al., Nature 311:76-78 (1984); Feinbaum et al., Mol. Celi biol. 8:1985-1992 (1988); van Tunen et al., EMBO J 7:1257-1263 (1988); Taylor et al., Plant Celi. 2:115-127 (1990)). Raziskava ekspresije CHS v tkivnih celicah kulture petršilja daje slutiti, da imajo UV-B svetlobni receptor, receptor modre svetlobe in fitokrom tudi lahko pomembno vlogo pri ekspresiji CHS, induciranih s svetlobo (Bruns et al., Planta 169:393-398 (1986); Ohl et al., Planta 177:228-236 (1989)). Predominantno občutljivost ekspresije CHS na UV in modro svetlobo razlikuje le-to od drugih običajno proučevanih fotoreguliranih genov, kot npr. klorofilnega a/s vezivnega proteinskega gena (CAB), ki so visoko občutljivi na rdečo svetlobo (Kaufman et al., Science 226:1447-1449 (1984); Karlin-Neumann et al., Plant Physiol 88:1323-1331 (1988)).The chalcone synthase gene (CHS) encodes the first enzyme unique to flavonoid biosynthesis. Light induces flavone and flavonol production in tissue cells of parsley culture and accumulation of anthocyanin pigments in many plant species (Wellmann, E., Planta 101: 283-2886 (1971); Beggs et al., Photochem. Photobiol. 41: 481-486 ( 1985); Wellmann, E., FEBS Lett 51: 105-107 (1975); Oelmuller et al., Proc Natl. Acad. Sci. USA 82: 6124-6128 (1985); Rabino et al., Plant Physiol 81 : 922-924 (1986); Sponga et al., Plant Physiol 82: 952-955 (1986). In the various plants studied so far, photoregulated flavonoid production is at least partly due to transcriptional induction of CHS (Chappell et al., Nature 311: 76-78 (1984); Feinbaum et al., Mol. Whole Biol. 8: 1985-1992 (1988); van Tunen et al., EMBO J 7: 1257-1263 (1988); Taylor et al., Plant Celi. 2: 115-127 (1990). Research on CHS expression in tissue cells of parsley culture suggests that UV-B light receptor, blue light receptor and phytochrome may also play important roles in light-induced CHS expression (Bruns et al., Plant 169: 393-398 (1986) Ohl et al., Plant 177: 228-236 (1989). The predominant sensitivity of CHS expression to UV and blue light distinguishes it from other commonly studied photoregulated genes, such as e.g. chlorophyll a / s binding protein gene (CAB), which are highly sensitive to red light (Kaufman et al., Science 226: 1447-1449 (1984); Karlin-Neumann et al., Plant Physiol 88: 1323-1331 (1988 )).

Čeprav je malo znanega o trans delujočih regulatomih faktorjih, ki kontrolirajo svetlobno regulirano ekspresijo CHS, in vitro vezivni poskusi in in vivo eksperimenti s prstnim odtisom (foot printing) definirajo heksamerno sekvenco (CACGTG) locirano v promotorskih področjih A. majus in petršiljevih genih CHS, ki je vezana z nuklearnim faktorjem kar je lahko pomembno pri svetlobno regulirani kontroli ekspresije CHS (Lipphardt et al., EMBO J 7:4027-4033 (1988); Schulze-Lefert et al., EMBO J. 8:651-656 (1989b); Staiger et al., Proč. Natl. Acad. Sci. USA 86:6930-6934 (1989)). Heksamemi motivi definirani v petršilju in A. majus promotoijih CHS spadajo v razred rastlinskih sekvenc imenovanih G boksi, ki so jih našli v promotoiju mnogih rastlinskih genov reguliranih s svetlobo in napetostjo (Staiger et al., Proč. Natl. Acad. Sci USA 86:6930-6934 (1989)). Zanimivo je omeniti, da centralni heksamer G boksa ustreza konsenzni sekvenci E boksa CANNTG, definirani iz sistemov sesalcev, ki se nahajajo v spodbujevalcih mnogih genov specifičnih za tkivo in so v nekaterih primerih znani, da so potrebni za tkivno specifično gensko ekspresijo (za oceno glej Kingston, R.E., Curr. Opin. Celi Biol. 1:1081-1087 (1989)). Proteini za katere je ugotovljeno, da se vežejo na E bokse v celicah sesalcev in Drosophila, delijo potencialno DNA vezava/dimerizacija vijačnica-zanka-vijačnica (HLH) strukturo.Although little is known about trans-acting regulators of factors that control light-regulated CHS expression, in vitro binding experiments and in vivo fingerprinting experiments define a hexamer sequence (CACGTG) located in the promoter regions of A. majus and CHS genes, which is bound by a nuclear factor, which may be important in light-regulated control of CHS expression (Lipphardt et al., EMBO J 7: 4027-4033 (1988); Schulze-Lefert et al., EMBO J. 8: 651-656 (1989b Staiger et al., Proc Natl. Acad. Sci. USA 86: 6930-6934 (1989). The hexamem motifs defined in the five-pointed and A. majus CHS promoters belong to a class of plant sequences called G boxes, which have been found in the promoter of many plant genes regulated by light and voltage (Staiger et al., Natl. Acad. Sci USA 86: 6930-6934 (1989). It is interesting to note that the central G box hexamer corresponds to the consensus sequence E of the CANNTG box, defined from mammalian systems that are located in the promoters of many tissue-specific genes and in some cases are known to be required for tissue-specific gene expression (for evaluation, see Kingston, RE, Curr. Opin. Full Biol. 1: 1081-1087 (1989). Proteins found to bind to E boxes in mammalian and Drosophila cells share a potential DNA-binding / dimerization helix-loop-helical (HLH) structure.

Izolacija mutantov, ki imajo odstopajoče pigmentacijske vzorce, dopušča identifikacijo multiplega lokusa, ki vpliva na flavonoidno produkcijo. Vsaj dva od teh, R lokus v koruzi in det-1 gen v A.thaliana sta pomembna pri fotoregulirani ekspresiji CHS. Koruzne sadike, ki imajo pomanjkanje funkcionalnega R gena akumulirajo 25 % manj ČHS MRNA po izpostavitvi svetlobi (Taylor et al., Plant Celi. 2:115-127 (1990). Zanimivo proteini kodirani z R gensko družino vsebujejo HLH motiv, ki je ugotovljen v regulatomih faktorjih, ki prepoznajo sekvenco E boksa. (Ludwig et al., Proč. Natl. Acad. Sci. USA 86:7092-7096 (1989). Nasprotno Z. mays R lokusu je A.thaliana det-1 gen potreben za represijo ekspresije CHS v temi rastočih sadik A.thaliana (Chory et al. Celi 58:991-999 (1989)). V odsotnosti svetlobe det-1 mutantne rastline kažejo listni in kloroplastni razvoj in akumulirajo povečane stopnje svetlobno regulirane mRNA, vključno CHS.Isolation of mutants having deviating pigmentation patterns allows the identification of multiple loci that affect flavonoid production. At least two of these, the R locus in maize and the det-1 gene in A.thaliana, are important in photoregulated CHS expression. Maize seedlings lacking a functional R gene accumulate 25% less ČHS MRNA after exposure to light (Taylor et al., Plant Celi. 2: 115-127 (1990). Interestingly, proteins encoded by the R gene family contain the HLH motif found in regulators of the factors that recognize the E box sequence. (Ludwig et al., read. Natl. Acad. Sci. USA 86: 7092-7096 (1989). In contrast to the Z. mays R locus, the A.thaliana det-1 gene is required for repression of CHS expression in dark growing A.thaliana seedlings (Chory et al. Celi 58: 991-999 (1989)) In the absence of light det-1 mutant plants exhibit leaf and chloroplast development and accumulate increased levels of light-regulated mRNAs, including CHS.

Analiza specifičnosti valovne dolžine ekspresije CHS v sadikah A. thaliana kaže, da sta modra in UV svetloba bolj učinkoviti kot rdeča svetloba pri induciranju akumulacije CHS MRNA. V celicah peteršilja maksimalna indukcija ekspresije CHS zahteva izpostavitev UV-B svetlobi (Wellmann, 1971; Wellmann, 1975; Bruns et al., 1986; Ohl et al., 1989).Analysis of the specificity of the wavelength of CHS expression in A. thaliana seedlings shows that blue and UV light are more effective than red light in inducing CHS MRNA accumulation. In parsley cells, maximal induction of CHS expression requires exposure to UV-B light (Wellmann, 1971; Wellmann, 1975; Bruns et al., 1986; Ohl et al., 1989).

III. ZaključkiIII. Conclusions

Aplikacija tehnologij za ustvaijanje transgenskih in kimernih rastlin daje možnost, da proizvedejo rastline, ki ne morejo biti proizvedene z uporabo klasičnih genetik. Npr. kimeme in transgenske rastline imajo bistveno uporabo kot sonde naravne genske ekspresije. Če jih uporabijo pri pridelkih hrane imajo tehnologije zmožnost pridobivanja izboljšane hrane, vlaken itd.The application of transgenic and chimeric planting technologies gives the opportunity to produce plants that cannot be produced using classical genetics. E.g. chimeras and transgenic plants have essential uses as probes of natural gene expression. When used in food crops, technologies have the ability to produce improved food, fiber, etc.

Pri ustvarjanju kimeme ali transgenske rastline je želeno, da je sposobna regulirati ekspresijo uvedenih genskih sekvenc. En tak indukcijski signal je svetloba. Svetlobno inducibilni promotoiji so raziskani pri številnih rastlinah. Promotor kalkonske sintaze usmerja ekspresijo kalkonske sintaze kot odziv na svetlobo ali zunanjo napetost.When creating a chimera or transgenic plant, it is desirable that it is capable of regulating the expression of introduced gene sequences. One such induction signal is light. Light-inducible promotions have been investigated in many plants. The chalcone synthase promoter directs the expression of chalcone synthase in response to light or external voltage.

Predloženi izum združuje tehnike za izdelavo kimernih transgenskih rastlin z novimi sekvencami DNA sposobnimi promocije ekspresije heterolognega gena v rastlini kot odziv na stimulacijo s svetlobo specifičnih valovnih dolžin.The present invention combines techniques for the production of chimeric transgenic plants with novel DNA sequences capable of promoting the expression of a heterologous gene in a plant in response to stimulation by light-specific wavelengths.

Povzetek izumaSummary of the Invention

Predloženi izum temelji na presenetljivem odkritju dveh elementov v promotorju CHS A. thaliana, ki promovirata prepisovanje funkcionalno vezanega gena kot odziv na stimulacijo s svetlobo. Eden od teh elementov je sposoben promoviranja prepisovanja kot odziv na modro ali UV svetlobo. Drug element je sposoben promoviranja prepisovanja kot odziv na visokointenzitetno svetlobo.The present invention is based on the surprising discovery of two elements in the promoter of the CHS A. thaliana that promote transcription of a functionally coupled gene in response to stimulation by light. One of these elements is capable of promoting transcription in response to blue or UV light. Another element is capable of promoting transcription in response to high-intensity light.

Z uporabo tega odkritja je sedaj možno:Using this discovery, it is now possible to:

1) ustvariti rekombinantne molekule DNA sposobne promoviranja ekspresije heterolognega gena v rastlini tako, da je ekspresija gena inducirana z modro ali UV svetlobo;1) create recombinant DNA molecules capable of promoting the expression of a heterologous gene in a plant such that gene expression is induced by blue or UV light;

2) ustvariti rekombinantne molekule DNA sposobne promoviranja ekspresije heterolognega gena v rastlini, tako da je ekspresija gena inducirana z visoko intenzitetno svetlobo;2) create recombinant DNA molecules capable of promoting the expression of a heterologous gene in a plant such that gene expression is induced by high-intensity light;

3) ustvariti transgensko ali kimemo rastlino, ki vsebuje enega ali več eksogensko dobavljenih genov, katerih ekspresija je inducirana z modro ali UV svetlobo;3) to create a transgenic or nodding plant containing one or more exogenously supplied genes whose expression is induced by blue or UV light;

4) ustvariti transgensko ali kimemo rastlino, ki vsebuje enega ali več eksogensko dobavljenih genov, katerih ekspresija je inducirana z visoko intenzitetno svetlobo;4) to create a transgenic or nodding plant containing one or more exogenously delivered genes whose expression is induced by high-intensity light;

5) uporabiti sekvenco DNA svetlobno dovzetnih elementov, da očistimo in označimo regulatome proteine, ki se vežejo na kontrolne sekvence;5) use the DNA sequence of light-responsive elements to purify and label the regulatory proteins that bind to control sequences;

6) uporabiti indukcijski sistem modre svetlobe ali visoko intenzitetne svetlobe, da skriniramo in izoliramo za svetlobo dovzetne mutante; in6) use an induction system of blue light or high-intensity light to screen and isolate susceptible mutants for light; and

7) uporabiti svetlobno dovzetne elemente v A. thaliani za nadaljnje pojasnjevanje mehanizmov vključenih v svetlobno regulirani promociji genske ekspresije v rastlinah.7) use light-sensitive elements in A. thaliana to further elucidate the mechanisms involved in the light-regulated promotion of gene expression in plants.

Kratek opis slikShort description of the pictures

Slika IA in B. Akumulacija CHS1975-GUS MRNA kot odziv na visoko intenzitetno svetlobo. Northern prepivki RNA, izolirani iz zrelih v rastlinjaku zraslih rastlin A. thaliana obdelani z visoko intenzitetno svetlobo kontinuimo 0, 6,16, 24, 48 ali 72 ur. Kontrolne rastline (časovna točka 0 ur) ostanejo v rastlinjaku in jih požanjemo v časovni točki, ki sovpada s 24 urno obdelavo z visoko intenzitetno svetlobo. Dva identična filtra hibridiziramo s sondami, ki detektirajo CHS oz. CHS-GUS mRNA. Oba tadva filtra odvzamemo in rehibridiziramo z sondo rRNA, toda tukaj je prikazan samo prepivek CHS1975-GUS mRNA. B GUS primer ekstenzijska analiza mRNA iz netransformiranih Nossen (No) in CHS1975-GUS rastlin. GUS eksten6 zijski produkti niso bili nikoli detektirani za mRNA izolirano iz netransformiranih rastlin. Številke na levi strani slike označujejo velikost (bp) označenih fragmentov MspIpBR322.Figure IA and B. CHS1975-GUS MRNA accumulation in response to high-intensity light. Northern RNA brews isolated from mature in the greenhouse of adult A. thaliana plants treated with high intensity light continuously for 0, 6,16, 24, 48 or 72 hours. The control plants (0 h time point) remain in the greenhouse and are harvested at a time point that coincides with 24 h high intensity light treatment. Two identical filters are hybridized with probes that detect CHS or. CHS-GUS mRNA. Both filters are removed and re-hybridized with the rRNA probe, but only the CHS1975-GUS mRNA digest is shown here. B GUS case extension analysis of mRNAs from untransformed Nossen (No) and CHS1975-GUS plants. GUS extensional products have never been detected for mRNA isolated from untransformed plants. The numbers on the left of the image indicate the size (bp) of the MspIpBR322 tagged fragments.

Slika 2. Akumulacija CHS1975-GUS mRNA kot odziv na svetlobno različnih valovnih dolžin. Northern prepivki RNA izolirani iz 9 dni starih v temi zraslih sadik CHS1975-GUS ali iz tistih obdelovanih 24 ur z rdečo, modro, belo in UV svetlobo. Dva identična filtra hibridiziramo s sondami, ki detektirajo CHS mRNA oz. CHS1975-GUS mRNA. Oba tadva filtra odvzamemo in rehibridiziramo z rRNA sondo (tukaj prikazan prepivek CHS1975-GUS mRNA). Enak vzorec akumulacije mRNA je viden v dveh ločenih eksperimentih.Figure 2. Accumulation of CHS1975-GUS mRNA in response to light-varying wavelengths. Northern RNA quilts isolated from 9 days old in dark grown CHS1975-GUS seedlings or from those treated 24 hours in red, blue, white and UV light. Two identical filters are hybridized with probes that detect CHS mRNAs. CHS1975-GUS mRNA. Both filters were removed and re-hybridized with the rRNA probe (CHS1975-GUS mRNA transcript shown here). The same pattern of mRNA accumulation is seen in two separate experiments.

Slika 3. Akumulacija CHS mRNA kot odziv na pulz modre svetlobe v sadikah divjega tipa A. thaliana. Northern prepivek RNA izoliran iz 9 dni starih, v temi zraslih, zraslih pri rdeči svetlobi in zraslih pri rdeči svetlobi/obdelanih s pulzom modre svetlobe sadikah Columbia. Sadike izpostavljene za 15 minut pulzu modre svetlobe vrnemo v rdečo svetlobo za 3 ali 16 ur pred ekstrakcijo RNA. Filter hibridiziramo najprej s sondo, ki detektira CHS mRNA in nato odvzamemo in rehibridiziramo s sondo rRNA Podoben prepivek s sondo, ki detektira CAB mRNA ne kaže nobenega signifikantnega učinka pulza modre svetlobe na celotnih CAB mRNA nivojih pri rastlinah zraslih v rdeči svetlobi (podatki niso prikazani).Figure 3. CHS mRNA accumulation in response to blue light pulse in wild-type A. thaliana seedlings. Northern RNA isolate isolated from 9 days old, dark grown, grown in red light and grown in red light / pulsed with blue light by Columbia seedlings. The seedlings exposed for a 15 minute pulse of blue light were returned to the red light for 3 or 16 hours before RNA extraction. The filter is hybridized first with a probe that detects CHS mRNA and then is collected and re-hybridized with a rRNA probe. ).

Slika 4A-D. Akumulacija CHS523-GUS, CHS186-GUS, in CHS17-GUS mRNA in GUS aktivnosti kot odziv na visoko intenzitetno in modro svetlobo. A) Northern prepivek RNA izoliran iz zrelih rastlin zraslih v rastlinjaku, obdelovan z visoko intenzitetno svetlobo 0 in 16 ur. Filter hibridiziramo z GUS sondo nato odvzamemo in hibridiziramo sondo CHS. Končno hibridizacija s sondo rRNA kaže, da so bile enake količine RNA prisotne v vsaki vrsti (podatki niso prikazani). B) GUS aktivnost v rastlinah obdelanih z visoko intenzitetno svetlobo 0, 16 in 48 ur. Graf predstavlja povprečje treh neodvisnih eksperimentov. Mnogokratne indukcije med 0 in 48 ur so dane nad progami za vsako transgensko vrsto. C) Northern prepivke RNA izolirane iz kontrolnih sadik zraslih v temi in sadik obdelovanih 24 ur z modro svetlobo. Filtre obdelamo kot je opisano zgoraj. D) GUS aktivnost v kontrolnih in z modro svetlobo obdelovanih sadikah. Graf spet predstavlja povprečje treh neodvisnih eksperimentov in mnogokratne indukcije med kontrolnimi rastlinami in rastlinami obdelovanimi z modro svetlobo so dane nad progami za vsako transgensko vrsto. Mnogokratna indukcija za CHS186-GUS, vrsta 2, je bistveno nižja kot 5,0-kratna, ker so stopnje GUS aktivnosti komaj nad osnovo tako kontrolnih rastlin kot tudi rastlin obdelanih z modro svetlobo.Figure 4A-D. Accumulation of CHS523-GUS, CHS186-GUS, and CHS17-GUS mRNA and GUS activities in response to high-intensity and blue light. A) Northern RNA blank isolated from mature greenhouse grown plants treated with high intensity light for 0 and 16 hours. The filter is hybridized with a GUS probe and then the CHS probe is removed and hybridized. Finally, hybridization with the rRNA probe indicates that equal amounts of RNA were present in each species (data not shown). B) GUS activity in plants treated with high-intensity light for 0, 16 and 48 hours. The graph represents the average of three independent experiments. Multiple inductions between 0 and 48 hours are given above the lines for each transgenic species. C) Northern RNA quilts isolated from control seedlings grown in the dark and seedlings treated for 24 hours with blue light. Filters are treated as described above. D) GUS activity in control and blue light seedlings. The graph again represents the average of three independent experiments and multiple inductions between control plants and plants treated with blue light are given above the lines for each transgenic species. The multiple induction for CHS186-GUS, type 2, is significantly lower than 5.0-fold because GUS activity levels are barely above the base of both control and blue light treated plants.

Kratek opis prednostnih izvedbBrief description of preferred embodiments

Sekvence DNA v promotoiju kalkonske sintaze so sposobne promoviranja ekspresije funkcionalno vezanih heterolognih genov v rastlini kot odziv na svetlobo. Predloženi izumi prikazujejo prvič sekvenco v promotorju CHS, ki daje dovzetnost za modro ali UV svetlobo in sekvenco, ki daje dovzetnost za visoko intezitetno svetlobo. Te sekvence DNA lahko uporabimo za ustvarjanje kimeme ali transgenske rastline, ki vsebuje enega ali več eksogensko dobavljenih genov, ki so izraženi kot odziv na svetlobo. Predloženi izum opisuje delo narejeno v A. thaliana. Vendar je izum možno izvajati prav tako dobro na drugih rastlinah.DNA sequences in the chalcone synthase promoter are capable of promoting the expression of functionally coupled heterologous genes in a plant in response to light. The present inventions show a first sequence in a CHS promoter that gives susceptibility to blue or UV light and a sequence that gives susceptibility to high intensity light. These DNA sequences can be used to create a chimera or transgenic plant containing one or more exogenously delivered genes that are expressed in response to light. The present invention describes a work made in A. thaliana. However, the invention can be implemented equally well on other plants.

I. Sekvence DNA sposobne promoviranja ekspresije heterolognega gena v rastlini kot odziv na modro ali UV svetloboI. DNA sequences capable of promoting the expression of a heterologous gene in a plant in response to blue or UV light

V eni izvedbi v smislu izuma je opisana sekvenca DNA, ki je sposobna promoviranja ekspresije funkcionalno vezanega heterolognega gena v rastlini, kot odziv na stimulacijo z modro ali UV svetlobo. Kot je uporabljeno tukaj je funkcionalno vezan definiran z zmožnostjo sekvence DNA, da jo prepišemo tako, da se zgodi prevajanje v želenem bralnem okviru, če povežemo 3’ mesto na dano sekvenco. Kot je uporabljeno tukaj je sekvenca definirana kot promoviranje ekspresije, če je sekvenca sposobna induciranja prepisovanja in prevajanja funkcionalno vezane kodirne sekvence.In one embodiment of the invention, a DNA sequence is described which is capable of promoting the expression of a functionally coupled heterologous gene in a plant in response to stimulation by blue or UV light. As used herein, functionally bound is defined by the ability of a DNA sequence to be transcribed so that translation occurs in the desired reading frame by linking a 3 'site to a given sequence. As used herein, a sequence is defined as promoting expression if the sequence is capable of inducing transcription and translation of a functionally coupled coding sequence.

Podrobno je sekvenca DNA lahko sekvenca DNA locirana med; -1975 in 0, -523 in 0, ali -523 in -186 promotorja CHS (Sekvenca ID št. 1), ali njen funkcionalni derivat. Če je ta sekvenca funkcionalno vezana na mestu 5’ na gen npr. GUS, je gen izražen v kimemi ali transgenski rastlini kot odziv na stimulacijo z modro svetlobo.In detail, a DNA sequence may be a DNA sequence located between; -1975 and 0, -523 and 0, or -523 and -186 of the CHS promoter (Sequence ID No. 1), or a functional derivative thereof. If this sequence is functionally linked at site 5 'to a gene e.g. GUS, is a gene expressed in a kimema or transgenic plant in response to stimulation by blue light.

Kot je uporabljeno tukaj je izraz funkcionalni derivat uporabljen, da definira katerokoli sekvenco DNA, kije izvedena iz originalne sekvence DNA in je sposobna podobne biološke aktivnosti. Funkcionalni derivat je lahko insercija, delcija ali substitucija ene ali več baz v originalni sekvenci DNA.As used herein, the term functional derivative is used to define any DNA sequence derived from the original DNA sequence and capable of similar biological activity. The functional derivative may be the insertion, deletion or substitution of one or more bases in the original DNA sequence.

Funkcionalne derivate Sekvence ID št. 1, ki imajo spremenjeno sekvenco nukleinske kisline lahko pripravimo z mutagenezo DNA. To lahko izpopolnimo z uporabo enega od mutageneznih postopkov znanih v tehniki.Functional Derivatives Sequences ID no. 1 having a modified nucleic acid sequence can be prepared by mutagenesis of DNA. This can be refined using one of the mutagenesis methods known in the art.

Pripravo funkcionalnih derivatov Sekvence ID št. 1 prednostno izvršimo s položajno usmerjeno mutagenezo. Položajno usmerjena mutageneza dopušča izdelavo funkcionalnih derivatov Sekvence ID št. 1 z uporabo specifičnega oligonukleotida, ki vsebuje želene sekvence mutirane DNA.Preparation of Functional Derivatives Sequences ID no. 1 is preferably performed by position-directed mutagenesis. Position-directed mutagenesis permits the production of functional derivatives Sequences ID no. 1 using a specific oligonucleotide containing the desired mutant DNA sequences.

Postopek položajno usmerjene mutageneze je dobro znan v tehniki kot je ponazorjeno z objavami, kot npr. Adelman et al., DNA 2:183 (1983), katere prikaz je vključen tukaj z referenco.The process of position-directed mutagenesis is well known in the art as exemplified by publications such as e.g. Adelman et al., DNA 2: 183 (1983), the disclosure of which is incorporated herein by reference.

Položajno usmerjena mutageneza značilno uporablja fagni vektor, ki obstaja tako v enojnoverižni kot tudi v dvojnoverižni obliki. Značilni vektorji koristni v položajno usmerjeni mutagenezi vključujejo vektorje, kot npr. M13 fag, kot je prikazano z Messing et al., Third Cleveland Symposium on Macromolecules and Recombinant DNA, izdajatelj A. Walton, Elsevier, Amsterdam (1981), katere prikaz je tukaj vključen z referenco. Ti fagi so tržno dosegljivi in njihova uporaba je na splošno dobro znana strokovnjakom. Alternativno lahko uporabimo plazmidne vektorje, ki vsebujejo izvor enojnoverižnega faga odvajanja (Veira et al., Meth. Enzymol. 153:3 (1987)), da dobimo enojno verižno DNA.Position-directed mutagenesis typically uses a phage vector that exists in both single-stranded and double-stranded form. Typical vectors useful in position-directed mutagenesis include vectors such as e.g. M13 phage, as shown by Messing et al., Third Cleveland Symposium on Macromolecules and Recombinant DNA, published by A. Walton, Elsevier, Amsterdam (1981), the representation of which is incorporated herein by reference. These phages are commercially available and their use is generally well known in the art. Alternatively, plasmid vectors containing a single-stranded phage separation source (Veira et al., Meth. Enzymol. 153: 3 (1987)) can be used to obtain single-stranded DNA.

Na splošno položajno usmerjeno mutagenezo skladno s tem izvedemo najprej s pridobivanjem enojnoverižnega vektorja, ki vključuje v svoji sekvenci sekvenco DNA, ki jo je treba spremeniti. Oligonukleotidni primer, ki nosi želeno mutirano sekvenco pripravimo na splošno sintetično, npr. s postopkom Crea et al., Proč. Natl. Acad. Sci (USA) 75:5765 (1978). Primer nato aneliramo z enojnoverižnim vektorjem, ki vsebuje sekvenco, ki jo je treba spremeniti in ustvarjeni vektor inkubiramo z encimom, ki polimerizira DNA, kot npr. Klenowim fragmentom polimeraze I E.coli v ustrezno reakcijsko maslo. Polimeraza izpopolni sintezo verige, ki nosi mutacijo. Torej druga veriga vsebuje želeno mutacijo. Ta heterodupleksni vektor nato uporabimo, da transformiramo ustrezne celice, kot npr. JM101 celice in izberemo klone, ki vsebujejo rekombinantne vektorje, ki nosijo mutirano sekvenco.Generally, site-directed mutagenesis is accordingly carried out first by obtaining a single-stranded vector that includes in its sequence the DNA sequence to be altered. An oligonucleotide primer bearing the desired mutated sequence is prepared generally synthetically, e.g. by the procedure of Crea et al. Natl. Acad. Sci (USA) 75: 5765 (1978). The primer is then anelated with a single stranded vector containing the sequence to be altered and the generated vector incubated with a DNA polymerizing enzyme such as e.g. Klenow polymerase I fragments of E.coli into the appropriate reaction butter. The polymerase refines the synthesis of the mutation-bearing chain. So the second strand contains the desired mutation. This heteroduplex vector is then used to transform the corresponding cells, e.g. JM101 cells and select clones containing recombinant vectors that carry the mutated sequence.

Medtem ko položaj za uvajanje sekvenčne variacije določimo vnaprej, mutacije per se ni potrebno določiti vnaprej. Npr., da optimiramo izvedbo mutacije na danem položaju lahko vodimo naključno mutagenezo na ciljnem področju in novo proizvedene sekvence lahko skriniramo za optimalno kombinacijo želene aktivnosti.While the position for introducing sequence variation is predetermined, mutations per se need not be determined in advance. For example, to optimize the execution of a mutation at a given position, random mutagenesis in the target region can be conducted, and newly produced sequences can be screened for the optimal combination of the desired activity.

Funkcionalni derivati, ustvarjeni na ta način lahko kažejo enako kvalitatitvno biološko aktivnost kot naravno nastala sekvenca, če so funkcionalno vezani na heterologen gen. Derivat pa se lahko bistveno razlikuje v takih lastnostih kot je npr. stopnja indukcije v odzivu na svetlobo.Functional derivatives generated in this manner may exhibit the same qualitative biological activity as the naturally occurring sequence when functionally linked to a heterologous gene. However, the derivative may differ significantly in such properties as e.g. the degree of induction in response to light.

Težko je napovedati točen učinek substitucije, delecije ali insercije vnaprej pri takem ravnanju. Strokovnjak se zaveda, da funkcionalnost derivata lahko določimo z rutinskimi skrining poskusi. Npr. funkcionalni derivat narejen s položajno usmerjeno mutagenezo je lahko funkcionalno vezan na reporterski gen, kot npr. GUS, in kimemi gen lahko nato kvantitativno skriniramo za svetlobno dovzetnost v kimernih ali transgenskih rastlinah ali v začasnem ekspresijskem sistemu.It is difficult to predict the exact effect of substitution, deletion or insertion in advance on such behavior. One skilled in the art will appreciate that derivative functionality can be determined by routine screening experiments. E.g. a functional derivative made by positionally directed mutagenesis may be functionally linked to a reporter gene, such as e.g. GUS, and the chymem gene can then be quantitatively screened for light susceptibility in chimeric or transgenic plants or in a temporary expression system.

II. Sekvence DNA, sposobne induciranja ekspresije heterolognega gena v rastlinah kot odziv na visoko intenzitetno svetloboII. DNA sequences capable of inducing the expression of a heterologous gene in plants in response to high-intensity light

V drugi izvedbi v smislu izuma je opisana sekvenca DNA, ki je sposobna promoviranja ekspresije funkcionalno vezanega heterolognega gena v rastlini kot odziv na stimulacijo z visoko intezitetno svetlobo.Another embodiment of the invention describes a DNA sequence that is capable of promoting the expression of a functionally coupled heterologous gene in a plant in response to stimulation with high intensity light.

Nadrobno je sekvenca DNA lahko sekvenca locirana med -186 in 0 promotoija CHS (Sekvenca ID št. 2), ali njen funkcionalni derivat. Če je ta sekvenca funkcionalno vezana na mestu 5’ na gen npr. GUS je gen izražen v krmerni ali transgenski rastlini kot odziv na visoko intezitetno svetlobo.In detail, the DNA sequence can be a sequence located between -186 and 0 of the CHS promoter (Sequence ID # 2), or a functional derivative thereof. If this sequence is functionally linked at site 5 'to a gene e.g. GUS is a gene expressed in a feed or transgenic plant in response to high-intensity light.

III. Transgenske ali kimerne rastline, ki vsebujejo gene, katerih prepis ie induciran z modro ali UV svetloboIII. Transgenic or chimeric plants containing genes the transcript of which is induced by blue or UV light

V tretji izvedbi v smislu izuma je opisan postopek za ustvarjanje kimerne ali transgenske rastline pri katerem rastlina vsebuje enega ali več eksogensko dobavljenih genov, ki so izraženi kot odziv na stimulacijo z modro ali UV svetlobo. Nadrobno, ustvarimo kimemo ali transgensko rastlino, ki vsebuje eno od sekvenc DNA opisano v sekciji I prednostnih izvedb, funkcionalno vezano na eksogensko dobavljen gen. Kimerno ali transgensko rastlino v smislu izuma prednostno proizvedemo z regeneracijo rastlinske celice, kije sprejela molekulo DNA prikazano tukaj. To lahko izvršimo z uporabo enega od postopkov o katerih smo razpravljali v ozadju izuma ali podobnih postopkov znanih v tehniki.In a third embodiment of the invention, a method is provided for creating a chimeric or transgenic plant in which the plant contains one or more exogenously delivered genes that are expressed in response to stimulation by blue or UV light. In detail, we create a chimera or transgenic plant containing one of the DNA sequences described in section I of preferred embodiments functionally linked to an exogenously delivered gene. The chimeric or transgenic plant of the invention is preferably produced by regeneration of a plant cell that has received the DNA molecule shown herein. This can be accomplished using one of the processes discussed in the background of the invention or similar methods known in the art.

Vse rastline iz katerih lahko izoliramo ali kultiviramo protoplaste, da dobimo popolnoma regenerirane rastline lahko spremenimo s sekvencami DNA prikazanimi v predloženem izumu. Nekatere primerne rastline vključujejo, toda niso omejene nanje, vrste iz rodov Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manicot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersion, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinu, Hemerocallis, Nemesia, Pelargonium, Panicum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Brovvallia, Glycine, Lolium, Zea, Triticum, Sorghum, Ipomoea, Passiflora, Cyclamen, Malus, Prunus, Rosa, Rubus, Populus, Santalum, Allium, Lilium, Narcisus, Ananas, Arachis, Phaseolus, Pisum in Datura.All plants from which protoplasts can be isolated or cultured to obtain fully regenerated plants can be altered by the DNA sequences shown in the present invention. Some suitable plants include, but are not limited to, species of the genera Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manicot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura , Hyoscyamus, Lycopersion, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhin, Hemerocallis, Nemesia, Pelargonium, Panicum, Pennisetum, Ranunculus, Senecisium, Salpisum, Cinepulus, Salpis, Glucum, Salpis, Glucum , Zea, Triticum, Sorghum, Ipomoea, Passiflora, Cyclamen, Malus, Prunus, Rosa, Rubus, Populus, Santalum, Allium, Lilium, Narcisus, Pineapple, Arachis, Phaseolus, Pisum and Datura.

Evidentno je, da praktično vse rastline lahko regeneriramo iz kultiviranih celic ali tkiv, ki vključujejo, toda niso omejena na, vse glavne vrste žitnih pridelkov, sladkorni trs, sladkorno peso, bombaž, sadna in druga drevesa, stročnice in zelenjavo. Regeneracija rastline iz protoplastnih kultur je opisana v Evans et al., Protoplast Isolation and Culture, v Handbook of Plant Celi Culture 1:124-176 (MacMillan Publishing Co., New York, 1983); M.R. Davey, Recent Developments in the Culture and Regeneraion of Plant Protoplasts, Protoplasts, 1983 - Lecture Proceedings, str. 19-29 (Birkhause, Basel, 1983); P.J. Dale, Protoplast Culture and Plant Regenera11 tion of Cereals and Other Recalcitrant Crops, v Protoplasts 1983 - Lecture Proceedings, str. 31-41 (Brikhauser, Basel, 1983); in H. Binding, Regeneration of Plants, v Plant Protoplasts, str. 21-37 (CRC Press, Boca Raton, 1985).It is evident that virtually all plants can be regenerated from cultured cells or tissues, which include, but are not limited to, all major cereal crops, sugar cane, sugar beet, cotton, fruit and other trees, legumes and vegetables. Plant regeneration from protoplast cultures is described in Evans et al., Protoplast Isolation and Culture, in Handbook of Plant Whole Culture 1: 124-176 (MacMillan Publishing Co., New York, 1983); M.R. Davey, Recent Developments in the Culture and Regeneration of Plant Protoplasts, Protoplasts, 1983 - Lecture Proceedings, p. 19-29 (Birkhause, Basel, 1983); P.J. Dale, Protoplast Culture and Plant Regeneration11 tion of Cereals and Other Recalcitrant Crops, in Protoplasts 1983 - Lecture Proceedings, p. 31-41 (Brikhauser, Basel, 1983); and H. Binding, Regeneration of Plants, in Plant Protoplasts, p. 21-37 (CRC Press, Boca Raton, 1985).

Regeneracija variira od vrste do vrste rastlin. Običajno rastlino regeneriramo iz suspenzije spremenjenih protoplastov kjer nekatere celice vsebujejo uvedeno gensko sekvenco. Tvorbo zarodka lahko nato induciramo iz protoplastnih suspenzij do stopnje zorenja in kaljenja kot naravni zarodki. Medij kulture običajno vsebuje razne amino kisline in hormone, kot npr. avksin in citokinme. Ugodno je tudi, da dodamo v medij glutaminsko kislino in prolin posebno za take vrste kot je koruza in alfaalfa. Poganjki in korenine se normalno razvijajo simultano. Učinek regeneracije je odvisen od medija, genotipa in od zgodovine kulture. Če te tri spremenljivke kontroliramo, potem je regeneracija popolnoma reproducibilna in ponovljiva.Regeneration varies from species to species of plants. Usually a plant is regenerated from a suspension of altered protoplasts where some cells contain the introduced gene sequence. Embryo formation can then be induced from protoplastic suspensions to the degree of maturation and sprouting as natural embryos. The culture medium typically contains various amino acids and hormones such as e.g. auxin and cytokines. It is also advantageous to add glutamic acid and proline to the medium especially for species such as maize and alphaalfa. The shoots and roots develop normally simultaneously. The effect of regeneration depends on the medium, genotype, and cultural history. If these three variables are controlled, then regeneration is completely reproducible and reproducible.

Zrele rastline zrasle iz transformiranih rastlinskih celic lahko osamimo, da proizvedemo semensko rastlino. Semenska rastlina proizvaja seme, ki vsebuje uvedeno gensko sekvenco. Ta semena lahko zrastejo, da proizvedejo rastline, ki izražajo uvedene genske sekvence.Mature plants grown from transformed plant cells can be isolated to produce a seed plant. A seed plant produces a seed that contains an introduced gene sequence. These seeds can grow to produce plants that express introduced gene sequences.

Deli, ki jih dobimo od regenerirane rastline, kot npr. cvetovi, semena, listi, veje, plodovi in podobno, so zajeti s predloženim izumom. Potomci in variante in mutanti regeneriranih rastlin so tudi vključeni v obsegu predloženega izuma.Parts obtained from a regenerated plant, e.g. flowers, seeds, leaves, branches, fruits and the like are encompassed by the present invention. Descendants and variants and mutants of regenerated plants are also included within the scope of the present invention.

Kot je tukaj uporabljeno, varianta opisuje fenotipske spremembe, ki so stabilne in dedne, vključno dedna variacija, kije seksualno prenesena na potomce rastlin.As used herein, the variant describes phenotypic changes that are stable and inherited, including inherited variation that is sexually transmitted to offspring of plants.

IV. Transgenske ali kimeme rastline, ki vsebujejo gene, katerih prepisovanje ie inducirano z visoko intezitetno svetloboIV. Transgenic or chimeric plants containing genes whose IW transcription is induced by high intensity light

V četrti izvedbi predloženega izuma je opisan postopek ustvarjanja kimeme ali transgenske rastline pri katerem rastlina vsebuje enega ali več eksogensko dobavljenih genov, ki so izraženi kot odziv na visoko intezitetno svetlobo.A fourth embodiment of the present invention describes a method of creating a chimera or transgenic plant in which the plant contains one or more exogenously supplied genes that are expressed in response to high intensity light.

Bolj podrobno kimemo ali transgensko rastlino proizvedemo tako, da rastlina vsebuje eno od sekvenc DNA opisano v sekciji II prednostnih izvedb, funkcionalno vezano na eksogensko dobavljen gen. Kimeme ali transgenske rastline v smislu izuma prednostno izdelamo z regeneracijo rastlinske celice, ki je sprejela molekulo DNA prikazano tukaj. To lahko izvršimo z uporabo enega od postopkov opisanih v sekciji III prednostnih izvedb ali s podobnim postopkom znanim v tehniki.A more detailed nod or transgenic plant is produced such that the plant contains one of the DNA sequences described in section II of the preferred embodiments, functionally linked to an exogenously delivered gene. Chimeras or transgenic plants of the invention are preferably made by regenerating a plant cell that has received the DNA molecule shown herein. This can be accomplished by using one of the methods described in Section III of the preferred embodiments, or by a similar method known in the art.

V. Sistem za študij svetlobno regulirane genske ekspresije v rastlinahV. A system for the study of light-regulated gene expression in plants

V peti izvedbi predloženega izuma je opisan postopek za identificiranje molekularne interakcije odgovorne za fitokromsko in nefitokromsko indukcijo promotorja CHS.A fifth embodiment of the present invention provides a method for identifying the molecular interaction responsible for the phytochromic and non-phytochromic induction of a CHS promoter.

Bolj podrobno je z uporabo sekvenc prikazanih sekcij I in II prednostnih izvedb, možno izolirati proteine, ki se vežejo na te sekvence. To izvršimo z uporabo enega od postopkov čiščenja proteina, ki se veže na specifično sekvenco DNA. Taki postopki so dobro znani v tehniki. Prednostno protein, ki je vezan na specifično sekvenco DNA lahko očistimo z uporabo afinitetne kromatografije. Specifično sekvenco ID št. 1 ali 2 imobiliziramo na ustrezni matrici, kot npr. Sepharoze in uporabimo kot afinitetno matrico za čiščenje proteinov, ki so vezani na posebno sekvenco (Arcangioli B., et al., Eur. J. Biochem. 179:359-364 (1989)).In more detail, it is possible to isolate proteins that bind to these sequences using the sequences of sections I and II shown in the preferred embodiments. This is done using one of the purification processes of a protein that binds to a specific DNA sequence. Such procedures are well known in the art. Preferably, a protein bound to a specific DNA sequence can be purified using affinity chromatography. Specific sequence ID no. 1 or 2 are immobilized on a suitable matrix, such as e.g. Sepharose and used as an affinity matrix for purification of proteins that are bound to a specific sequence (Arcangioli B., et al., Eur. J. Biochem. 179: 359-364 (1989)).

Prednostno vezivni protein DNA ekstrahiramo iz svetlobno induciranih sadik. Proteinski ekstrakt, ki ga dobimo iz rastlinskega tkiva nanesemo v kolono, ki vsebuje imobilizirano sekvenco DNA, ki nas zanima. Proteine, ki niso sposobni vezave na sekvenco DNA izperemo iz kolone. Proteine, ki se vežejo na sekvenco DNA odstranimo iz kolone z uporabo gradienta soli. Proteini eluirani iz take kolone so obogateni s proteini, ki se vežejo na specifične sekvence DNA mobilizirane na matrici. Vezivni protein DNA lahko nato dalje očistimo s postopki znanimi v tehniki, kot npr. z ionsko izmenjalno kromatografijo, HPLC in velikostno izključitveno kromatografijo.Preferably, the DNA binding protein is extracted from light-induced seedlings. The protein extract obtained from plant tissue is applied to a column containing the immobilized DNA sequence of interest. Proteins incapable of binding to the DNA sequence are washed from the column. Proteins that bind to the DNA sequence are removed from the column using a salt gradient. Proteins eluted from such a column are enriched with proteins that bind to specific DNA sequences mobilized on the matrix. The DNA binding protein can then be further purified by methods known in the art, e.g. by ion exchange chromatography, HPLC and size exclusion chromatography.

Med čiščenjem vezivnega proteina DNA protein lahko preizkusimo z gelnim retardacijskim poskusom (Gamer, M.M. et al., Nucl. Acid Res. 9:3047 (1981) in Fried, M. et al., Nucl. Acid Res. 9:6506 (1981)).During purification of the binding protein, the DNA protein can be tested by gel retardation experiment (Gamer, MM et al., Nucl. Acid Res. 9: 3047 (1981) and Fried, M. et al., Nucl. Acid. Res. 9: 6506 (1981 )).

Ko vezivni protein DNA očistimo lahko dobimo delno kislinsko sekvenco iz N-terminala proteina. Alternativno lahko protein triptično mapiramo in amino kislinsko sekvenco na enem od fragmentov lahko določimo z enim od postopkov znanih v tehniki.Once the DNA binding protein is purified, a partial acid sequence can be obtained from the N-terminal of the protein. Alternatively, the protein can be tryptically mapped and the amino acid sequence on one of the fragments can be determined by one of the methods known in the art.

Izvedeno amino kislinsko sekvenco lahko uporabimo, da proizvedemo oligonukleotidno sondo. Kodirna sekvenca lahko temelji na kodonih, za katere je znano, da jih organizem bolj pogosto uporablja. Alternativno sonda lahko sestoji iz zmesi vseh možnih kodonskih kombinacij, ki lahko kodirajo polipeptid.The derived amino acid sequence can be used to produce an oligonucleotide probe. The coding sequence may be based on codons known to be more commonly used by the organism. Alternatively, the probe may consist of a mixture of all possible codon combinations capable of encoding the polypeptide.

Sondo, komplementarno amino kislinski sekvenci, lahko uporabimo, da skriniramo bodisi CDNA ali genomsko knjižnico za genomske sekvence, ki kodirajo vezivni protein DNA. Ko dobimo gen, ki kodira vezivni protein DNA, sekvenco DNA lahko določimo, gen lahko uporabimo, da dobimo večje količine proteina iz rekombinantnega gostitelja ali lahko sekvenco uporabimo v mutacijski analizi, da nadalje definiramo funkcionalna področja v proteinu, ki vzajemno deluje z DNA.A probe complementary to amino acid sequences can be used to screen either a CDNA or genomic library for genomic sequences encoding a DNA binding protein. When a gene encoding a DNA binding protein is obtained, the DNA sequence can be determined, the gene can be used to obtain large amounts of protein from the recombinant host, or the sequence can be used in mutation analysis to further define functional areas in a DNA interacting protein.

Alternativno, proteine, ki se vežejo na Sekvenco ID št. 1 ali Sekvenco ID št. 2 lahko izoliramo z identificiranjem klona, ki eksprimira protein, z uporabo tehnike Southwestem prepivnanja (Sharp, Z.D. et al., Biochim Biophys Acta, 1048:306-309 (1990), Gunther, C. V. et al., Genes Dev. 4:667-679 (1990), in Walker, M.D. et al., Nucleic Acids Res. 18:1159-1166 (1990)).Alternatively, the proteins that bind to Sequence ID no. 1 or Sequence ID no. 2 can be isolated by identifying a protein-expressing clone using the Southwestem breeding technique (Sharp, ZD et al., Biochim Biophys Acta, 1048: 306-309 (1990), Gunther, CV et al., Genes Dev. 4: 667 -679 (1990), and Walker, MD et al., Nucleic Acids Res. 18: 1159-1166 (1990).

V Southwestern prepivku označeno sekvenco DNA uporabimo, da skriniramo ekspresijsko knjižnico cDNA katere izražene proteine smo imohilizirali na filtru s pomočjo prenosa s kolonijo ali s plakom. Označene sekvence DNA se vežejo na kolonije ali plake, ki izrazijo protein sposoben vezave na posebno sekvenco DNA. Klone, ki izražajo protein, ki se veže na označeno sekvenco DNA lahko očistimo in insert cDNA, ki kodira vezivni protein DNA lahko izoliramo in sekvenciramo. Izolirano DNA lahko uporabimo, da izrazimo večje količine proteina za nadaljnje čiščenje in študij, kar uporabimo pri izolaciji genomskih sekvenc, ki ustrezajo cDNA ali uporabimo, da proizvedemo funkcionalni derivat vezivnega proteina.In the Southwestern brew, the labeled DNA sequence is used to screen the cDNA expression library whose expressed proteins were immobilized on the filter by colony or plaque transmission. Labeled DNA sequences bind to colonies or plaques that express a protein capable of binding to a specific DNA sequence. Clones expressing a protein that binds to a labeled DNA sequence can be purified, and the insert cDNA encoding the DNA binding protein can be isolated and sequenced. Isolated DNA can be used to express larger amounts of protein for further purification and study, which can be used to isolate genomic sequences corresponding to cDNA or used to produce a functional derivative of a binding protein.

Predloženi izum vključuje tudi funkcionalne derivate vezivnih proteinov DNA, ki se lahko vežejo na Sekvenco ID št. 1 ali 2. Izraz funkcionalni derivat uporabimo, da definiramo katerikoli protein, ki razvije biološko aktivnost (ali funkcionalno ali strukturno), ki je v bistvu podobna biološki aktivnosti matičnega proteina. Izraz je predviden, da vključuje fragmente ali variante matičnega proteina.The present invention also includes functional derivatives of DNA binding proteins that can bind to Sequence ID no. 1 or 2. The term functional derivative is used to define any protein that develops biological activity (whether functional or structural) that is substantially similar to the biological activity of the parent protein. The term is intended to include fragments or variants of the parent protein.

Za protein pravimo, da je v bistvu podoben drugemu proteinu, če imata obe molekuli podobno biološko strukturo, ali če imata oba proteina podobno biološko aktivnost. Fragment je katerikoli polipeptidni podset matične molekule. Varianta je protein v bistvu podoben v strukturi in funkciji matični molekuli ali njenemu fragmentu. Funkcionalne derivate v smislu predloženega izuma lahko dobimo: z naravnimi postopki (kot npr. z induciranjem živali, rastline, glive, bakterije itd., da proizvedemo derivat vezivnega proteina DNA); s kemijskim sintetiziranjem polipeptidov funkcionalnega derivata; ali z rekombinantno tehnologijo (kot npr., da proizvedemo funkcionalni derivat v raznolikih gostiteljih (npr. kvas, bakterija, gliva, kultivirane celice sesalcev itd.). Izbira postopka, ki ga uporabimo je odvisna od faktorjev, kot npr. prikladnosti, želenega dobitka itd. Ni nujno, da uporabimo samo enega od zgoraj opisanih postopkov, procesov ali tehnologij, da proizvedemo posebni funkcionalni derivat; zgoraj opisane procese, postopke in tehnologije lahko kombiniramo, zato da dobimo poseben derivat.A protein is said to be essentially similar to another protein if both molecules share a similar biological structure or if both proteins have similar biological activity. A fragment is any polypeptide subset of a parent molecule. The variant is a protein substantially similar in structure and function to a parent molecule or fragment thereof. Functional derivatives of the present invention can be obtained: by natural processes (such as inducing animals, plants, fungi, bacteria, etc. to produce a DNA binding protein derivative); by chemically synthesizing a functional derivative polypeptide; or by recombinant technology (such as to produce a functional derivative in a variety of hosts (eg yeast, bacteria, fungi, cultured mammalian cells, etc.). The choice of the process to use depends on factors such as suitability, desired gain etc. It is not necessary to use only one of the processes, processes or technologies described above to produce a specific functional derivative; the processes, processes and technologies described above can be combined to produce a specific derivative.

Funkcionalne derivate vezivnega proteina DNA, ki imajo do okoli 100 ostankov, lahko ugodno pripravimo z in vitro sintezo. Če želimo, take fragmente lahko modificiramo z reakcijo celih aminokislinskih ostankov očiščenega ali surovega produkta za organskim derivatizimim sredstvom, ki je sposobno reakcije z izbranimi stranskimi verigami ali terminalnimi ostanki. Nastale kovalentne derivate lahko uporabimo, da indentificiramo ostanke pomembne za biološko aktivnost.Functional DNA binding protein derivatives having up to about 100 residues can be advantageously prepared by in vitro synthesis. If desired, such fragments can be modified by the reaction of whole amino acid residues of the purified or crude product with an organic derivative capable of reaction with selected side chains or terminal residues. The resulting covalent derivatives can be used to identify residues important for biological activity.

Primeri modifikacij vključujejo hidroksiliranje prolina in lizina, fosforiliranje hidroksilnih skupin serilnih ali teonilnih ostankov, metiliranje α-amino skupin lizinskih, argininskih in histidinskih stranskih verig (T.E. Creighton, Proteins: Stracture and Molecule prperties, W.H. Freeman & Co., San Francisco, str. 79-86 (1983)), acetiliranje N-terminalnega amina in v nekaterih primerih amidiranje C-terminalnih karboksilnih skupin.Examples of modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or teonyl residues, methylation of α-amino groups of lysine, arginine and histidine side chains (TE Creighton, Proteins: Stracture and Molecule prperties, WH Freeman & Co., San Francisco, p. 79-86 (1983)), acetylation of the N-terminal amine and in some cases the amidation of C-terminal carboxyl groups.

Funkcionalne derivate vezivnega proteina DNA, ki imajo spremenjene aminokislinske sekvence lahko pripravimo tudi z mutacijami, ki jih kodira DNA. Take variante vključujejo npr. delecije, insercije ali substitucije ostankov v aminokislinski sekvenci vezivnega proteina DNA. Katerokoli kombinacijo delecije, insercije in substitucije lahko uporabimo pri proizvajanju končne konstrukcije pod pogojem, da ima končna konstrukcija želeno aktivnost. Očitno mutacije, ki bodo narejene v varianti, ki jo kodira DNA ne smejo postaviti sekvence izven bralnega okviija in prednostno ne bodo ustvarile komplementarnih področij, ki bi lahko proizvedla sekundarno strukturo mRNA, ki bi lahko potencialno blokirala prevajanje. Na genetski stopnji so ti funkcionalni derivati navadno pripravljeni s položajno usmerjeno mutagenezo nukleotidov, ki kodira vezivni protein DNA. Postopki za položajno usmerjeno mutagenezo so opisani v odseku I prednostnih izvedb.Functional DNA binding protein derivatives having altered amino acid sequences can also be prepared by mutations encoded by DNA. Such variants include e.g. deletions, insertions, or substitutions of residues in the amino acid sequence of a DNA binding protein. Any combination of deletion, insertion and substitution can be used in the manufacture of the finished structure, provided that the final construction has the desired activity. Obviously, mutations that will be made in a DNA-encoded variant should not place the sequence outside the reading frame and, preferably, will not create complementary regions that could produce a secondary mRNA structure that could potentially block translation. At the genetic stage, these functional derivatives are usually prepared by positionally directed nucleotide mutagenesis, which encodes a DNA binding protein. The procedures for position-directed mutagenesis are described in section I of preferred embodiments.

Ko po kodiranju sekvence dobimo derivat, mutirano proteinsko področje lahko odstranimo in postavimo v ustrezni vektor za izdelavo proteina navadno ekspresijski vektor tipa, ki ga lahko uporabimo za transformacijo ustreznega gostitelja.When a derivative is obtained after encoding the sequence, the mutated protein region can be removed and placed in a suitable vector for the production of the protein, usually an expression vector of the type that can be used to transform the corresponding host.

Funkcionalni derivati vključujejo delecijo, insercije in substitucije amino kislin v kodirnem področju.Functional derivatives include deletion, insertions and amino acid substitutions in the coding region.

Delecije amino kislinske sekvence navadno obsegajo od okoli 1 do 30 ostankov, bolj prednostno 1 do 10 ostankov in so značilno sosednje.Deletions of amino acid sequences typically comprise from about 1 to 30 residues, more preferably 1 to 10 residues, and are typically adjacent.

Insercije vključujejo amine in/ali karboksilna terminalna zlitja med vezivnim proteinom DNA in drugim polipeptidom. Polipeptid, ki se zlije z vezivnim proteinom DNA je lahko neomejen v dolžini. Primer terminalne insercije vključuje zlitje signalne sekvence bodisi heterologne ali homologne za gostiteljsko celico na N-terminusu molekule, da olajša sekrecijo derivata vezivnega proteina DNA od rekombinantnih gostiteljev. Zlitja vljučujejo tudi intrasekvenčne insercije enojnih ali multiplih amino kislinskih ostankov. Intrasekvenčne insercije (npr. insercije v vezivni proteinski sekvenci kompletne DNA) lahko obsegajo na splošno od okoli 1 do 10 ostankov, bolj prednostno 1 do 5.Inserts include amines and / or carboxyl terminal fusions between a DNA binding protein and another polypeptide. A polypeptide that fuses with a DNA binding protein can be unlimited in length. An example of terminal insertion involves fusion of a signal sequence either heterologous or homologous to a host cell at the N-terminus of a molecule to facilitate the secretion of a DNA binding protein derivative from recombinant hosts. The fusions also involve intrassequent insertions of single or multiple amino acid residues. Intrassequential insertions (eg insertions in the binding protein sequence of complete DNA) can generally comprise from about 1 to 10 residues, more preferably 1 to 5.

Tretja skupina funkcionalnih derivatov je tista v kateri je vsaj en amino kislinski ostanek v vezivni proteinski molekuli DNA in prednostno samo eden odstranjen in je na njegovo mesto vključen drug ostanek. Take substitucije prednostno naredimo v skladu z naslednjo tabelo, če je to želeno, da končno moduliramo značilnosti vezivnega proteina DNA.A third group of functional derivatives is one in which at least one amino acid residue is in a DNA binding protein molecule and preferably only one is removed and another residue is incorporated in its place. Such substitutions are preferably made according to the following table, if desired, to finally modulate the characteristics of the DNA binding protein.

TABELA 1 TABLE 1 Originalni ostanek Original scrap Substituciie, dane za zgled Substitutions given by example Ala Arg Asn Asp Cys Gin Glu Gly His De Leu Lys Met Phe Ser Thr Trp Tyr Val Ala Arg Asn Asp Cys Gin Glu Gly His De Leu Lys Met Phe Sir Thr Trp Tyr Val gly; ser lys gin; his glu ser asn asp ala; pro asn; gin leu; val ile; val arg; gin; glu leu; tyr; ile met; leu; tyr thr ser tyr trp; phe ile; leu gly; ser lys gin; his glu sir asn asp ala; pro asn; gin leu; val ile; val arg; gin; glu leu; tyr; ile met; leu; tyr thr sir tyr trp; phe ile; leu

Bistvene spremembe v funkcionalni identiteti naredimo s selekcijo substitucij, ki so manj konzervativne kot tiste v tabeli 1, t.j. selekcijo ostankov, ki se bolj signifikantno razlikujejo v njihovem učinku na vzdrževanje (a) strukture polipeptidnega ogrodja in na področju substitucije, npr. kot ravne ali spiralne konformacije, (b) naboja ali hidrofobnosti molekule na ciljnem položaju ali (c) obsega stranske verige. Substitucije, ki na splošno dajo te rezultate so tiste, pri katerih (a) glicin in/ali prolin substituiramo z drugo amino kislino ah' ga izpustimo ali vključimo; (b) hidrofilni ostanek, npr. seril ali treolil substituiramo za (ali z) hidrofobni ostanek, npr. levcin, izolevcin, fenilalanil, valil ali alanil; (c) cistenski ostanek substituiramo za (ali z) katerikoli drug ostanek; (d) ostanek z elektropozitivno stransko verigo, npr. lizil, arginil ali histidil substituiramo za (ali z) ostanek z elektronegativnim nabojem, npr. glutamil ali aspartil; ali (e) ostanek z obsežno stransko verigo, npr. fenilalanil substituiramo za (ali z) takega, ki nima take stranske verige, npr. glicil.Substantial changes in functional identity are made by selecting substitutions that are less conservative than those in Table 1, i.e. selection of residues that differ significantly in their effect on the maintenance of (a) the structure of the polypeptide framework and in the field of substitution, e.g. as a straight or helical conformation, (b) the charge or hydrophobicity of the molecule at the target position, or (c) the circumference of the side chain. The substitutions that generally give these results are those in which (a) glycine and / or proline is substituted with another amino acid ah 'omitted or incorporated; (b) a hydrophilic residue, e.g. seryl or threolyl is substituted for (or z) a hydrophobic residue, e.g. leucine, isoleucine, phenylalanil, valyl or alanyl; (c) the cystene residue is substituted for (or by) any other residue; (d) electropositive side chain residue, e.g. lysyl, arginyl or histidyl are substituted for (or z) by electronegative charge, e.g. glutamyl or aspartyl; or (e) a residue having a large side chain, e.g. phenylalanil is substituted for (or with) one which does not have such a side chain, e.g. glycyl.

Za večino delecij in insercij, zlasti substitucij ne pričakujemo, da naredijo radikalne spremembe v značilnostih vezivnega proteina DNA. Vendar, če je težko napovedati točen učinek substitucije, delecije ali insercije vnaprej pri takem ravnannju, bo strokovnjak ocenil, da učinek določimo z rutinskimi poskusi skrininga. Npr., funkcionalni derivat narejen s položajno usmerjeno mutagenozo sekvence DNA, ki kodira naravni vezivni protein DNA izrazimo v rekombinantni celici in derivat očistimo iz celične kulture, npr. z imuno afinitetno adsorpcijo na protitelesih koloni za vezivni protein anti-DNA (da absorbiramo funkcionalni derivat z vezavo le-tega na vsaj preostali epitop).Most deletions and insertions, especially substitutions, are not expected to make radical changes in the characteristics of the DNA binding protein. However, if it is difficult to predict the exact effect of substitution, deletion, or insertion in advance on such behavior, the expert will evaluate that the effect is determined by routine screening experiments. For example, a functional derivative made by a site-directed mutagenesis of a DNA sequence encoding a natural DNA binding protein is expressed in a recombinant cell and the derivative is purified from cell culture, e.g. by immune affinity adsorption on antibody columns for the anti-DNA binding protein (to absorb the functional derivative by binding it to at least the remaining epitope).

Aktivnost celičnega lizata ali očiščenega funkcionalnega derivata, ki ga tako dobimo skriniramo v primernem poskusu za skriniranje za želene značilnosti. Npr. spremembo specifičnosti ali afinitete sekvence DNA za specifično sekvenco DNA funkcionalnega derivata izmerimo s kompetitivnim vezivnim poskusom. Modifikacije takih proteinskih lastnosti kot redoks ali termalno stabilnost, hidrofobnost ali susceptibilnost na proteolitsko degradacijo preizkusimo s postopki, ki so dobro znani običajnim strokovnjakom.The activity of the cell lysate or purified functional derivative thus obtained is screened in a suitable screening experiment for the desired characteristics. E.g. the change in the specificity or affinity of the DNA sequence for a specific DNA sequence of a functional derivative is measured by a competitive binding assay. Modifications of such protein properties as redox or thermal stability, hydrophobicity or susceptibility to proteolytic degradation are tested by methods well known to those of ordinary skill in the art.

PRIMERIEXAMPLES

Konstrukcija fuzijskih plazmidovConstruction of fusion plasmids

Klonime stopnje izvedemo po protokolih Ausubel et al., (Current Protocols in Molecular Biologv, (1989)). Da proizvedemo, CHS1975-GUS, pCHS3.9 (Feinbaum et al., Mol. Celi Biol. 8:1985-1992 (1988)) lineariziramo v kodirnem področju CHS in nato razgradimo z Bal31 do 13 bp na mestu 5’ CHS ATG in 13 bp navzdoljno od domnevnega stop kodona CHS. Potem ko člene BamHI ligiramo na izpuščenih koncih, končna fragmenta na mestih 5’ in 3’ odstranimo z razgradnjo z Hindlll in BamHI in nato ligiramo skupaj na položaju Hindlll pUC12, da proizvedemo pCHS5’3’. Gen E. coli j3-glukoronidaze (GUS) izvedemo iz pRAJ260 (Jefferson, R.A., Plant Mol.Biol. Rep. 5:387-405 (1987)) s konverzijo položaja Hindlll lociranega na mestu 3’ kodirnega področja GUS v položaj BamHI. To kaseto kodirnega področja BamHI GUS kloniramo v pCHS5’3’ rezanega z BamHI, da proizvedemo pCHS1975-GUS. Sekvenca fuzijskega spoja CHSH-GUS na mestu 5’ od začetka prepisa CHS do začetnega kodona GUS je naslednja:Level clones are derived according to the protocols of Ausubel et al., (Current Protocols and Molecular Biologists, (1989)). To produce, CHS1975-GUS, pCHS3.9 (Feinbaum et al., Mol. Whole Biol. 8: 1985-1992 (1988)) was linearized in the CHS coding region and then digested with Bal31 to 13 bp at the 5 'CHS ATG site, and 13 bp downstream of the alleged CHS stop codon. After ligating the BamHI members at the omitted ends, the final fragments at sites 5 'and 3' are removed by degradation with Hindlll and BamHI and then ligated together at the Hindlll position pUC12 to produce pCHS5'3 '. The E. coli j3-glucuronidase (GUS) gene is derived from pRAJ260 (Jefferson, R.A., Plant Mol.Biol. Rep. 5: 387-405 (1987)) by converting the Hindlll position located at the 3 'position of the GUS coding region to the BamHI position. We clone this BamHI GUS coding region cassette into pCHS5′3 ′ cut with BamHI to produce pCHS1975-GUS. The sequence of the CHSH-GUS fusion junction at site 5 'from the start of the CHS transcript to the GUS start codon is as follows:

CCAAATACACCTAACTTGTTTAGTACACAACAGCAACATCAA ACTCAATATACCCAAGTTGGTCggatccgagcttggctgcagctcagtcccccttatg (Sekvenca ID št. 3). Celotno fuzijo CHS1975-GUS zatem odstranimo od pUC12 in ligiramo v položaj Hindlll binarnega vektorja pBIN19, da dobimo pBINCHS1975GUS (Bevan, M., Nuc. Acids Res. 12:8711-8721 (1984)). CHS523-GUS, CHS186GUS in CHS17-GUS izvedemo iz pBINCHS1975-GUS. pBINCHS1975-GUS lineariziramo s KpnI in Xbal, obdelamo z nukleazo ΕχοΙΠ in nato ponovno legiramo. Spuščene plazmide sekvenciramo, da identificiramo nove 5’ konce kimemih genov.CCAAATACACCTAACTTGTTTAGTACACAACAGCAACATCAA ACTCAATATACCCAAGTTGGTCggatccgagcttggctgcagctcagtcccccttatg (Sequence ID # 3). The entire CHS1975-GUS fusion was then removed from pUC12 and ligated into the HindIII position of the pBIN19 binary vector to obtain pBINCHS1975GUS (Bevan, M., Nuc. Acids Res. 12: 8711-8721 (1984)). CHS523-GUS, CHS186GUS and CHS17-GUS are derived from pBINCHS1975-GUS. The pBINCHS1975-GUS was linearized with KpnI and Xbal, treated with ΕχοΙΠ nuclease and then re-alloyed. We lower the plasmids downstream to identify new 5 'ends of the chyme genes.

Transformacija A. ThalianaTransformation of A. Thalian

LBA4404 je gostiteljski sev A tumefaciens uporabljen pri vseh transformacijskih eksperimentih (Ooms et al., Plasmid 7:15-29 (1982)). pBINCHS-GUS plazmide uvedemo v LBA4404 s tri-parentalnim križanjem iz E. coli ali z direktno transformacijo DNA (An, G. Enzyme 153:292-305 (1987)). Tkivo Nossen (No) A. thaliana uporabimo pri vseh transformacijskih eksperimentih od kar je prikazano, da se ta ekotip regenerira bolj hitro in z višjo frekvenco kot druge vrste A.thaliana (Keith Davis, osebna komunikacija; Chaudhury et al., Plant Celi Rep. 8:368-369 (1989)). Sterilno tkivo za transformacijo koščka lista in korenine dobimo z obdelavo semen v % belilu, 0,1 % tritonu Χ-100 in zatem aseptično rastjo rastlin. Listno tkivo požanjemo od rastlin A.thaliana zraslih v mediju MS v petrijevkah in koreninsko tkivo požanjemo od rastlin zraslih v saharoznem mediju B-5 (Gamborg, O.L. v: Vasil 1 K (ed) Celi Culture and Somatic Celi Genetics of Plants (1984)). Rastlinam, ki rastejo v tekoči kulturi damo svež medij enkrat na teden in jili vzdržujemo na rotirajoči plošči, ki jo stresemo pri 100 obr/min pri 25 °C, da vzdržujemo rast. Transgensko vrsto CHS1975-GUS proizvedemo z uporabo kokultivacijskega postopka listnega diska (Horsch et al., Science 227:1229-1231 (1985)). Vendar opazimo visoko pogostost poliploidnosti pri transformantih proizvedenih s tem postopkom. Zato transgenske rastline, ki nosijo tri konstrukcije promotorske delecije proizvedemo z uporabo kokultivacijskega postopka koščka korenine (Valvekens et al.. Proč. Natl. Acad. Sci. USA 85:5536-5540 (1988)).LBA4404 is the host strain of A tumefaciens used in all transformation experiments (Ooms et al., Plasmid 7: 15-29 (1982)). pBINCHS-GUS plasmids are introduced into LBA4404 by tri-parental crossing from E. coli or by direct DNA transformation (An, G. Enzyme 153: 292-305 (1987)). Nossen (No) A. thaliana tissue is used in all transformation experiments since it has been shown that this ecotype regenerates more rapidly and at a higher frequency than other A.thaliana species (Keith Davis, personal communication; Chaudhury et al., Plant Whole Rep. 8: 368-369 (1989). Sterile tissue for transformation of the leaf and root bits is obtained by treating the seeds in% bleach, 0.1% triton Χ-100 and then aseptic plant growth. Leaf tissue harvested from A.thaliana plants grown in MS medium in petri dishes and root tissue harvested from plants grown in sucrose medium B-5 (Gamborg, OL in: Vasil 1 K (ed) Whole Culture and Somatic Whole Genetics of Plants (1984) ). Plants growing in liquid culture were given fresh medium once a week and maintained on a rotating plate shaken at 100 rpm at 25 ° C to maintain growth. The CHS1975-GUS transgenic species is produced using the leaf disc cocultivation process (Horsch et al., Science 227: 1229-1231 (1985)). However, there is a high incidence of polyploidy in the transformants produced by this process. Therefore, transgenic plants bearing the three constructions of the promoter deletion are produced using the co-cultivation process of a piece of root (Valvekens et al. Proc. Natl. Acad. Sci. USA 85: 5536-5540 (1988)).

Obdelava z visoko intenzitetno svetloboHigh intensity light treatment

Zrele rastline zrasle v rastlinjaku obdelamo z visoko intezitetno svetlobo kot je pred tem opisano (Feinbaum et al., Mol. Celi. Biol. 8:1985-1992 (1988)). Vendar so pri teh eksperimentih rastline zrasle na ploskvah 14x14 cm. Med 20-50 rastlin požanjemo na časovno točko z zmrzovanjem v tekočem dušiku. Zmrznjene rastline v vsakem vzorcu zdrobimo in zmešamo skupaj tako, da alikvoti tkiv uporabljeni pri ekstrakciji mRNA in encimskih poskusih GUS predstavljajo populacijo.The mature plants grown in the greenhouse are treated with high intensity light as previously described (Feinbaum et al., Mol. Celi. Biol. 8: 1985-1992 (1988)). However, in these experiments, the plants grew on 14x14 cm surfaces. Harvest between 20-50 plants at a time point with freezing in liquid nitrogen. The frozen plants in each sample are crushed and mixed together so that tissue aliquots used in mRNA extraction and GUS enzyme experiments represent the population.

Obdelava s svetlobo različnih valovanih dolžinTreatment with light of different wavelengths

Učinek različnih valovnih dolžin svetlobe na gensko ekspresijo raziskujemo v 8-9 dni starih sadikah zraslih v temi. Semena steriliziramo v 30 % belilu, 0,1 % tritonu Χ-100, resuspendiramo v 0,15 % agaroze in razprostremo na plošče MS, ki vsebujejo 2 % saharoze. Plošče temeljito posušimo in nato zapremo z membranskim trakom transpore. Nossen (No) semena ne kalijo dobro v temi in zato nekatera semena damo na vpijanje pri 4 °C za 24 ur in vsa semena damo na vpijanje na svetlobi pri 23 °C za 12-16 ur pred rastjo v temi. Vpijanje na svetlobi ne povzroča ekspresije CHS ali drugih svetlobno reguliranih genov. Sadike zrastejo bodisi v 7 ali 8 dneh v temi, obdelujemo jih 24 ali 48 ur s svetlobo in nato nemudoma zamrznemo v tekočem dušiku.The effect of different wavelengths of light on gene expression is investigated in 8-9 day old seedlings grown in the dark. The seeds were sterilized in 30% bleach, 0.1% triton Χ-100, resuspended in 0.15% agarose and spread to MS plates containing 2% sucrose. Dry the plates thoroughly and then cover with a transpore membrane strip. Nossen (No) seeds do not germinate well in the dark, so some seeds are soaked at 4 ° C for 24 hours, and all seeds are soaked in light at 23 ° C for 12-16 hours before growing in the dark. Absorption on light does not induce expression of CHS or other light-regulated genes. The seedlings grow either in 7 or 8 days in the dark, treated for 24 or 48 hours with light and then immediately frozen in liquid nitrogen.

Ekstenzijska analiza primerjaExtensional analysis compares

Ekstenzijske reakcije primerja izvedemo z uporabo 50 /xg celokupne RNA in oligonukleotida komplementarnega bp 49-79, pri čemer štejemo prvi nukleotid ATG kot 1) v genu GUS (Ausubel et al. 1989). Dobljeni ekstenzijski produkti so dokazani, da so specifični in odvisni od koncentracije RNA (podatki niso prikazani). Označeni fragmenti Mspl pBR322 so uporabljeni kot marker velikosti.Extension primer comparisons were performed using 50 / xg total RNA and oligonucleotide complementary bp 49-79, counting the first ATG nucleotide as 1) in the GUS gene (Ausubel et al. 1989). Extension products obtained are proven to be specific and dependent on RNA concentration (data not shown). Mspl tagged pBR322 fragments were used as a size marker.

Poskusi za GUSTry GUS

Aktivnost GUS izmerimo z izdelavo fluorescenčne spojine 4-metilubeliferona, pri čemer uporabimo postopke za standardni poskus z manjšimi spremembami (Jefferson 1987). Spojine z nizko molekularno maso, ki interferirajo s poskusom odstranimo iz rastlinskega ekstrakta pred poskusi s centrifugiranjem skozi kolono srednje stopnje (1 ml) Sephadex G-25 pri 2000 x g 3 min. 10-30 /rg proteina (izmerjeno s poskusi za protein BioRad) uporabimo pri vsakem poskusu za GUS. Izdelavo 4-metilumbeliferona kvantificiramo na osnovi fluoroscence (ekscitacija 365 nm, emisija 455 nm) izmerjene na Beckmannovem fluorimetru.GUS activity is measured by the production of the fluorescent compound 4-methylubeliferone, using procedures for a standard experiment with minor changes (Jefferson 1987). Low molecular weight compounds that interfere with the experiment were removed from the plant extract prior to centrifugation experiments through a medium grade column (1 ml) of Sephadex G-25 at 2000 x g for 3 min. 10-30 / rg of protein (as measured by BioRad protein assays) was used in each GUS assay. The production of 4-methylumbeliferone was quantified on the basis of fluoroscence (365 nm excitation, 455 nm emission) measured on a Beckmann fluorimeter.

PRIMERIEXAMPLES

Transgenske vrste A. thaliana, ki nosijo zlitje CHS1975-GUSTransgenic species of A. thaliana bearing the CHS1975-GUS fusion

Za preizkus učinkov raznih kvalitet svetlobe na ekspresijo CHS proizvedemo transgenske rastlinske vrste A. thaliana, ki vsebujejo prepisovalno zlitje med promotoijem CHS in markerskim genom GUS (CHS1975-GUS). CHS1975-GUS sestavimo iz 1975 bp bočne sekvence na mestu 5’ iz gena CHS A.thaliana plus 65 bp CHS neprevedenega področja na mestu 5’ zlitega z 31 bp kodirnega področja E. coli /3-glukoronidaze (GUS) na mestu 5’ in 500 bp CHS bočne sekvence na mestu 3’ zlitega navzdoljno od GUS terminacijskega kodona. Rastline ekotipa Nossen (No) A.thaliana transformiramo s CHS1975-GUS in ekspresijo te konstrukcije raziščemo v štirih neodvisno dobljenih transgenskih rastlinah, da minimiziramo katerekoli učinke kromosomske pozicije. CHS1975-GUS reguliramo identično v vseh štirih vrstah (podatki niso prikazani). Podatki, ki so predstavljeni tukaj so od enojne transgenske vrste, ki je diploidna in homozigotna za CHS1975-GUS pri enojnem lokusu v rastlinskem genomu.To test the effects of different light qualities on CHS expression, transgenic A. thaliana species were produced containing a transcript fusion between the CHS promoter and the GUS marker gene (CHS1975-GUS). CHS1975-GUS consists of a 1975 bp lateral sequence at site 5 'of the CHS gene of A.thaliana plus 65 bp of CHS untranslated region at location 5' fused with 31 bp of the E. coli / 3-glucuronidase (GUS) coding region at location 5 ', and 500 bp CHS flanking sequence at position 3 'fused downstream of GUS termination codon. Plants of the Nossen (No) A.thaliana ecotype were transformed with CHS1975-GUS and expression of this construct was investigated in four independently obtained transgenic plants to minimize any effects of chromosomal position. We regulate CHS1975-GUS identically in all four species (data not shown). The data presented here are from a single transgenic species that is diploid and homozygous for CHS1975-GUS at a single locus in the plant genome.

A. Odziv CHS1975-GUS na visoko intenzitetno svetloboA. CHS1975-GUS response to high-intensity light

Zrele, v rastlinjaku zrasle rastline CHS1975-GUS obdelujemo z visoko intenzitetno svetlobo 6, 16, 24, 48 in 72 ur. Analiza Northern prepivka mRNA izoliranega iz teh rastlin kaže, da je akumulacija CHS1975-GUS mRNA paralelna tisti od endogenega gena CHS. V značilnem eksperimentu prikazanem na sliki IA stopnja stabilnega stanja tako CHS1975-GUS kot tudi CHS mRNA dramatično narašča (približno 20krat) prvih 6-24 ur obsevanja in zatem ostane konstantna ali upade.Mature, greenhouse-grown CHS1975-GUS plants are treated with high-intensity light for 6, 16, 24, 48 and 72 hours. Analysis of Northern mRNA digestion isolated from these plants shows that the accumulation of CHS1975-GUS mRNA is parallel to that of the endogenous CHS gene. In the typical experiment shown in Figure IA, the steady state rate of both CHS1975-GUS and CHS mRNA increased dramatically (approximately 20-fold) for the first 6-24 hours of irradiation and then remained constant or decreased.

5’ konec CHS1975-GUS informacije inducirane z visoko intezitetno svetlobo mapiramo s primersko ekstenzijsko analizo, da določimo, če akumulacija kimerne CHS-GUS mRNA odraža natančno ekspresijo iz promotoija CHS. Tri glavne ekstenzijske produkte med 170 in 175 bp dolžine detektiramo kot je prikazano na sl. IB. Iste tri produkte tudi lahko detektiramo pri zelo nizkih stopnjah za mRNA iz neobdelanih populacij CHS1975-GUS (podatki niso prikazani) in velikost in vzorec intezitete traku kažeta, da ti trije ekstenzijski produkti ustrezajo iniciaciji pri istih dveh C in T, ki sta najbolj pogosto uporabljena v endogenem genu CHS (Feinbaum in Ausubel 1988).The 5 'end of the CHS1975-GUS information induced by high-intensity light is mapped by appropriate extension analysis to determine if the accumulation of the chimeric CHS-GUS mRNA reflects the exact expression from the CHS promoter. The three major extension products between 170 and 175 bp in length are detected as shown in FIG. IB. The same three products can also be detected at very low rates for mRNAs from untreated CHS1975-GUS populations (data not shown), and the size and pattern intensity of the strip indicate that these three extensor products correspond to the initiation at the same two C and T most commonly used in the endogenous CHS gene (Feinbaum and Ausubel 1988).

Odziv kimemega gena CHS1975-GUS na visoko intezitetno svetlobo tudi preizkusimo z meijenjem GUS encimske aktivnosti. Porast GUS encimske aktivnosti dosledno detektiramo v transgenskih rastlinah, ki nosijo CHS1975-GUS po obdelavi z visoko intezitetno svetlobo, medtem ko GUS aktivnost nikoli ne detektiramo v netransformiranih rastlinah (podatki niso prikazani). Velikost indukcije kimernega gena CHS1975-GUS kot izmerimo z GUS aktivnostjo (približno 4-kratna) je vedno nižja kot tista določena na stopnji mRNA. Možno, da je to zaradi relativno visokih bazalnih stopenj GUS aktivnosti v transformiranih rastlinah, kar izhaja iz inherentne stabilnosti β-glukuronidaznega encima.The response of the CHS1975-GUS chimeric gene to high-intensity light is also tested by altering GUS enzyme activity. An increase in GUS enzyme activity was consistently detected in transgenic plants carrying CHS1975-GUS after treatment with high intensity light, whereas GUS activity was never detected in untransformed plants (data not shown). The magnitude of induction of the CHS1975-GUS chimeric gene as measured by GUS activity (approximately 4-fold) is always lower than that determined at the mRNA level. It is possible that this is due to the relatively high basal levels of GUS activity in transformed plants, which results from the inherent stability of the β-glucuronidase enzyme.

B. Indukcija CHS1975-GUS z modro in UV svetloboB. Induction of CHS1975-GUS with blue and UV light

Odziv kimernega gena CHS1975-GUS na rdečo, modro, belo in UV svetlobo primerjamo s tistim od endogenega gena CHS. 8 in 9 dni stare sadike zrasle v temi divjega tipa in transgenske sadike A.thaliana eksponiramo za 24 ali 48 h kontinuimemu obsevanju z rdečo, modro, UV ali belo svetlobo in nato požanjemo. Rdeča svetloba je predominantno K320-450 nm. Sadike zrastejo v petrijevkah v definiranih medijih, da zagotovimo konstantne pogoje okolja.The response of the CHS1975-GUS chimeric gene to red, blue, white, and UV light is compared with that of the endogenous CHS gene. 8 and 9 day old seedlings grown in the wild type and transgenic A.thaliana seedlings are exposed for 24 or 48 h by continuous irradiation with red, blue, UV or white light and then reaped. The red light is predominantly K320-450 nm. Seedlings grow in petri dishes in defined media to ensure constant environmental conditions.

Analiza Northern prepivka (slika 2) kaže, da sta CHS1975 in endogeni gen CHS dovzetna za svetlobo iste valovne dolžine. Modra, bela in UV svetloba so najbolj učinkovite pri induciranju akumulacije CHS1975-GUS in akumulacije endogene CHS mRNA v transgenskih sadikah. Prednostno akumulacijo CHS mRNA v odzivu na modro in UV svetlobo opazimo tudi v netransformiranih sadikah (podatki niso prikazani). Relativna učinkovitost modre, bele in UV svetlobe pri induciranju akumulacije CHS1975-GUS in CHS mRNA se razlikuje med eksperimenti (podatki niso prikazani). Vendar je rdeča svetloba vedno bistveno manj učinkovita pri induciranju akumulacije teh mRNA; rastline obdelane z rdečo svetlobo akumulirajo samo 15-20 % stopenj CHS1975-GUS in CHS mRNA, kijih ugotovimo pri rastlinah obdelanih z modro svetlobo. To je v nasprotju z akumulacijo mRNA, ki kodira za klorofilni a/b vezivni protein (CAB), ki je približno enaka pri vseh svetlobnih režimih (podatki niso prikazani).The Northern Quail analysis (Figure 2) shows that CHS1975 and the endogenous CHS gene are susceptible to light of the same wavelength. Blue, white and UV light are most effective in inducing CHS1975-GUS accumulation and accumulation of endogenous CHS mRNA in transgenic seedlings. Preferential accumulation of CHS mRNA in response to blue and UV light was also observed in untransformed seedlings (data not shown). The relative efficiency of blue, white, and UV light in inducing the accumulation of CHS1975-GUS and CHS mRNA differs between experiments (data not shown). However, red light is always significantly less effective in inducing the accumulation of these mRNAs; plants treated with red light accumulate only 15-20% of the levels of CHS1975-GUS and CHS mRNAs found in plants treated with blue light. This is in contrast to the accumulation of mRNA encoding for chlorophyll a / b binding protein (CAB), which is approximately the same across all light regimes (data not shown).

Odziv CHS1975-GUS na rdečo, modro, belo in UV svetlobo izmerimo tudi z GUS encimskimi poskusi. GUS aktivnost se poveča 2 do 5-krat v transgenskih CHS1975GUS sadikah zraslih v temi obdelovanih 24 ali 48 ur z modro, belo ali UV svetlobo. Sadike eksopinirane rdeči svetlobi kažejo bodisi malo ali nič indukcije pri GUS aktivnosti (maksimalna indukcija je 1,2-krat) pri stopnjah zraslih v temi (podatki niso prikazani).CHS1975-GUS response to red, blue, white and UV light was also measured by GUS enzyme experiments. GUS activity is increased 2 to 5 times in transgenic CHS1975GUS seedlings grown in the dark for 24 or 48 hours with blue, white or UV light. Exposed red light seedlings show either little or no induction in GUS activity (maximum induction is 1.2-fold) at rates grown in the dark (data not shown).

C. Vloga receptorja modre svetlobe pri regulaciji ekspresije CHSC. Role of blue light receptor in the regulation of CHS expression

Indukcija CHS1975-GUS in endogenega gena CHS z modro svetlobo kaže, da je fotoregulirana ekspresija CHS v A.thaliana vsaj delno posredovana s specifičnim receptorjem modre svetlobe. Ker fitokrom tudi lahko aktiviramo z modro svetlobo raziščemo vlogo receptoija modre svetlobe neodvisno od fitokroma. Sadike divjega tipa (Columbia ekotip) zrastejo pri pogojih kontinuime rdeče svetlobe, ki povzroči fitokromsko nasičenje in jih nato testiramo na njihovo sposobnost odzivanja na modro svetlobo (Marrs in Kaufman 1989). Sadike, ki zrastejo pri teh pogojih (kontinuirna rdeča svetloba (4 μΕ/ηΑ) katerim sledi 15 min puls modre svetlobe (50 μΕ/πΛ)] kažejo večji porast kot dvakraten pri stopnjah CHS in mRNA (slika 3). Porast v stopnjah CHS in mRNA je začasen; 16 h po pulzu modre svetlobe se stopnje CHS mRNA vrnejo na stopnjo, ki jo ugotovimo za rastline zrasle pri rdeči svetlobi. Vendar vsaj del indukcije ekspresije CHS kot odziv na modro svetlobo ni zaradi fitokroma in verjetno predstavlja aktivacijo distinktivne poti receptorja modre svetlobe.Induction of CHS1975-GUS and the endogenous CHS gene by blue light indicates that photoregulated expression of CHS in A.thaliana is at least partially mediated by a specific blue light receptor. Because phytochrome can also be activated by blue light, we investigate the role of blue light receptors independently of phytochrome. Wild-type seedlings (Columbia ecotype) grow under conditions of continuous red light, which causes phytochrome saturation, and are then tested for their ability to respond to blue light (Marrs and Kaufman 1989). Seedlings growing under these conditions (continuous red light (4 μΕ / ηΑ) followed by a 15 min pulse of blue light (50 μΕ / πΛ)] show a greater increase than twofold in CHS and mRNA levels (Fig. 3). and mRNA is temporary; 16 h after the blue light pulse, CHS mRNA levels return to the level found for plants grown in red light, but at least part of the induction of CHS expression in response to blue light is not due to phytochrome and probably represents activation of the receptor distinct pathway blue light.

PRIMER 2EXAMPLE 2

Sekvence promotorja CHS potrebne za svetlobno regulacijoCHS promoter sequences required for light regulation

Ekspresija kimemega gena CHS1975-GUS je paralelna tisti od endogenega gena CHS v odzivu na visoko intezitetno svetlobo in svetlobo specifičnih valovnih dolžin. Zato CHS1975-GUS vsebuje večino, če ne vseh cis delujočih regulatomih sekvenc, ki kontrolirajo svetlobno regulirano ekspresijo gena CHS A. thaliana. Da razmejimo cis delujoče sekvence, ki kontrolirajo ekspresijo gena CHS, proizvedemo transgenske vrste, ki nosijo 523, 186 in 17 bp promotorske sekvence CHS zlite z GUS (CHS523GUS, CHS186-GUS, in CHS17-GUS). Ekspresijo deletiranih kimemih genov raziščemo v dveh neodvisnih transgenskih vrstah za vsako delecijsko konstrukcijo. Te vrste so prikazane, da so homozigotne za deletirane kimeme gene CHS-GUS in da vsebujejo te kimeme gene na enojnem lokusu, ki temelji na segregaciji ko-uvedenega markerja NOS-NPTII, ki daje odpornost na kanamicin. Odziv deletiranih kimemih genov na visoko intezitetno svetlobo in na modro svetlobo zasledujemo z analizo Northern prepivka in s preizkušanjem GUS aktivnosti (slika 4). Ekspresija kimernih genov CHS-GUS v A.thaliana je odvisna od prisotnosti promotorskih sekvenc CHS na mestu 5’ od -17. Transgenske vrste, ki nosijo CHS17-GUS ne proizvajajo CHSGUS mRNA, ki bi se jih dalo detektirati in nimajo GUS aktivnosti pri okoliščinah kontrole visoke intezitetne svetlobe ali modre svetlobe. Za kimemi gen CHS523GUS se zdi, da deluje identično CHS1975-GUS v odzivu tako na visoko intezitetno kot tudi na modro svetlobo. 16H obdelava z visoko intezitetno svetlobo da dramatičen porast (približno 10-krat) v stopnji CHS523-GUS mRNA, ki je paralelna odzivu CHS1975-GUS in indogenega gena CHS (slika 4A). 3- do 4-kraten porast v stopnji GUS aktivnosti detektiramo v vrstah, ki vsebujejo CHS523-GUS po izpostavitvi visoko intezitetni svetlobi za 48 ur (slika 4B). Sadike zrasle v temi obdelovane 24 ur z modro svetlobo tudi kažejo porast (8-krat) v stopnji CHS523-GUS mRNA podoben porastu, ki ga vidimo za CHS1975-GUS in endogeni gen CHS (slika 4C). Dodatno 3- do 5-kratni porast v stopnji GUS aktivnosti, kot ga detektiramo v rastlinah CHS523-GUS po obsevanju z modro svetlobo (slika 4D). Absolutne stopnje neinducirane in inducirane CHS-GUS mRNA in GUS aktivnosti v teh vrstah so primerljive s tistimi v rastlinah, ki vsebujejo CHS1975-GUS.The expression of the CHS1975-GUS chimeric gene is parallel to that of the endogenous CHS gene in response to high-intensity light and specific wavelength light. Therefore, CHS1975-GUS contains most, if not all, of the cis-acting sequence regulators that control the light-regulated expression of the CHS gene A. thaliana. To delineate the cis-acting sequences that control CHS gene expression, we produce transgenic species carrying the 523, 186, and 17 bp promoter sequences of CHS fused to GUS (CHS523GUS, CHS186-GUS, and CHS17-GUS). The expression of the deleted kimem genes is investigated in two independent transgenic species for each deletion construct. These species are shown to be homozygous for the deletion CHS-GUS chimeric genes and to contain these chimeric genes at a single locus based on segregation of the co-introduced marker NOS-NPTII conferring kanamycin resistance. The response of the deletion kimem genes to high-intensity light and blue light is monitored by Northern quail analysis and GUS activity assay (Figure 4). The expression of CHS-GUS chimeric genes in A.thaliana is dependent on the presence of CHS promoter sequences at site 5 'of -17. Transgenic species carrying CHS17-GUS do not produce detectable CHSGUS mRNAs and do not have GUS activity under high intensity or blue light control conditions. The CHS523GUS kimem gene appears to function identically to CHS1975-GUS in response to both high intensity and blue light. 16H treatment with high-intensity light gave a dramatic increase (approximately 10-fold) in the rate of CHS523-GUS mRNA, which is parallel to the response of CHS1975-GUS and the indogenous CHS gene (Fig. 4A). A 3- to 4-fold increase in GUS activity level was detected in species containing CHS523-GUS after exposure to high-intensity light for 48 hours (Figure 4B). Seedlings grown in the dark treated for 24 hours with blue light also show an increase (8-fold) in the rate of CHS523-GUS mRNA similar to the increase seen for CHS1975-GUS and the endogenous CHS gene (Fig. 4C). An additional 3- to 5-fold increase in the GUS activity level as detected in CHS523-GUS plants after irradiation with blue light (Figure 4D). The absolute rates of uninduced and induced CHS-GUS mRNA and GUS activity in these species are comparable to those in plants containing CHS1975-GUS.

Medtem ko ima kimerni gen CHS186-GUS distinktivno znižane stopnje ekspresije pri vseh pogojih, je ekspresija gena CHS186-GUS še vedno inducirana pri obdelavi z visoko intezitetno svetlobo. V transgenski vrsti 1 CHS186-GUS, je stopnja GUS mRNA inducirana z visoko intezitetno svetlobo približno 50 % tiste, ki je ugotovljena v vrstah, ki vsebujejo CHS523-GUS in CHS1975-GUS. Stopnja GUS mRNA v vrsti 2 CHS186-GUS, inducirana z visoko intezitetno svetlobo je manjša kot inducirana stopnja v vrsti 1, vendar vrsta 2 CHS186-GUS kaže celotno nižjo stopnjo kimeme genske ekspresije. Zanimivo je celo indukcija endogenega gena CHS znižana v vrsti 2. Vrste CHS186-GUS obdelane z visoko intezitetno svetlobo kažejo večkratno indukcijo (9 do 12-kratno proti 3 do 4-kratni) v GUS aktivnosti kot vrste CHS523GUS in CHS1975-GUS, če jih primeijamo z neobdelanimi kontrolami. To verjetno nastane zaradi nizke bazalne stopnje GUS aktivnosti v vrstah CHS186-GUS.While the CHS186-GUS chimeric gene has distinctly reduced expression rates under all conditions, CHS186-GUS gene expression is still induced when treated with high-intensity light. In transgenic species 1 of CHS186-GUS, the GUS mRNA level is induced by high-intensity light about 50% of that found in species containing CHS523-GUS and CHS1975-GUS. The GUS mRNA level in type 2 CHS186-GUS induced by high-intensity light is less than the induced level in type 1, but type 2 CHS186-GUS shows an overall lower rate of chimeric gene expression. Interestingly, even the induction of the endogenous CHS gene is down-regulated in species 2. High-intensity light-treated CHS186-GUS species exhibit multiple induction (9 to 12 times 3 to 4 times) in GUS activity than CHS523GUS and CHS1975-GUS species is compared with untreated controls. This is probably due to the low basal level of GUS activity in CHS186-GUS species.

Obe transgenski vrsti CHS186-GUS, kažeta samo nizke stopnje, ki se dajo detektirati na preeksponiranih prepivkih akumulacij CHS186-GUS mRNA v odzivu na modro svetlobo. Količina CHS186-GUS mRNA, ki se akumulira v transgenski vrsti 1 pri indukciji z modro svetlobo je manj kot 5 % od tiste od CHS523-GUS ali CHS1975GUS. Nizke stopnje GUS aktivnosti tudi dosledno detektiramo v rastlinah CHS 186GUS v odzivu na modro svetlobo. Velikost indukcije CHS186-GUS (izmeijeno z akumulacijo mRNA in GUS aktivnosti) je proporcionalno nižja v modri svetlobi kot v visokointezitetni svetlobi, če primeijamo z indukcijo CHS523-GUS pri čemer omenimo, daje CHS186-GUS manj dovzeten za modro kot za visokointezitetno svetlobo.Both CHS186-GUS transgenic species show only low levels detectable on overexposed CHS186-GUS mRNA accumulations in response to blue light. The amount of CHS186-GUS mRNA accumulated in transgenic species 1 upon induction by blue light is less than 5% of that of CHS523-GUS or CHS1975GUS. Low levels of GUS activity are also consistently detected in CHS 186GUS plants in response to blue light. The magnitude of CHS186-GUS induction (alternated with mRNA accumulation and GUS activity) is proportionally lower in blue light than in high-intensity light, when compared to CHS523-GUS induction, noting that CHS186-GUS is less susceptible to blue than to high-intensity light.

PRIMER 3EXAMPLE 3

Uporaba kontrolnega elementa CHS za skrining mutantov v dovzetnosti na svetloboUse of a CHS control element for screening mutants in susceptibility to light

Skrining za mutantne rastline z nenormalno visokimi ali nizkimi stopnjami GUS aktivnosti z lahkoto izvedemo v mikrotitrskih izvorih. Znano je, da vrsta 2 CHS186GUS kaže znižano ekspresijo tako endogenih genov CHS kakor tudi genov CHS186-GUS, če primerjamo z divjim tipom in drugimi transformiranimi vrstami. Ta vrsta lahko pridobi mutacijo v genu, ki direktno ali indirektno kontrolira ekspresijo CHS.Screening for mutant plants with abnormally high or low levels of GUS activity can easily be performed in microtiter sources. CHS186GUS species 2 is known to exhibit reduced expression of both endogenous CHS genes and CHS186-GUS genes when compared with the wild type and other transformed species. This species may acquire a mutation in a gene that directly or indirectly controls CHS expression.

(i) Značilnosti sekvence:(i) Sequence characteristics:

(A) dolžina: 2040 osnovnih parov (B) tip: nukleinska kislina (C) verižnost: dvojna (D) topologija: linearna (ii) molekulski tip: DNA (genomska) (xi) Opis sekvence: SEQ ID št:l:(A) Length: 2040 base pairs (B) Type: Nucleic acid (C) Chain: Double (D) Topology: Linear (ii) Molecular type: DNA (genomic) (xi) Sequence description: SEQ ID No: l:

AAGCTTGACA AAGCTTGACA TTCTTTCTCT TTCTTTCTCT GATGCCATTT GATGCCATTT GGTTTGCAAT GGTTTGCAAT TTCCGGTATA TTCCGGTATA ACACCACCAC ACACCACCAC 60 60 GAGCCTGGAA GAGCCTGGAA GCTACTCTCA GCTACTCTCA ACATCACTCA ACATCACTCA AAATTTGATC AAATTTGATC AGCTTCAACC AGCTTCAACC CAAAAATCAA CAAAAATCAA 120 120 TCTCATCCAT TCTCATCCAT AACATCACAA AACATCACAA CTAGGAATCA CTAGGAATCA TCTCAACATC TCTCAACATC TTCCCACTTG TTCCCACTTG AAGAATCCAC AAGAATCCAC 180 180 AAGCTCCAAA AAGCTCCAAA TCCCTAACAC TCCCTAACAC AATTTCTTAA AATTTCTTAA AACAATGTTA AACAATGTTA ACCAGAATTA ACCAGAATTA TCAACTATGA TCAACTATGA 240 240 GCTTTAAACT GCTTTAAACT TGCGAACGAG TGCGAACGAG TCAAAACCTT TCAAAACCTT TTTGATGCAG TTTGATGCAG CATATCAGGT CATATCAGGT AAGCTCTACC AAGCTCTACC 300 300 GGAAACGTCT GGAAACGTCT TTAACTCTCC TTAACTCTCC GGCAAGGTCC GGCAAGGTCC AGCACCGCAG AGCACCGCAG GAACAAATCG GAACAAATCG GGATGGTGAA GGATGGTGAA 360 360 GGCAGGACGG GGCAGGACGG AATTTGATAT AATTTGATAT CTTCGTCGGT CTTCGTCGGT TACTTTGTCA TACTTTGTCA CACCATTTGA CACCATTTGA AGAAACAGCA AGAAACAGCA 420 420 ATTCTGAGCC ATTCTGAGCC TGCGAATTTC TGCGAATTTC AAATGTCGTC AAATGTCGTC AGTAACAAAT AGTAACAAAT TCAAATTTCC TCAAATTTCC TCGCGAATTT TCGCGAATTT 480 480 TGCAGGAGAT TGCAGGAGAT GAAGAATCAG GAAGAATCAG TAAAGAAAGC TAAAGAAAGC GAGTACGAAC GAGTACGAAC CGTTGGACAC CGTTGGACAC TTGTAGAACT TTGTAGAACT 540 540

TCCTTCCGGG ATTTTCTCGA GTATTCGCGA CCTTGATTTC ACAGAAACCT CCGCCGCATG 600TCCTTCCGGG ATTTTCTCGA GTATTCGCGA CCTTGATTTC ACAGAAACCT CCGCCGCATG 600

GGCATTGGAT CGCCGGTGGA GGATCATCGG TGTAGGATTT GAGAGGACAA TCGTTGATCC 660GGCATTGGAT CGCCGGTGGA GGATCATCGG TGTAGGATTT GAGAGGACAA TCGTTGATCC 660

AGTGGCCAGC CTGACGGCAT CGGAAGCAAT TTCCGGTCTG CATTGTGCCG TTAAGCATTC 720AGTGGCCAGC CTGACGGCAT CGGAAGCAAT TTCCGGTCTG CATTGTGCCG TTAAGCATTC 720

GTCGAACATT CTCCTTCTCG GGATGTTAAT ATGGGCCAGG TCATCTTTTT TAAGCCCACA 780GTCGAACATT CTCCTTCTCG GGATGTTAAT ATGGGCCAGG TCATCTTTTT TAAGCCCACA 780

TAATTTATTT TTAGCTATGA CTAAACAAAA CATGCTGAAT ATGGGACGGG CTTAATGGGC 840TAATTTATTT TTAGCTATGA CTAAACAAAA CATGCTGAAT ATGGGACGGG CTTAATGGGC 840

CTGAAGACTT TAAGCAGATT AACGAAACAA GTGTGTTGTG TATAATATGA GAACCATGTC 900CTGAAGACTT TAAGCAGATT AACGAAACAA GTGTGTTGTG TATAATATGA GAACCATGTC 900

GTTCTGATCG GTTAAAAACT ACAGCTGACC AAATAACACC TATAGGCTTC TGCGGATATG 960GTTCTGATCG GTTAAAAACT ACAGCTGACC AAATAACACC TATAGGCTTC TGCGGATATG 960

ACTCTACGGC GTCTACGCCT CGCATGCCTA TCATATTTAA CCGTCAATAA TGGATTTGGC 1020ACTCTACGGC GTCTACGCCT CGCATGCCTA TCATATTTAA CCGTCAATAA TGGATTTGGC 1020

GGTTTTGGTA GGCCGGGTCA ACCGGATTAA AAGAAAACGG TTTGGAGTCC TTCCTTGCAA 1080GGTTTTGGTA GGCCGGGTCA ACCGGATTAA AAGAAAACGG TTTGGAGTCC TTCCTTGCAA 1080

TTGAATTTTC ACGCATCGGG TTTTGTGATT TCTCTGTCAT AATGGGCCCG GCACATATGG 1140TTGAATTTTC ACGCATCGGG TTTTGTGATT TCTCTGTCAT AATGGGCCCG GCACATATGG 1140

TTCATAACCC ATGTGGGCCT ATGGTATAAT TTTTCCAATT AAAACTATTG TTAGGTCGAT 1200TTCATAACCC ATGTGGGCCT ATGGTATAAT TTTTCCAATT AAAACTATTG TTAGGTCGAT 1200

AAAACAAAAA ACAATAAAAA CGAGTGGAAT ACACATACCA AAAAGAATGT GATGAACATT 1260AAAACAAAAA ACAATAAAAA CGAGTGGAAT ACACATACCA AAAAGAATGT GATGAACATT 1260

AGTAATTTTA TTTTGATGGT TAATGAAAAA CAAAATAATG CATCTTGACA TCTTCCGTTG 1320AGTAATTTTA TTTTGATGGT TAATGAAAAA CAAAATAATG CATCTTGACA TCTTCCGTTG 1320

GAAAGCGCAA ATAGGGCAGA TTTTCAGACA GATATCACTA TGATGGGGGG TGGGAGAAAG 1380GAAAGCGCAA ATAGGGCAGA TTTTCAGACA GATATCACTA TGATGGGGGG TGGGAGAAAG 1380

AAAACGAGGC GTACCTAATG TAACACTACT TAATTAGTCG TTAGTTATAG GACTTTTTTT 1440AAAACGAGGC GTACCTAATG TAACACTACT TAATTAGTCG TTAGTTATAG GACTTTTTTT 1440

TTGTTTGGGC CTAGTTATAG GATCATAAGG TAAAAATGAA GAATGAATAT TAGATTAGTA 1500TTGTTTGGGC CTAGTTATAG GATCATAAGG TAAAAATGAA GAATGAATAT TAGATTAGTA 1500

GGAGCTAATG ATGGAGTTAA GTAGTATGCA CGTGTAAGAA CTGGGAAGTG AAACCTCCTG 1560GGAGCTAATG ATGGAGTTAA GTAGTATGCA CGTGTAAGAA CTGGGAAGTG AAACCTCCTG 1560

TATGGTGAAG AAACTATACA ACAAAGCCCT TTGTTGGTGT ATACGTATTA ATTTTTATTC 1620TATGGTGAAG AAACTATACA ACAAAGCCCT TTGTTGGTGT ATACGTATTA ATTTTTATTC 1620

TTTTATCACA AGCGATACGT ATCTTAAGAC ATAATAAATA TATATCTTAC TCATAATAAA 1680TTTTATCACA AGCGATACGT ATCTTAAGAC ATAATAAATA TATATCTTAC TCATAATAAA 1680

TATCTTAAGA TATATATACA GTATACACCT GTATATATAT AATAAATAGG CATATAGTAG 1740TATCTTAAGA TATATATACA GTATACACCT GTATATATAT AATAAATAGG CATATAGTAG 1740

AAATTAATAT GAGTTGTTGT TGTTGCAAAT ATATAAATCA ATCAAAAGAA TTAAAACCCA 1800AAATTAATAT GAGTTGTTGT TGTTGCAAAT ATATAAATCA ATCAAAAGAA TTAAAACCCA 1800

CCATTCCAAT CTTGGTAAGT AACGAAAAAA CAGGGAAGCA AGAAGAACCA CAGAAAAGGG 1860CCATTCCAAT CTTGGTAAGT AACGAAAAAA CAGGGAAGCA AGAAGAACCA CAGAAAAGGG 1860

GGCTAACAAC TAGACACGTA GATCTTCATC TGCCCGTCCA TCTAACCTAC CACACTCTCA 1920GGCTAACAAC TAGACACGTA GATCTTCATC TGCCCGTCCA TCTAACCTAC CACACTCTCA 1920

TCTTCTTTTT CCCGTGTCAG TTTGTTATAT AAGCTCTCAC TCTCCGGTAT ATTTCCAAAT 1980TCTTCTTTTT CCCGTGTCAG TTTGTTATAT AAGCTCTCAC TCTCCGGTAT ATTTCCAAAT 1980

ACACCTAACT TGTTTAGTAC ACAACAGCAA CATCAAACTC TAATATACCC AAGTTGGTGT 2040 (2) informacije za SEQ ID št. 2:ACACCTAACT TGTTTAGTAC ACAACAGCAA CATCAAACTC TAATATACCC AAGTTGGTGT 2040 (2) SEQ ID no. 2:

(i) Značilnosti sekvence:(i) Sequence characteristics:

(A) dolžina: 587 osnovnih parov (B) tip: nukleinska kislina (C) verižnost: dvojna (D) topologija: linearna (ii) molekulski tip: DNA (genomska) (xi) Opis sekvence: SEQ ID št. 2(A) Length: 587 base pairs (B) Type: Nucleic acid (C) Chain: Double (D) Topology: Linear (ii) Molecular type: DNA (genomic) (xi) Sequence description: SEQ ID no. 2

GTTATAGGAT GTTATAGGAT CATAAGGTAA CATAAGGTAA AAATGAAGAA AAATGAAGAA TGAATATTAG TGAATATTAG ATTAGTAGGA ATTAGTAGGA GCTAATGATG GCTAATGATG 60 60 GAGTTAAGTA GAGTTAAGTA GTATGCACGT GTATGCACGT GTAAGAACTG GTAAGAACTG GGAAGTGAAA GGAAGTGAAA CCTCCTGTAT CCTCCTGTAT GGTGAAGAAA GGTGAAGAAA 120 120 CTATACAACA CTATACAACA AAGCCCTTTG AAGCCCTTTG TTGGTGTATA TTGGTGTATA CGTATTAATT CGTATTAATT TTTATTCTTT TTTATTCTTT TATCACAAGC TATCACAAGC 180 180 GATACGTATC GATACGTATC TTAAGACATA TTAAGACATA ATAAATATAT ATAAATATAT ATCTTACTCA ATCTTACTCA TAATAAATAT TAATAAATAT CTTAAGATAT CTTAAGATAT 240 240 ATATACAGTA ATATACAGTA TACACCTGTA TACACCTGTA TATATATAAT TATATATAAT AAATAGGCAT AAATAGGCAT ATAGTAGAAA ATAGTAGAAA TTAATATGAG TTAATATGAG 300 300 TTGTTGTTGT TTGTTGTTGT TGCAAATATA TGCAAATATA TAAATCAATC TAAATCAATC AAAAGAATTA AAAAGAATTA AAACCCACCA AAACCCACCA TTCCAATCTT TTCCAATCTT 360 360 GGTAAGTAAC GGTAAGTAAC GAAAAAACAG GAAAAAACAG GGAAGCAAGA GGAAGCAAGA AGAACCACAG AGAACCACAG AAAAGGGGGC AAAAGGGGGC TAACAACTAG TAACAACTAG 420 420 ACACGTAGAT ACACGTAGAT CTTCATCTGC CTTCATCTGC CCGTCCATCT CCGTCCATCT AACCTACCAC AACCTACCAC ACTCTCATCT ACTCTCATCT TCTTTTTCCC TCTTTTTCCC 480 480 GTGTCAGTTT GTGTCAGTTT GTTATATAAG GTTATATAAG CTCTCACTCT CTCTCACTCT CCGGTATATT CCGGTATATT TCCAAATACA TCCAAATACA CCTAACTTGT CCTAACTTGT 540 540 TTAGTACACA TTAGTACACA ACAGCAACAT ACAGCAACAT CAAACTCTAA CAAACTCTAA TATACCCAAG TATACCCAAG TTGGTGT TTGGTGT 587 587

(3) informacije za SEQ ID št 3:(3) Information for SEQ ID No 3:

(i) Značilnosti sekvence:(i) Sequence characteristics:

(A) dolžina: 100 osnovnih parov (B) tip: nukleinska kislina (C) verižnost: dvojna (D) topologija: linearna (ii) molekulski tip: DNA (genomska) (xi) Opis sekvence: SEQ ID št. 3(A) Length: 100 base pairs (B) Type: Nucleic acid (C) Chain: Double (D) Topology: Linear (ii) Molecular type: DNA (genomic) (xi) Sequence description: SEQ ID no. 3

CCAAATACAC CTAACTTGTT TAGTACACAA CAGCAACATC AAACTCAATA TACCCAAGTT 60CCAAATACAC CTAACTTGTT TAGTACACAA CAGCAACATC AAACTCAATA TACCCAAGTT 60

GGTCGGATCC GAGCTTGGCT GCAGCTCAGT CCCCCTTATG 100GGTCGGATCC GAGCTTGGCT GCAGCTCAGT CCCCCTTATG 100

ZaFor

The General Hospital Corporation:The General Hospital Corporation:

Claims (10)

1. Sekvenca DNA, kije sposobna promoviranja prepisovanja v rastlini, funkcionalno vezanega heterolognega gena kot odziv na stimulacijo z modro ali UV svetlobo.A DNA sequence capable of promoting transcription in a plant of a functionally coupled heterologous gene in response to stimulation by blue or UV light. 2. Sekvenca DNA, kije sposobna promoviranja prepisovanja v rastlini, funkcionalno vezanega heterolognega gena kot odziv na stimulacijo z visoko intezintetno svetlobo.2. A DNA sequence capable of promoting transcription in a plant of a functionally coupled heterologous gene in response to stimulation by high-intensity light. 3. Postopek za ekspresijo heterolognega gena v rastlini, katerega prepisovanje je stimulirano z modro ali UV svetlobo, označen s tem, da navedeni postopek obsega transformiranje rastline s kimernim plazmidom, ki vsebuje sekvenco DNA, ki je sposobna promoviranja prepisovanja funkcionalno vezanega heterolognega gena kot odziv na modro svetlobo.A method for expressing a heterologous gene in a plant whose transcription is stimulated by blue or UV light, characterized in that said method comprises transforming a plant with a chimeric plasmid containing a DNA sequence capable of promoting transcription of a functionally coupled heterologous gene in response to blue light. 4. Postopek za ekspresijo heterolognega gena v rastlini, pri čemer je navedena ekspresija stimulirana z visoko intezitetno svetlobo, označen s tem, da naveden postopek obsega transformiranje rastline s kimernim plazmidom, ki vsebuje sekvenco DNA, ki je sposobna usmerjanja ekspresije heterolognega gena v odzivu na visoko intezitetno svetlobo.A method for expressing a heterologous gene in a plant, said expression stimulated by high-intensity light, characterized in that said method comprises transforming the plant with a chimeric plasmid containing a DNA sequence capable of directing the expression of the heterologous gene in response to high intensity light. 5. Sekvenca DNA po zahtevkih 1 in 3, označena s tem, da je navedena sekvenca Sequenca ID št. 1 ali njen funkcionalni derivat.The DNA sequence of claims 1 and 3, characterized in that said sequence is Sequence ID no. 1 or a functional derivative thereof. 6. Sekvenca DNA po zahtevku 2 in 4, označena s tem, da je navedena sekvenca Sequenca ID št. 2 ali njen funkcionalni derivat.The DNA sequence of claims 2 and 4, characterized in that said sequence is Sequence ID no. 2 or its functional derivative. 7. Transgenska rastlina, označena s tem, da vsebuje eksogensko dobavljeno kopijo Sequence ID št. 1.A transgenic plant comprising an exogenously supplied copy of Sequence ID no. 1. 8. Transgenska rastlina, označena s tem, da vsebuje eksogensko dobavljeno kopijo Sequence ID št. 2.8. A transgenic plant comprising an exogenously supplied copy of Sequence ID no. 2. 9. Kimema rastlina, označena s tem, da vsebuje eksogensko dobavljeno kopijo Sequence ID št. 1.9. Kimema plant, characterized in that it contains an exogenously supplied copy of Sequence ID no. 1. 10. Kimema rastlina, označena s tem, da vsebuje eksogensko dobavljeno kopijo Sequence ID št. 2.10. Kimema plant, characterized in that it contains an exogenously supplied copy of Sequence ID no. 2.
SI9200069A 1991-05-02 1992-05-04 Light regulated gene expression in the transgenic plants SI9200069A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US69357391A 1991-05-02 1991-05-02

Publications (1)

Publication Number Publication Date
SI9200069A true SI9200069A (en) 1992-11-27

Family

ID=24785216

Family Applications (1)

Application Number Title Priority Date Filing Date
SI9200069A SI9200069A (en) 1991-05-02 1992-05-04 Light regulated gene expression in the transgenic plants

Country Status (4)

Country Link
AU (1) AU1991092A (en)
IE (1) IE921421A1 (en)
SI (1) SI9200069A (en)
WO (1) WO1992019724A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824859A (en) * 1994-07-08 1998-10-20 The Trustees Of The University Of Pennsylvania Blue light photoreceptors and methods of using the same
US9506073B2 (en) 2011-11-18 2016-11-29 Board Of Regents, The University Of Texas System Blue-light inducible system for gene expression

Also Published As

Publication number Publication date
AU1991092A (en) 1992-12-21
IE921421A1 (en) 1992-11-04
WO1992019724A1 (en) 1992-11-12

Similar Documents

Publication Publication Date Title
ES2553384T3 (en) Plants that have enhanced traits related to performance and a production procedure for them
KR101662483B1 (en) Plants having enhanced yield-related traits and method for making the same
DE112008002848T5 (en) Plants with improved yield-related traits and methods for their production
CN102686604A (en) Plants having enhanced yield-related traits and a method for making the same
JP6103607B2 (en) Plant suitable for high-density planting and use thereof
CN102459613A (en) Plants having enhanced yield-related traits and a method for making the same
CN101883783A (en) Has plant of enhanced yield correlated character and preparation method thereof
JPH10510998A (en) Stress-tolerant plant and method for producing the plant
CN111218470B (en) Method for regulating and controlling stress resistance of plants
JPH08508412A (en) Plants with modified response to ethylene
EP1436324A1 (en) Gene controlling life span of leaves in plants and method for controlling life span of plants using the gene
BRPI0621906A2 (en) DNA molecule encoding a mutant histidine kinase polypeptide and its related use, mutant histidine kinase polypeptide, as well as method of producing a genetically modified plant
US7217855B2 (en) Gene controlling flowering time and method for controlling flowering time in plants using the gene
CN106661584B (en) Methods and compositions for increasing plant growth and yield
CN102753693A (en) Plants having enhanced yield-related traits and a method for making the same
CN101548016B (en) Plants having enhanced yield-related traits and a method for making the same using consensus sequences from the yabby protein family
EP1002086A1 (en) Materials and methods relating to a plant regulatory protein
CN101356188A (en) Plants having improved growth characteristics and a method for making the same
KR100440369B1 (en) Promotor system of translationally controlled tumor protein gene
US6630616B1 (en) Arabidopsis MPC1 gene and methods for controlling flowering time
US6025544A (en) Processes for modifying plant flowering behavior
SI9200069A (en) Light regulated gene expression in the transgenic plants
JPH07504820A (en) Transgenic plants showing resistance to multiple viruses and their production method
CN102781957A (en) Plants having enhanced yield-related traits and a method for making the same
CN111172176A (en) Transcription factor PpMADS2 involved in synthesis and regulation of linalool from peach trees and application thereof